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The nonlinear polarization effects in a gas laser with a ring resonator possessing polarization 
anisotropy and located in zero magnetic field are investigated on the basis of the semiclassical vector 
theory. It is shown that because their polarization vectors are different and the active medium 
possesses nonlinear anisotropy, the opposing waves are generated at different frequencies and 
intensities. The difference between the frequencies of the opposing waves increases from zero in 
proportion to the intensity of generation. Expressions for the frequencies and intensities of generation 
of the waves are derived as functions of the parameters of the resonator and the active medium. 

INTRODUCTION 

The polarization characteristics of ring resonators 
have recently been intensively studied (see the bibliog­
raphy in[l,2]). It has been shown that there exist in each 
direction two running-wave-polarization eigenstates 
with different eigenvalues, which determine the fre­
quencies and losses. In the absence of a magnetic field, 
the eigenvalues for the opposing waves are equal. The 
eigenvectors belonging to one and the same eigenvalue 
are different for the opposite directions when the losses 
in the radiation from the resonator are taken into ac­
count. Thus, in a real resonator without a magnetic 
field, the frequencies of the opposing waves are equal, 
while their polarizations are different. 

Upon the application of a magnetic field to the active 
medium (3,4] or to the resonator elements, in which the 
polarizations of the opposing waves are nonlinear, there 
occurs, owing to the magneto-optical effects, a splitting 
of the opposing-wave frequencies. The magnitude of the 
difference frequency is proportional to the magnetic 
field, but does not depend on the generation intensity. 

In the present paper we show that in the absence of 
a magnetic field there arises as a result of the non­
linear interaction with the active medium a polarization­
induced difference between the frequencies of the op­
posing waves that is proportional to the generation in­
tensity. A qualitative explanation of this new effect 
consists in the following. In the case of an elliptically 
polarized running wave, the active medium, which is 
isotropic in the absence of an electromagnetic field, 
becomes anisotropic because of the nonlinear interac­
tion between the Circular components of the field (5] via 
the common G+- and G--transition sublevels. The polar­
ization anisotropies in the saturation and nonlinear 
dispersion of the medium lead to the deformation of the 
polarization state of the field and to a change in the non­
linear shift of the frequency of generation of the wave. 
Since the opposing-wave polarizations, which are de­
termined by the properties of the resonator, are, as a 
rule, different in the region where the active medium 
is located, the saturation and nonlinear dispersion of 
the medium turn out to be different for them. This de­
termines the differences between the intensities, be­
tween the deformations of the polarizations, and between 
the nonlinear generation-frequency shifts of the opposing 
waves. The last effect gives rise to a change in the dif­
ference frequency!). 

The problem is solved under the assumption that 
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there obtains a single-mode regime in which there is 
generated in each direction a monochromatic running 
wave with a definite polarization state possessing the 
least losses. It is assumed that the resonator possesses 
a sufficiently large amplitude or phase anisotropy, so 
that the perturbation introduced by the active medium 
has little effect on the polarization state. 

The polarization-induced frequency difference can 
be measured directly if its value exceeds the width of 
the opposing-wave-frequency synchronization region. 
In the opposite case, it can be distinguished when the 
sign of the frequency "support" produced by rotation 
or by a nonreciprocal Faraday element changes. 

1. THE RING RESONATOR WITH AN ARBITRARY 
POLARIZATION ANISOTROPY 

1. The polarization properties of a resonator are 
conveniently described with the aid of the Jones matrix 
method (6), in which to each polarization element c2rre­
sponds a square matrix of rank two. The matrix P of 
a series of elements is obtained by multiplying the 
matrices of the individual elements in the order in 
which they act on the traveling-wave vector: 
P = AN .... A2A!. If by chance the indicated series of 
elements forms a closed ring resonator, then we can 
find the eigenvectors q and eigenvalues A, which de­
termine the frequencies and losses in the resonator: 

P' _ (PH P") , q-- q=",q, 
PZI P22 

The matrices of any arbitrarily arranged elements 
can be represented in the form of a product of three 
very simple matrices, two of which-the matrices for 
the partial polarizer 

K(k)= (k! 0) o k, 

and the linear phase plate 

( e""2 
<D(<p)= 0 

are diagonal and the third-the rotation matrix 

(1) 

(2) 

(3) 

S(cx) = (Co -so) 
~ ~ ~) 

is nondiagonal. Here and below we use the notation: 
s(l = sin (I and Ca = cos a. 

2. Let us find the relations between the resonator 
matrices Pr and pi for the oppOSing waves in the co-
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ordinate systems connected with the directions of prop­
agation of the waves. In constructing them, we must 
remember that the order in which the resonator ele­
ments act on the wave vector of one wave is the re­
verse of the order in which they act on the counterwave 
vector: , N 

~ II ~ P,= Ai, P/= Ai. ~ II ~ 

If one of the resonator elements is a Faraday 
rotator that rotates the wave vector through an anglli 
h, Le., if Ak =8(11), then in constructing the lllatrix~Pl 
we must replace h by -h, i.e., we must set (Ak)Z = S(-h), 
which corresponds to the presence of a preferred 
magnetic-field defined direction. Below we shall con­
sider the case when h = O. The results can easily be 
generalized to the h f 0 case with the aid of the above­
indicated rule for allowing for magnetic rotation. 

Using the properties oof the product of transposed 
matrices B+C+ = (CBt, we obtain 

p,' = eil ,4/ f. (5) 
... N 

For the polarization-element matrices (2)- (4), we have 
the following equality, obtained with the aid of the re­
flection matrix: 

:4+=1'.41'-1, 1'=1'-1=(6 _~). 

From the equality (5) we obtain 

15; = (TIT :4;1'-1)+ = 1'-115:1'. 
1,=1 

It is convenient to use the resonator matrices for the 
opposing waves when they are written in one coordinate 
system, connected, for example, with the r direction: 

3. It is evident from the equality (6) that 

Sp P,=Sp PI', Det P,=DetP.' 

and, in accord with the Eq. (1) for the eigenvalues, we 
obtain 

If there is a nonreciprocal Faraday rotator in the 
resonator, then 

A,(') (h)=A/'\-h) (k=1.2). 

The determinants of the polarization-element 
matrices (2)- (4) are real and, therefore, since 

~ N _ _ 

(6) 

(7) 

(8) 

Det P = II Det Ai' the determinant Det P of the reso­
i = 1 

nator matrix is also real. Since the Det P = ~ (llA (2), the 
eigenvalues can be represented in the form 

(9) 

4. Let us find the relation between the eigenvectors 
of the opposing waves in the general coordinate system. 

The eigenvectors of the resonator matrices fir and 
Pl can be found from Eq.j1) and, with allowance for 
the equality A1 + A2 = Tr P and the relations (6) and (8), 
they are obtainable in the form 

q;,j = ti, C) , q~2) = ti2( 72) , 

(2) (-a,) 
q, = ti, 1 ' 

(10) 
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where ~ = Pki/(A1 - P22) and Ai = (1 + lail2r1/2 (i, k = 1, 
2; i f k). 

(ll (2) (ll d 
It can be seen that the vectors q; and qr \qz an 

qn are non orthogonal and that the eigenvectors of the 
opposing waves do not coincide with each other. 

5. Thus far, the properties of the matrices and the 
eigenvectors have been considered in Cartesian co­
ordinates. It is, however, more convenient to solve the 
nonlinear equations for the ring laser in angular co­
ordinates._ Upon going OVl r to the angulax: basis, the 
matrices Pr,l go over into the matrices Ur,Z: 

U,- . ~ _ (U22 U,,) (11) 
UZI Ult 

From the form of the matrices Dr 1 follow the re-, 
lations for the eigenvectors of the oppOSing waves: 

, ek») gIn 
qek) = ( q(1) = (_1)m qe,) 

n q~';/' mn mn' (12) 
(n, n'=r, I; n=l=n'; m, k=i, 2), 

where 

Here Itan E1,21 stands for the ratios of the semiaxes of 
the corresponding polarization ellipses and 2q.\,2 - 11/4 
are the azimuths of the major semiaxes of these 
ellipses. The sign of tan E indicates the direction of 
rotation in the preferred coordinate system. The 
orthogonality conditions for the vectors q ~) and q~) 
can then be written in the form 

(13) 

Their relation with the elements of the matrix U is of 
the form 

( n ). u" tg --Bk, el41"= __ 
4 At-U" 

(i, k=1, 2; iofok). 

The above-considered properties of the resonator 
eigenvalues and eigenvectors indicate that in the ab­
sence of nonreciprocal Faraday rotators in the reso­
nator it is impossible to produce a frequency difference 
for, and bring about losses of, the opposing waves (see 
formula (8)), but that the opposing-wave polarization 
states are nonetheless nonreciprocal. 

2. COMPUTATION OF THE FREQUENCIES AND 
INTENSITIES OF GENERATION OF THE 
DIFFERENTLY POLARIZED OPPOSING WAVES 

1. Let us consider the single-mode regime of gen­
eration in a gas ring laser. The field vector in angular 
coordinates has the form 

E=Eo,,( e,,) exp{-i(ro,t-kz)}+ EOI (ell) exp{-i(w,t+kz)}+ C.c. (14) 
e2r eZI 

where E~n is the total wave intensity in the direction 

n = (r, l); e1n and e2n are the complex components of 
the normalized polarization vector: 

letnl'+le'nl'=1. 

To determine the frequencies and intensities of the 
running waves, we must solve the system of stationary 
equations of generation for the field vectors of the 
oppOSing waves in an angular basis: 

0, (e,,) = Il' (ell), 
eu e21 

(15) 
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where Mr is, in accord with (17) and (19), equal to 
~ ~!J.M ~ 
M,=MI+j)T,. (20) 

I'.=-et-i(w.-v-a), n=(r, I) (i, k=1, 2; i*k), 

Q,{=M,{-I,(Rle"I'+Fle.,I')-I,(Lle"I'+L,le"I'), 

QiJ&r=Mu"T-WI/eile"/,, (16) Here D = C2.lEC.lcp - iS2Es.lcp is the determinant (19) of 

the matrix Ar . The components of the matrix of r are of 
the form 

The elements of the matrix QZ for the counterwave are 
obtained by means of the substitution r -= Z. 

For the field (14), the complex interaction coef­
ficients take, in the absence of a magnetic field, the 
form 

et-ia=et. [1-tj'f+ itj L ], 
R=eto, F=2ao(K'+K") , L=(1.o/(1-il) , 

L, = 2eto K''!.+K''1. 2n'!' wi (j.llall;.) I'No 
1~if "'(CI+'Yb (to = 3likuBo 

f = w,+w,-2wo . 
21 •• 

Here wn denotes the frequency of generation of the wave 
in the direction n; v = (v 1 + v2 )/2, V 1 ,2 being the reso­
nator frequencies for the polarizations 1 2' K' G and 

1# 15" , , 
K are functions, given in ], of the angular momenta j 
and jb of the generation levels. The remaining symbol~ 
have the usual meaning (see [S]). 

The real parts of the interaction coefficients are 
even, while the imaginary parts are odd, functions of 
the de tuning of the generation frequency w relative to 
the center woof the amplification contour. 

2. The complex Q-factor matrix Mr of the resonator 
determines the losses, the frequencies, and the linear 
relation between the angular components of the reso­
nator field. For wav~s propagating in different direc­
tions, the matrices~Mr and MZ are different. To con­
s}ruct the matrix Mr , let us write the Q-factor matrix 
Mo acting on the field-vector components in the eigen­
vector representation. In this representation, it is 
diagonal, and is expressible in terms of the resonator 
eigenvalues A1,2' (9): 

M.=(MO" 0) ~ ~ M.. = MI+!J.MT, 

where i is the unit matrix: 

M='/2(M .. +M .. ), !J.M='Iz(M .. -M .. ). 

The elements MOk can, with allowance for (9), be 
represented in the form 

M .. =~[InIA.I-i(-1)'.!...] (k=1.2) 
L. 2 

and do not, in accord with (8), depend on direction 
(Lo is the optical length of the resonator). 

(17) 

(18) 

The Q-factor matrix Mr can be obtained from Mo 
~y me¥1~ o~!?e followi,llg transformation: 
Mr = ArMoAr , where Ar is the matrix that transforms 
the field-vector components from the natural to the 
angular basis and that is expressible in terms of the 
eigenvector components in the angular basis. The com­
ponents of the matrix An are of the form 

{A.}m.=q~~ (n=r, I; m, k=1. 2). (19) 

Since the eigenvectors for the opposite directions are 
<1ifferent (see (12)), the transformation matrices Ar and 
AZ are also different (this is the cause of the difference 
between the matrices Mr and NIL). The Q-factor matrix 
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{T r}u=-{T r}zz=SuC.o..-iC2 .... 'SA., 

{T T} i2=2e-iIllCn/'_e,Sl'l/4+1~' {T T} 21 =2eiCPS1CI'_8ICn.I'+'~' 

where E = 1/ (t: - E ), .lE = 1/ (E + E) cp = 1/ (m + fn ) 
2 1 2 2 1 2 ' 2""1""2 ' 

and .lq; = 1/2(q;1 - cp). 

The matrix Ml is obtained from the matrix M by 
means of the substitutions E _ E and {n _ m r 

1 - 2 ""-1 - ""2-
Under these substitutions .lE and cp do not change, while 
E and .lcp go over into -E and -.lcp. It is clear from the 
method of constructing the matrix M that M and M 
[Eq. (18)] are its eigenvalues and q~l' and q~2~1[Eq. (l:t)] 
are its eigenvectors. For the Q-factor matrix Ml of the 
opposite direction, the eigenvalues remain the same, 
but the eigenvectors are qt and qt, (12). As will be 
shown below, the difference between the eigenvectors, 
which define the polarization state of the opposing-wave 
fields in the resonator, determines the differences in 
frequency and intensity of generation of the oppOSing 
waves. 

3. We shall seek the solution to Eqs. (15) under the 
condition that the gain exceed the losses only for the 
type of oscillation with the highest Q factor, Le., under 
the condition that 

-Re M,,>et>-Re Mot. (21) 

Equations (15) have been written in the weak-field 
approximation (Le., under the assumption that In « 1), 
and are valid up to the third order in the field. Ac­
cordingly, in ord~.r not to exceed the accuracy of the 
matrix element, Qn should not be of order higher than 
the second in the field. This means that in fulfilling the 
condition for smallness of the nonlinear deformation 
of the polarization state 

I Mot-M" I :>a+Re Mot 

we can replace the components en of the normalized 
field vector in (16) by the components qri1) [Eq. (12)] 

(22) 

(n = r, l), of the eigenvector of the linear problem. The 
t (1) d (1) • vec ors qr an ql correspond to the eIgenvalue with 

the highest Q factor MOl' We obtain 

Q"'=M,,'-I,(R-!J.Fs,,,) -1,(£-!J.Ls, .. ), 
W 

Qt{=Mt2T - 2Ilc21!,e-~J, 

(23) 

Q,,'=M,,' -I, (R+!J.Fs",) -1,(£+!J.Ls, .. ), 

where 
R='/2 (R+F) , !J.F='/,(F-R) , 

£='/,(L+L,), !J.L='/,(L,-L). 

The solution of (15) with the matrix elements (23) is 
valid up to terms linear in the intensities Ir and IZ, Le., 
up to and including terms linear in the (a + ReMo1) 
pump excess over the threshold. 

The replacement of the matrix elements given in (16) 
by the elements given in (23), which do not depend on 
the components of the eigenvector of Eq. (15), allows 
us to determine the eigenvalues and eigenvectors of the 
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system (15) by the standard methods of solving linear 
systems of equations. 

The frequencies and intensities are determined from 
the secular equation 

Il.'-Iln sp Qn+Det On=O, n=(r,l), (24) 

with the aid of the relations 

wn=v+cr-Im Iln, a+Re Iln=O, (25) 

which are the stationarity conditions for the amplitudes 
of the opposing waves (14). In accord with the condition 
(21) for single-mode generation, J..I.n = fJ.On + fJ.1n' where 

J..I.1n is the nonlinear change, proportional to the inten­
sities Ir and Il, in the eigenvalue. Neglecting terms of 
order fJ.in' we obtain from Eq. (24) that 

_ Mot [S QA S MA] DetQn-DetMn 
J-ttn----- P n- P n - • 

Mo,-M" Mot-MOl . 

Using the formulas (17), (20), and (26), we find the 
expressions for AfJ. = fJ. r - fJ.l and fJ. = J..I. r + J..I.l: 

(26) 

~1l=1(Va+f,6), 1l=I(f,+Goa1i)+2Mot , (27) 

where 
1='(,(1,+1,}, 6= (/,-1,}/(/,+1,) , 

f,=-2(R-L}+(!lF+~L}2b+Wd+ifoV=fo+ifoV, 

f2=-2(R+L}+(~F-M}2b-Wd+ifoGo, 

V=~F+~L-'/2W, Go=~F-~L+'/2W, 

D being the determinant of the matrix Ar defined in (19). 

We shall hereafter denote the real parts of quan­
tities by one prime and the imaginary parts by two 
primes, e.g., a = at + ian. From the relations (25) and 
(27), we obtain expressions for the mean intensity and 
the frequency of generation: 

2(a+HeMot } 
1=~~~~~~~~~~~~~ 

-r2'+(G,'a'-Go"a"} (V'a'-V"a"}/r.' ' 

1 1jJ c 
w=2(w,+w,}=v -2L;+a-

- ~ [f2" + f~,(Go'a"+Go"a') (V"a"-V'a')]. 

(28) 

Of greatest interest are the expressions for the 
differences between the intensities and the frequencies 
of the opposing waves: 

6= (V"a"- V'a'}/ft', 
(29) 

~w=w,-w'=Im~Il=1[a' (V"-V' f;:: )+a" (V'+V" r;::)]. 
The frequency difference Aw is proportional to the 

intensity, and depends on the opposing-wave polariza­
tion states, which are determined by the parameters of 
the ring resonator, and on the nonlinear-interaction 
coefficients, The expression (29) contains terms that 
are even, as well as terms that are odd, functions of the 
generation-frequency detuning relative to the center of 
the amplification contour, 

The frequency difference Aw vanishes in the case 
of linear polarizations of the opposing waves (Ell E2 = 0, 
± rr/2) with an arbitrary difference between the azi­
muths, in the case of circular polarizations 
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(E 1 = -E 2 = ± rr/4), and in the case when the sum of the 
ellipticities (E1 + (2) vanishes; in all these cases 
a' = an = O. 

Let us consider the case when the polarizations of 
the opposing waves differ little from each other (i.e" 
when AE, ACP« 1), We obtain, correct to second order 
in smallness in the polarization parameters AE and Acp, 
the expression 

r r" V" r" ~w=21!le ('s" (V" - V' -i-) - 2~<pc,.' ( 1+s2.' f7) ( V' + V" i-)] . 
(30) 

The coefficient attached to S4E is an odd, while the coef­
ficient attached to Acp is an even, function of the de­
tuning, the odd component of Aw being a quantity of first 
order in smallness, the even component a quantity of 
second order, Notice that Aw is, as a rule, different 
from zero at the line center. 

In the expression (30), the ellipticity parameter t: 

has an arbitrary value, Let us compare the nonlinear 
frequency shifts AWl and AWc for nearly linear (E « 1) 
and nearly circular (rr/4 - E = f3« 1) polarizations: 

where 
«l,=Im {(F-L-W) (R'-Lt'}}, «l2=IF-L-WI'-IR-L,I', 

«l,=[Re (R+F) ]'-[Re (L+L,+W) ]'. «l.=(R~ R}'-(Re L,}2, 

ere = AWpNe/2Nthr is the amplification factor at the 
line center, and 

x= 
a+ReM" 1 _ ( W-Wo) 2 _ N Ihr 

ku No ao 

(31) 

(32) 

is the relative excess of the amplification factor at the 
generation frequency over its threshold value. In the 
pure isotope, 

where 

4aox~e (1+ f')[ 4e(K,-1} ] 
~w 1= --- --- + ~<p(1-2Ko} 

1 +2Ko 2+f' f ' 

(2Ko+1) (K,-i) 
~wc=4aox~e~f(1+f'} {1+f'}'-K,' ' 

Ko=K'+K", 
K _ 2 (K'Yb+K"Yn) 
'-~-y,+y" --. 

In a 50% isotopiC mixture, 

where 

t = w,+w,- (W,,+W02) 

2y" 

(33) 

(34) 

It can be seen from the expressions for AWl and AWc 
that they are both of second order in smallness in the 
polarization parameters, but that in the case of nearly 
circular polarization the frequency difference AWc 
contains only terms that are odd functions of the de­
tuning, and usually vanishes at the line center, 

The nonlinear deformation of the polarization states 
can be obtained by comparing the eigenvectors of the 
matrices Q and NI, and turns out, in accord with the 
condition (22), to be small (proportional to I), 
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APPENDIX (December 20, 1973) 

The complex coefficients of the interaction between 
circularly polarized running waves in an active mono­
isotopic gaseous medium are given by2) 

a-ia=a,{1- (1-211') T)'f-i2[ -x (1 +2T)X) T1f+ (1-211') T)'fJ}. 

R-a.{1 + (1_211') T)'(1 +f) +i2(1-2I1') T)'f} , F=2K,R, 

L=4a. ( :rab. )'{ 1 + /~lb~' i(H2I1')f}, 
ulll.. 1a 1b "(ab 

L,=4a, ( ."(ab. )' {2K. ("(~bll; + K,-iK, (H2Y')f} , 
Llffi IS "fa 'Yo "(ab 

(A.1) 

W=4a. (~ ) '{2K. ftH "(a"(bY' ) -K,-i(2K.-K,) (1 +2y') f} 
~Cilis ~ ("(a+"(b)"(ab ' 

where 
~Wis 

211=--"'1, 
ku 

x= 
1-2yF(y) 

l'ne->' 
F(y)=e-" j e"dt, 

.o.Wis is the isotope line shift, 

K,=K'+K", 
K _ 2(K'''(b+K''''(a) 
,- "(a+"(b ' 

For Ne 20 : Ne 22 , A = 0.6328 J.L, 
y=0.5, x""0.42, K,=0.24, K,""0.32. 

Note added in proof (February 20, 1974). Our 
attention has been drawn to G. S, Kruglik and E. G. 
Pestov's paper (Zh. Prikl. Spektrosk. 16, 985 (1972)), 
in which the influence of the polarization of the opposing 
waves on their competition in the ring laser is dis-
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cussed. The expression (11) obtained in their paper for 
the polarization-induced frequency splitting differs from 
our formula (29) in that it depends on the detuning, the 
total angular momenta ja and jb, and the difference be­
tween the azimuths of the ellipses of polarization of the 
opposing waves. 

I)The possible existence of such an effect was suggested by S. A. Gordon. 
2)The authors thank V. A. Sokolov for computing the coefficients (A. I ). 
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