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The radiation emitted when an electron is diffracted in a crystal that constitutes a homogeneous 
medium with a refractive index n fOr the photons is considered. It is shown that due to the 
"pendulum" effect (Pendellosung), radiation is produced whose frequency and polarization are 
determined by the frequency and direction, respectively, of the electron's oscillations in the crystal as 
it is diffracted (pendulum radiation). For n f3 > 1 the directional dependence of the pendulum 
radiation frequency is determined by either the normal or an anomalous Doppler effect. Two 
Vavilov-Cerenkov radiation cones arise from two electron waves in the crystal belonging to different 
branches of the dispersion surface. Formulas are obtained for the intensities of the two kinds of 
radiation. 

INTRODUCTION 

It follows from the dynamic theory of diffraction 
(see [lJ, for example) that the motion of a diffracted 
electron in a crystal can be described qualitatively as 
follows. The motion of an electron whose path through 
a crystal is, on the average, parallel to crystallo
graphic planes (the z axis in Fig. 1) with velocity 
vcos BB will, as the result of beats between waves 
having different wave vectors that belong to different 
branches of the dispersion surface [see Eqs. (1) and 
(2)], vary in direction with a spatial period ~g, i.e., 
the electron will oscillate in the direction of the re
ciprocal-lattice vector with the frequency Wo 

= 27T vcos BBI ~g. This is the "pendulum" effect 
(Pendellosung). The possibility that the electron will 
at the same time emit or absorb a photon was con
sidered in [2J in connection with a mechanism for 
modulating an electron beam at optical frequencies. 

In the present paper it is shown that the described 
behavior of a diffracted electron leads to interesting fea
tures of its radiation at velocities exceeding the phase 
velocity of light in the crystal, i.e., for nv cos BB/c > 1. 
First, in the angular region inside a Vavilov-Cerenkov 
radiation cone an anomalous Doppler effect will occur 
for radiation associated with the pendulum effect; this 
will be called pendulum radiation. An anomalous Dop
pler effect for radiation emitted by an oscillator moving 
at "su8raluminal" velocity was predicted by Frank in 
1942.[3 However, no experimental situation has hitherto 
been found where the effect could be observed. The 
possibility actually exists in the case of electron dif
fraction. Secondly, the two electron waves belonging to 
different branches of the dispersion surface give rise 
to two Vavilov-Cerenkov cones (because of the differ-
ent wave vectors). In the region of overlap interference 
will take place between the electromagnetic waves, which 
are emitted with identical frequency but at different 
angles. Consequently, the Cerenkov radiation will be 
intensity-modulated in this region. The beat period will 
be determined by the extinction length ~g. It is thus 
found that beats of Cerenkov radiation form an "image," 
magnified in the ratio A/>.e, of electron-wave beats in 
the crystal (A is the photon wavelength and Ae is the 
de Broglie wavelength of the electron). 

POSSIBLE QUANTUM TRANSITIONS OF AN 
ELECTRON DURING ITS DIFFRACTION 

Let us consider a system of crystallographic planes 
characterized by the reciprocal-lattice vector g (with 
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I gl = lid, where d is the interplanar spacing). Let elec
trons of energy E impinge upon these planes at ex
actly the Bragg angle BB, as shown in Fig. 1. Then the 
propagation of an electron in the crystal is described by 
a superposition of Bloch wave functions [lJ: 

1 . ) 1Jl = -= [b'l) (k'I), r) +b(2) (k'2), r) ]exp (- !...-.Et , 
12 n 

( 1) 

where 

(2) 
b(2) (k'2" r)=l'2cosngr.exp [2ni(k(2)+1j,g)r]; 

27Ttik(1,2) is the quasimomentum of the electron in the 
crystal. The indices 1 and 2 pertain to the correspond
ing branches of the electron's dispersion surface, 
whose e~uation satisfying the Bragg condition I k + gl 
= Ikl is 1] (see Fig. 2) 

k",2)_K= =F.!!.!..'" =F cos S •. 
2K ~g 

( 3) 

Here 

K= (2mElh2+Uo) 'J.". [2m(E+Vo)ih2]'1'''''mvlh=I/A" (3a) 

since we usually have Vo« E; Vo is the average poten
tial in the crystal, Vg=h2Ug/2m is the amplitude of the 
first harmonic of the periodic lattice potential, and 
~g = K cos BB/u g is the extinction length. The negative 
and positive signs in the right-hand part of (3) pertain 
to the first and second branches of the dispersion sur
face, respectively. 

The form (1) of the electron's wave function can be 
understood from the following physical considerations. 
When a plane wave is incident upon the crystal at the 
Bragg angle, then because of reflections from the 
crystallographic planes in the x direction two standing 

FIG. 1. Incidence of electrons 
with momentum hK at Bragg angle 
liB to reflecting planes lying parallel 
to the (yz) plane. The vectors K, 
k(n), and ken) + g lie in the (xz) 
plane. The maximum intensity of 
pendulum radiation appears in a 
plane parallel to the crystallograph
ic planes and is polarized along g, 
unlike the Cerenkov radiation in 
the same plane with polarization 
parallel to the (yz) plane. 
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FIG. 2. Form of the dispersion sur
face in the two-beam approximation. 
Dashed lines-wave vector K of the in
cident electron, solid arrows-wave 
vectors )((a) and k(a) + g of the dif
fracted electron, curves-two branches 
of the surface of constant energy E. 

waves are formed with 11/2 phase difference [the fac
tors sin 1Tgr and cos 1Tgr in (2)] and propagate in the 
z direction with the wave vectors kll) cos 9B and 
k(2) cos 9B [the exponential factors in (2)]. The differ
ence between k(U and k(2) results from the fact that 
the first wave has maxima in the x direction on the 
crystallographic planes, while the maxima of the second 
wave are between them. 

Denoting the initial state of the electron by a sub
script a and the final state, which results from the 
emission of a photon with energy nw, by the subscript 
b, for the matrix element of the a - b transition we 
obtainl) 

=1/2[H~:~ +H!:: +H~:! +H(~::], (4) 

where 

H::: =(b:') (k;'), r) I HI b~') (k: O
), r) > 

(ct, ~=1, 2), 

e 1/2nn H=- --exp(-2rrixr) (u·inV) 
m,n (0 

(5) 

(6) 

is the interaction operator of the electron and photon in 
the medium. We assume that the crystal constitutes a 
homogeneous medium of refractive index n for photons, 
and that 

x=vn/c «(iJ=2nv). (7) 

Thus the a - b transition has been divided into four 
tranSitions (Fig. 3). As we shall show subsequently, the 
transitions 1 - 1 and 2 - 2 between identical branches 
of the dispersion surfaces correspond to Vavilov
Cerenkov radiation, while the transitions 1 - 2 and 
2 -1 between different branches yield pendulum radi
ation. The ordinary Doppler effect occurs in the 1 - 2 
transition, and the anomalous effect occurs in the 
2 - 1 transition. 

The calculation of the matrix elements (5) yields the 
result 

e ,/2nn ""- - V-- v cos 9. sin 9, 
n (iJ 

(8) 

where 9 is the angle between the z axis and the direc
tion of photon emission. In deriving (8) we neglected 
the difference between k!l) and k(2), assuming 

(8a) 
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FIG. 3 

and we also assumed that quasimomentum is conserved: 

kh1) + x - k~L) = 0 for the 1 - 1 tranSition (9) 

kb') +x- IJ;) = 0 for the 2 - 2 transition (10) 

Similarly, 

H!::=H::~ 

= __ e ,/2nn '2nn(JL u ) (11) 
mnV (iJ 2 

e ,i 2nn nn 
= -- V---cos<!:(u,g). 

mn (j) d 

Here for the 1 - 2 and 2 - 1 tranSitions the respec
tive laws of quasi momentum conservation are 

kt') +x-k!l) =0, (12) 

k,(I) +x-k~') =0. (13) 

PENDULUM RADIATION. THE ANOMALOUS 
DOPPLER EFFECT 

Let us consider the 1 - 2 and 2 - 1 transitions. In 
this case the conservation of quasimomentum (12) and 
(13), and of energy given by 

(14) 

together with the dispersion equations (3) and (7), de
termine the frequency of the emitted photon uniquely as 
a function of its propagation direction. Neglecting re
coil momenta, for the 1 - 2 transition we obtain 

/ ( nv cos a. ) 
(iJ=(iJo 1---c--cosO, ( 15) 

2nv cos 9. ~ 2V, 
(iJo= l;, n ( 16) 

We thus see that the frequency w is determined by the 
pendulum effect and that its dependence on the direc
tion of emission is determined by the Doppler effect. 

Similarly, for the 2 - 1 transition we can obtain the 
result 

/ (
nVCOSOB ) 

(iJ=Wo --c-cos9-1. (17) 

Here the frequency is reduced as the angle 9 diminishes, 
Le., an anomalous Doppler effect occurs. This transi
tion is allowed only for nv cos 9B/ c > 1 at angles 

9< arc cos (clnv cos 9.) (18) 

inside the Vavilov-Cerenkov radiation cone (the 1 - 2 
transition is allowed for angles outside the Cerenkov 
cone). Equation (17) coincides with Frank's formula (3) 

for the anomalous Doppler shift of the frequency in the 
case of an oscillator moving faster than light in a 
medium. We can combine (15) and (17) in the form 

nv cos as (iJ±(iJo 
---cosO=--. (19) 

c (j) 
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.1. ________________________ _ 

This coincides with the form of the law of energy and 
momentum conservation when a photon is emitted by a 
system that has discrete energy levels and is moving 
with the velocity v cos 8B' [4] The positive and negative 
signs correspond to the anomalous and normal Doppler 
effects, respectively. We note that in a medium where 
n(X) is not a linear function a complex Doppler effect 
can occur such as was considered by Frank in [3]. Thus 
with respect to the emission of radiation the diffracted 
electron behaves as a moving quasiparticle with a dis
crete energy level or as an oscillator moving in the z 
direction and oscillating in the x direction. 

We shall now calculate the intensity of the pendulum 
radiation. For the transition probability per unit time we 
have 

+~ S ~ IH!~71) 1'1) ( liwo 
4.< •• Ii ~n cos 8-.1 

) n'w' dw do 
liw ----

c' (2n)' 

) n'w' dw do 
liw -----. 

e' .(2n)· 

(20) 

Here {3 = v cos 8B/ c, 80 = arc cos( 1/ {3n), and do = dipd cos 8 
is the element of solid angle. Inserting into (20) the ex
pression (11) for the matrix elements and integrating 
over the frequencies, for the number of photons emit
ted per unit time into unit solid angle we obtain 

dN nn Ii e' w . , 
-=------Slll <t(x,g). 
do 8 me' me d' 

(21) 

Here the frequency w is determined from either (15) or 
(17), depending on the range of angles e. 

At energies from 50 keV to 5 MeV and depending on 
the crystal and system of crystallographic planes, the 
extinction)enp,hs ~g lie within wide limits from 200 
to 10000 A,[1 Le., the pendulum radiation frequency can 
be anywhere from the infrared to the soft x-ray portion 
of the spectrum. In the optical region, e.g., for Ao 
= 21Tc/nwo = ~gc/nvcos 8B "'02000 A, where n= 2 (which 
corresponds to ~g'" 2000 A for nv'" c), when an elec
tron current of J = 1 IJ.A ( _1012 electrons/sec) passes 
through a crystal of thickness D = 10000 A the emis
sion will be -108 photons-sec-sr. 

VAVILOV-CERENKOV EMISSION 

Let us consider the 1 -1 and 2 - 2 transitions. Here 
energy and quasimomentum conservation lead to the 
emission condition 

cos 9(t,2) = C , 

n(v+'/,l1v)cos 8B 

(22) 

where t!.v = 21Tn cos eB/ m ~g is the velocity difference 
corresponding to the difference between the electron 
wave vectors belonging to the different branches of the 
dispersion surface: k(1) - k(2) = cos 8B/~g. 

Equation (22) coincides with the conditions for the 
emission of Cerenkov radiation by particles moving in a 
medium at velocities (v+ t!.v/2)cos 8B. Thus for 
n(v+ t!.v/c)cos 8B/C > 1 two cones of Cerenkov radiation 
will be emitted by the diffracted electron, Le., each 
frequency will be emitted in two directions. Conse
quently, in the region of overlap, spatial beats will 
arise between waves of identical frequency but different 
propagation directions. Indeed, the amplitude of a transi
tion accompanied by photon emission will be 

i { 1 t (1_1) • (I) 
a(t)=-h Z-SH._b exp[-I(w.b-w)tjdt 

o 
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where 

(1,2j" 
Wab = 

1 t (2-+2) . (2) } +2 S H._b exp[-I(W.b -w)tjdt , 
o 

(23) 

(24) 

1-1 2-2 
Integrating (23) and assuming t!.v« v and Ha-b '" Ha-b, 
we obtain for 21TW« t « 21Tn: 

1 I_I [{ (WnVcos8. )}] a(t)=-ilH._bcosQt. exp -i c cos8-w t -1 

[ wnv cos 8. 8 ] _I 
X cos -00 , 

e 

(25) 

where 

wl1v "'. cos 8. 
Q=--""w---¢:w. 

2v 2;, (26) 

The periodic dependence on time in (25) resulted from 
interference between the 1 -1 and 2 - 2 amplitudes. 

For the number of photons emitted by an electron 
per unit frequency interval and unit time into unit solid 
angle, we easily obtain2) 

dN 2n I_I n'w' (27) 
--=-IH._b l'cos'Qtl)(liw(~ncos8-1)).___(2 )" 
do dw Ii c n 

It follows from (27) that the Cerenkov radiation has the 
direction 8 = arc cos( 1/ {3n) corresponding to the elec
tron's average velocity of propagation in the crystal. 

When the value of H!-~ is substituted in (27), followed 
by angular integration with the aid of the 0 function, 
for the number of photons in unit frequency interval per 
unit time we obtain 

dN e' v cos 8. ( 1 ) -=----cos'Qt 1---
dw lie e ~'n' 

(28) 

or for the energy lost by an electron in unit frequency 
interval per unit path distance: 

where 

dW -=~cos' 2nl (1 __ 1_) w 
dldw c' 1\ ~znz' 

1\=2"'5,1"" cos 8B cos 8 

(29) 

(30) 

is the spatial period of beats between two electromag
netic waves, of frequency w, emitted at different angles. 

With the exception of the oscillating factor, (29) 
coincides with the Tamm-Frank equation in [5]. On the 
basis of Eq. (30) with X'" 2000 A. for n=2, Xe=0.02 A 
(E= 300 keV, {3"'0.8, cos 8"'0.6), and ~g"'600 A, we ob
tain the beat period A", 1 mm. 

We note that the pendulum radiation intensity is 
maximal in a plane parallel to the (yz) plane (Fig. 1); 
in this case its polarization is perpendicular to that of 
the Cerenkov radiation. Thus, despite the fact that the 
pendulum radiation intensity is only -10- 4 of the 
Cerenkov radiation intensity, the two kinds of radiation 
can be separated in accordance with both their direc
tional and polarization differences. Consequently, the 
anomalous and complex Doppler effects can be observed 
experimentally. 

CONCLUSION 

Our principal results can be formulated as follows. 

1. As the result of the pendulum effect an electron 
undergoing diffraction in a single crystal emits pendulum 

V. V. Fedorov and A. I. Smirnov 273 



radiation whose frequency is determined by the frequency 
of the electron's "oscillations." The directional depen
dence of the frequency is determined by either a normal 
or an anomalous Doppler effect. In a real dispersive 
medium [i.e., for n = n( w)] a complex DOllpler effect is 
also possible. [3] For a crystal of 10 000 A thickness 
and electron current -1 J.J.A the pendulum radiation in
tensity in the optical region is -108 photons/ sec-sr. 

2. Because two electron waves with different wave 
vectors are present in the crystal during the diffraction 
process, for nf3 > 1 two cones of Vavilov-Cerenkov radi
ation are produced. The electromagnetic waves, having 
an identical frequency but different propagation direc
tions in the region of overlap, interfere; consequently, 
the Cerenkov radiation is intensity-modulated in this 
region. For each frequency the spatial period of the 
beats is determined by the extinction length and the ra
tio between the photon and electron wavelen[ths. 

3. A real possibility exists that anomalous and com
plex Doppler effects can be observed experimentally 
under the given conditions. 

The authors are deeply grateful to D. A. Varshalovich, 
V. A. Ruban, and O. I. Sumbaev for useful discussions. 
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OIf i\ ~ ~g tan IJB the emission of a photon does not violate the .Bragg 
condition; therefore the wave function of the electron m the fmal state 
will also have the form (I). 

2)In the case of t ~ 2rrjn the single 0 function in (27) will be replaced 
by the sum of two 0 functions corresponding to the two Cerenkov 
cones. 
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