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A theory is developed for the self-interaction of incoherent light beams in a cubic medium. It is 
shown that, when the width of the space-time spectrum of the radiation is broad enough, it is 
possible to set up closed nonlinear equations describing the transformation of the field correlation 
function along the path of a ray. The variation in the frequency spectrum and in the spatial radiaion 
statistics is determined. The radius of the envelope and the correlation length of the spatially 
incoherent light beam are determined and the conditions under which self-focusing (or self-defocusing) 
effects are possible for continuous and pulsed radiation are discussed. 

1. INTRODUCTION 

The theory of self-interaction of incoherent optical 
radiation is a relatively new subject. In the first 
papers devoted to this question,[1-3J the analysis of the 
self-interaction of irregular waves in cubic homogene­
ous and randomly inhomogeneous media was given in 
terms of perturbation theory. This method was suc­
cessfully used to investigate the initial stage of trans­
formation of spatial statistics in a plane wave modu­
lated by low-intensity noise distributed in a medium 
or localized on the boundary. [3J The solution of the 
analogous problem for a beam restricted in the trans­
verse direction with a superimposed weakly modulated 
Signal was given by Lyakhov. [4 

Another approach to the self-interaction of a spati­
ally incoherent monochromatic beam of radiation in a 
cubic medium involves averaging of the nonlinear equa­
tions at an early stage of the solution. [5-SJ This ap­
proach can be used to determine the character of the 
variation in the mean intensity of the incoherent beam 
and its radius. For example, the results of Vlasov et 
al. [7J show that self-focusing and the associated reduc­
tion in the radius of a multi mode beam with increasing 
path length will occur only at a full radiation power 
greater than some threshold value which, in turn, is 
proportional to the square of the beam divergence at 
entry into the nonlinear medium. Vorob'ev[5,6J and 
Petrishchev[SJ have found the law of transformation 
of the effective radius of a single-mode incident beam 
in a randomly homogeneous nonlinear medium. It is 
important to note that the transformation of the spatial 
statistics of incoherent radiation was practically ig­
nored in [5-SJ. This is connected either with the re­
strictive nature of the approximations employed 
(in [5,6,SJ the analysis is confined to small-intensity 
fluctuations and is not concerned with beams which 
are highly inhomogeneous in the transverse direction) 
or with difficulties associated with taking into account 
the corresponding effects within the framework of the 
method of moments[7J (in the latter case, the trans­
formation of spatial statistics in general requires the 
analysis of a chain of coupled equations for the higher­
order moments). 

In the context of the self-interaction of incoherent 
radiation, we must remember the similar problem of 
parametric and Raman transformation of radiation 
with broadband time and space spectra. Its solution is 
usually based on an analysis of the interaction and am­
plification of test waves in a given incoherent optical 
pump. [9-14J Recently, D'yakov[15J used the Dyson equa-
tion to generalize this approach to the case of the 
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self-consistent problem. He considered stimulated 
Raman scattering under the conditions of saturation 
in the case of a plane nonmonochromatic pump with 
allowance for the reaction of the latter on the scat­
tered wave. 

The solution of the self-consistent problem is also 
of interest in connection with other nonlinear processes 
excited by radiation with spatially and temporally in­
coherent spectra. We have in mind, in particular, the 
self-focusing and self-defocusing of incoherent beams 
and the associated transformation of space and time 
statistics of a high-intensity light wave transmitted 
by a nonlinear medium. The analysis of these effects 
is also interesting because increasing attention is being 
paid[15-1SJ to the experimental investigation of nonlinear 
transformation of space and time statistics. 

In this paper, we investigate the self-focusing and 
self-defocusing of incoherent beams of light propagat­
ing in an isotropic (in zero field) cubic medium with 
inertial nonlinearity. It is shown that when the total 
radiation power is fixed and the width of the space or 
time spectrum is large, it is possible to set up a closed 
equation for the field correlation function in the non­
linear medium. A separate analysis is given of the 
transformation of the time spectrum and the nonlinear 
transformation of spatial statistics of light beams (in­
cluding nonstationary self-interaction of short inco­
herent pulses). 

2. EOUATION FOR THE CORRELATION FUNCTION 

Consider the transformation of an incoherent beam 
of light incident in the z = 0 plane on a nonlinear layer. 
We shall assume that the width of the time spectrum of 
the radiation and the shift of the maximum of the spec­
trum which is possible in the course of the nonlinear 
interaction are small in comparison with the carrier 
frequency Wo, and that the width of the angular spectrum 
is such that the quasioptical description of the corre­
sponding fields can be used. 

The complex amplitude of the electric field 1,'. in 
the light beam, written in terms of the coordinates z, 
rl, 1)=t-z/v (v=c/..fEo is the velocity of light in the 
medium, Eo is the unperturbed permittivity), will be 
described by the parabolic equation 

ko~(iJolv. (1) 

The nonlinear correction to the permittivity, ENL, in 
the inertial medium with cubic nonlinearity will be 
assumed to satisfy the equation (Tal a1) + 1) ENL 
= E21 612 the solution of which is 

Copyright © 1975 American Institute of Physics 234 



Let us substitute for E::NL in (1) and multiply the 
corresponding equation by rf(z, r12, 1/2). We now add 
to this expression the equation for rf *(z, rh, 1)2) 
multiplied by rf (z, rl1' 1)1)' After averaging the re­
sulting relation, we obtain 

a i (a; + IZ(~'.L' -"',-,-,) ) (f!J (z, rl.l' 1] I) f!J' (z, rl." 1].) > 

ik.B, [S" , { 1]1-1]' } , , =-- d1] exp --- (f!J(z,rl.l,1] )~"(z,r_,-,,1]) 
2B,-l' • -r 

We shall use the following approximation to obtain 

(2) 

a closed equation for the second-order correlation 
function. We shall assume that the characteristic dis­
tance over which the nonlinear interaction between the 
field and the fluctuations OE::NL = E::NL- (E::NL) takes place 
is much greater than the size of the region of longitud­
inal field correlation Zo = kopg which is determined by 
the length of diffraction spreading of characteristic 
inhomogeneities in the cross section of the incoherent 
beam (the inhomogeneity scale po is assumed to be 
much smaller than the radius ro of the beam envelope). 
The additional correlation between random fields in­
troduced by the nonlinear interaction will then be small, 
and to obtain the closed equation for the second-order 
correlation function we can use, for example, the 
kinetic-equation approximation [19] (or the randomized 
phase approximation widely used in the theory of 
turbulent plasma). Assuming that the radiation dis­
tribution function at entry to the nonlinear medium 
is nearly normal, and (t (0, rl, 1)) t (0, rl, 1) ')0, we 
can replace the fourth-order correlation function in 
(2) by the sum of the products of the second-order cor­
relation functions. 

is 

The equation for the function 

Bu( 1]1,1]2) =(f!J (z, ru, 1].) f!J'(z, rl.;, 1],) > (i, j=1, 2) 

( () i) illoB, [~' , ( 11 - 1 ') 7iZ + k; V,Vp B" (111,1],) = 2Bo-r ~ d1'] exp - ¥ . 
o 

X(Bll (~'.1]') 8" ('110 1],) + FIll ('1" 1]')B,,('1', '1.) -~' d'l' exp (_ '1. ~ 11') 

o (3) 
X (B •• (1]', '1') B" (1]10 1],) + B" (1]', '12) B 1, (1]1, '1'))], 

We must now determine the conditions under which 
the nonlinear interaction between the field and the fluc­
tuations OE::NL will not substantially alter the field 
correlation. We must therefore estimate the field 
phase change ocpNL over the longitudinal correlation 
length Zo connected with the effect of oE::NL. Suppose 
that the characteristic times of amplitude and phase 
modulation are roughly the same and equal to To. For 
light pulses which are incoherent both over the space 
and time spectra, we have 
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l 82k.'p.'(If!JI'>v f 
or t.>-r, 

2B. (4) 
"" B,k,'po'( 1f!J1'>v't, f 

2B,-r _or t,<-r. 

In these expressions, to is the pulse length, 1/ = (Tol T)1/2 
for To < T and 1/ = 1 for To > T; 1/' = (To/to)1/2 for To < to. 
The. required condition that the additional correlation 
due to the nonlinear interaction is small will be satis­
fied if «ocpNLn1/2 «1 orl) 

Po«.P,p!v for to>'t', 

Wo«.w"p!v' for t.<-r. 

(5a) 
(5b) 

In these expressions, Po = 1~(pgl r~)p and Wo = Poto 
are, respectively, the radiation power and energy on the 
scale of the transverse beam correlation (P is the 
total power of the incoherent beam), Pcrit = E~v/2~E2 
and W crit = PcritT are, respectively, the critical power 
and energy for self-focusing or self-defocusing. [1,2,20] 

3. TRANSFORMATION OF THE TIME SPECTRUM 
DURING THE SELF-INTERACTION OF 
INCOHERENT RADIATION 

In this section, we consider processes connected 
with the transformation of radiation energy over the 
frequency spectrum.2) In order to establish the specific 
features of these processes, we shall confine our at­
tention, for the sake of simplicity, to the transformation 
of incoherent light beams with a flat envelope. The 
symmetry of the problem shows that the functions Bij 
in (3) are independent of the transverse coordinate r. 
Bearing this in mind, and transforming from the sta­
tionary process (Le., the process of formation of a 
pulse of length to much greater than the correlation 
time To and the relaxation time T) to correlation 
functions for the components of the frequency spectrum, 
we obtain 

[)B,,(w, z) _ koB, B ( ) +JOOd 'B( , ) (w-w') 
---- - -- \2. W Z W W Z 

oz 2ne,T '_< '(w-w')'+c" 
(6) 

where 
+00 

B,,(w,z)= J d-rB,,(-r,z)e'w,. B'jCr.z)=B,,(1']'-'12,Z), 

B(w, z) =B,,(w, z)=B,,(w, z). 

It is clear from (6) that if at the entrance to the 
nonlinear medium the correlation function can be writ­
ten in the form 

2n 
B,,(w,O)=-/,,(p)I(w,O) 

VBo 

[f12(p) is the normalized correlation function and I(w, 0) 
is the frequency distribution of the radiation intensity 
in the z = 0 plane l, then for z > 0 the solution given by 
(6) can be written in the form 

2n 
B 12 (w, z)=-/,,(p)I(w,z), 

VB. 

where I(w, z) satisfies the equation 

uJ(w,z) = koB, J(w z) +JooJ(w' z) (w-w') dw'. (7) 
dz VB.',' _00 ' (w-w')'+,-2 

Since the kernel of the integrand in (7) is an odd func­
tion, it is readily shown that the integrated radiation 
intensity is conserved during the propagation of the 
wave along the z axis: 

+00 koB, +00, ,(w-w') JJ(w,z)dw=--JJdwdw I(w,z)J(w,z)( , __ - O. 
• VB02-r_~ w-w )_+,2 
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Let us now consider the transformation of the fre­
quency spectrum of radiation which, at entry into the 
nonlinear medium, has a spectral width much greater 
than 7- 1 • Equation (7) can then be simplified by re­
placing w/(w2 + 7- 2 ) by lTo(w- 7- 1)-lTO(w + 7-1). Using 
the properties of the 0. function and the fact that the 
width of the spectrum is much greater than 7- 1 , we 
have 

l)I(w, z) 2nk,B, I)l(w, z) 
-I)-z-= ve,'.' l(w,z)-----a;;;-' (8) 

The solution of (8) is known to describe a simple wave 
transported along the frequency spectrum toward the 
Stokes region (for £2 > 0). The width of the radiation 
spectrum during the propagation along the z axis re­
mains roughly the same. The effective shift of the max­
imum in the spectrum is 

where 1m is the maximum value of I( w, z) in the z = 0 
plane. The shift is compared with the width of the fre­
quency spectrum oWo for 

1m ::::;:: V802 't2Booo 
2nk,B,z 

or 

For self-focusing of incoherent beams of radiation 
(ko '" 105 cm- 1 ) with a spectrum width of OWo'" 1012 

sec- 1 in liquids with relaxation time 7'" 3 x 10-12 sec 
and 1::2'" 5x 10-11 cgs esu, we find that the integrated 
intensity which is sufficient for detecting the effect is 
l[,mW/cm2 ]", 6x 102 Z-1 [cm]. 

It is interesting to compare the transformation of the 
time spectrum of the spatially incoherent radiation with 
a flat envelope and the corresponding transformation of 
a nonmonochromatic plane wave (and therefore not hav­
ing random modulation in the transverse direction) in­
cident on a cubic medium. In the latter case, the solu­
tion of \1) can be written in the form (see, for ex­
ample, 2,3J) 

~=I~(z=O, '1) lexp [i<P(Z=O, '1) 

ik.B, J" , ( '1-'1') -+-?- dll exp --- 1~(z=O,'1')I']. 
_E~ T T 

o 

It follows from (9) that the phase fluctuations in the 
plane wave at entry into the nonlinear medium 
cp(z = 0,7]) do not lead to a distortion of the spectrum 
shape when the light beam propagates in the half-

(9) 

space z >0. However, even small amplitude fluctua­
tions in the incident radiation may substantially broaden 
the signal spectrum for a sufficiently long propagation 
path. [21J In contrast to this, during the propagation of a 
spatially incoherent beam of radiation with a flat en­
velope in a nonlinear medium, there is no substantial 
broadening of the spectrum but, instead, the energy is 
transformed toward lower frequencies, as described 
by (7). This difference from the case of a plane ampli­
tude-modulated wave is that, in the latter case, there 
is an important contribution due to the interaction be­
tween Stokes and anti-Stokes components which eventu­
ally leads to the enrichment of the spectrum with har­
monics on either side of the main frequency. At the 
same time, during the transformation of spatially in-
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coherent radiation with Po «Pcrit!V, the Stokes and 
anti-Stokes components are "decoupled" and the inter­
action between them becomes unimportant. The radia­
tion is then enhanced in the Stokes region and suppressed 
in the anti-Stokes region.3) 

When the beam envelope at entry into the nonlinear 
medium is not flat, then, in addition to the energy con­
version processes along the frequency axis discussed 
in this section, there is also the possible transforma­
tion of the radius of the envelope and of the beam cor­
relation radius. However, it will be shown below that 
these effects can be appreciable only for Po ~ P crit. In 
the oppOSite limiting case, the nonlinear change in the 
spatial field structure does not, in fact, occur and the 
above transformations of the time spectrum are, in fact, 
the leading processes. Moreover, the results derived 
in this section may also be of interest for Po > P crit and 
for an envelope restricted in the transverse direction, 
provided only the pulse length is less than the charac­
teristic scale for a nonlinear change in the beam radius. 

4. SELF-FOCUSING OF INCOHERENT BEAMS 

We must now consider effects connected with the non­
linear transformation of the spatial correlation func-
tion for incoherent light beams. It is clear that, when 
(5) is satisfied, the corresponding effects are possible 
only for beams restricted in the transverse direction. 
When the radiation correlation time 70 is small in com­
parison with the relaxation time 7 (or to < 7 it is small 
in comparison with the pulse length to), the parameter v 
(or, correspondingly, v') is small in comparison with 
unity. The conditions given by (5) can then be satisfied 
for Po~Pcrit (or Wo'::Wcrit). We shall bear this in mind 
in the ensuing analysis. If we are interested in the 
Single-moment correlation function, then from (3) it is 
readily seen that for 70« 7, to the contribution of the 
second term to the transformation of spatial statistics 
will be small in comparison with the first term. There­
fore, without considering the transformation of energy 
along the time spectrum, and restricting our attention 
to the transformation of the statistics for the radiation 
integrated over the frequencies, we can use for further 
analysis the equation 

OR I , (n) i ik"B'~" , {'1- '1'} -{j--+-k V,.\"B I2 ('1) =-2 B I2 (11) d'1 exp ---
Z 0 f: /t 't , 

u 
(10) 

The equation obtained for 7 - 0 becomes identical 
with the equation for the correlation function used 
in [5,6,8J in the analysis of the propagation of mono­
chromatic waves in a randomly inhomogeneous medium 
(the equation used in these papers includes a further 
term corresponding to linear scattering). However, the 
equation finally obtained in [5,6,8J is valid only when in­
tensity fluctuations in the light beam are small in com­
parison with the mean beam intensity. It follows from 
the results given in Sec. 2 that the derivation of (10) 
does not depend on this restriction. This equation can, 
for a sufficiently broad time spectrum, describe the 
transformation of the spatial statistics of radiation with 
strong intensity fluctuations and a small transverse 
correlation radius (in comparison with the radius of 
the beam envelope). The results obtained below provide 
information on the transformation of both the correla­
tion radius and the radius of the envelope on the multi­
mode beam. 
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We shall suppose that, at entry into the nonlinear 
medium, the correlation function Bd1)z=o is a Gaussian 
function of rand p:4) 

The solution of (10) will be sought in the form 

{ p' r' ] 
B,,(1'])=Bo(1'])exp --'(--) --,-( -) +ia(z,1'])rp+cp(z,1']) . (11) 

po z, 'YJ ro Z,1] 

The function B(p) - exp[- p2 / Po(z, 1)] indicates that the 
correlation radius is independent of the transverse co­
ordinate. In reality, it is obvious that this assumption 
is valid only for r corresponding to pOints near the 
beam axis, Le., 1 rl« roo For 1 rl~ro, the zero-aberra­
tion approximation (12) used below is unsuitable and the 
solution in the form given by (11) is invalid: the beam 
correlation radius for 1 r 1- ro is a function of the dis­
tance from the beam center. 

We now consider the transformation of the beam near 
its axis. In the zero-aberration approximation,[22] we 
can replace the nonlinear term B11(1)')-Bd1)') by its 
parabolic approximation in terms of the transverse 
coordinates for 1 rl «ro: 

BlI(1']')-B"(1']')=-B,(1']')e<"'.,, ,"(2rp ') . (12) 
ro Z,1] 

Substituting (11) and (12) in (10), and equating to zero 
the coefficients in front of rnpm (n, m = 0, 1, 2), we ob­
tain a set of differential equations for the functions 
ro(z, 1), po(z, 1), a(z, 1), cp(z, 1). Eliminating a(z, 1) 

and cp(z, 1) from this system, we obtain the equations 
for the radius ro(z, 1) of the beam envelope and the 
correlation radius po(z, 1) :5) 

O'''o(Z, 1']) = N 
OZ' k o' r03(Z, '1) 

( ve,r,' ) 
"o(z, 1']) 2ko'PcritT . 

S• { 11-~'} Bo(I]')d1']' exp ---
, T,.o" (z, 11') 

(13) 

r,'(z,l]) N 
-,-- = - = const(z, 1]). 
p, (2,1]) 4 

(14) 

In these expressions, N = 1Trg/~1Tpg is the number of 
inhomogeneities over the cross section of the beam. 
The condition N=const(z, 1) [see (14)] means that the 
degree of incoherence of the beam is conserved as it 
propagates through the nonlinear medium. Since, more­
over, the total beam power is also conserved [Eq. (1) 
has the first integral P = J 1 tl2d2rl = const(z)], we find 
that the power Po(z, 1) = const(z) is also conserved. 
We note that when N= 1, equation (13) becomes identical 
with the well-known expression for the radius of a 
Gaussian beam in a cubic medium in the zero-aberration 
approximation (see, for example /1,2,22,23]). Hence to 
analyze (13) for N;o' 1, we can use the results given in 
these papers in which the analogous equation is ex­
amined. We must now consider separately the stationary 
and nonstationary self-focusing processes. When the 
pulse length to is much greater than the relaxation 
time T, the second term on the right-hand side of 
(13) can be simplified by taking out from under the 
integral sign the quantities Bo(1)') and r6(z, 1)') at the 
point 1)' = 1). Equation (13) then reduces to an ordinary 
differential equation whose solution is 

r"'(z,I])=ro'[t+~(1-p'P:)], po(z,I])=~ro(z,I]), (15) 
Zd ent rQ 

where zd = Yzkoporo is the diffraction broadening of the 
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incoherent beam in a linear medium. It is clear from 
(15) that, when Po« Pcrit, the nonlinear effects do not 
lead to an additional change in the correlation radius 
or the radius of the beam envelope.6 ) However, for 
Po ~ P crib the nonlinear effects become important. 
Self-focusing of a beam of incoherent light is impos­
sible. The crOSSing point is given by 

For a fixed mean radiation intensity, the se)f­
focusing length increases with increasing radius ro 
of the envelope and decreasing correlation radius Po. 

(16) 

We must now consider briefly the conditions which 
will ensure that the corresponding effects will be ob­
served experimentally. If, for example, the source of 
radiation is a multi mode beam of light with spectrum 
width 0110 = OWo/21TC '" 50cm- 1 and divergence 80 ", 5 
X 10-3 rad, then for envelope radius ro'" 1 mm the dif­
fraction spreading is zd = YzkoPoro '" 20 cm. For pulses 
with total power P'" 100 MW (Po'" 20 kW) and length to 
greater than the relaxation time T, we find that Kerr­
type self-focusing in nonlinear liquids (Pcrit = 10 kW) 
with isotropically polarized molecules (carbon disulfide, 
benzene, etc.) leads to the contraction of the beam over 
a length Zf'" 20 cm. To estimate the validity of (5a), we 
consider the correlation time To'" l/owo '" 10-13 sec. 
Since the relaxation time in these liquids is of the or­
der of a few picoseconds, we have 11= 1/6. Finally, 
since IIPo/P crit '" 1/3, it follows that condition (5a) can 
be regarded as roughly satisfied. 

For nonstationary self-focusing (to < T), equation (13) 
has no analytic solutions. A numerical solution of this 
type of equation was investigated in [23]. Here, we shall 
confine our attention to the initial stage of nonstationary 
self-focusing. For pulses of length to« T, we can write 

S" B,(I]') dl]' "" ":::'_w_,_ 
o ,.0'(2,1]') veo ro'(z, l]) 

where Wo is the energy density. It is then readily 
shown that the radius of the beam envelope varies in 
accordance with the formula 

r,'.(z, I])=r,' [t+4( 1-~)] . 
Zd Went 

The self-focusing condition is Wo > Wcrit so that it 
follows that if Wo «Wcrit, then even for W ~Wcrit 

( 17) 

(W is the energy of the entire pulse) there is no ap­
preciable distortion of the spatial statistics for radia­
tion with sufficiently broad spectrum. 

The above process of nonstationary self-focusing is 
of interest in connection with the thermal self-interac­
tion of incoherent radiation of moderate duration. Let 
us suppose, for example, that a multi mode beam of 
light with divergence 80 ", 10-3 rad, pulse length to '" 10-4 

sec, spectrum width 0110"'0.1 cm- 1 (To'" 5x 10-11 sec), 
and envelope radius ro'" 0.5 cm is incident on an ab­
sorbing medium (liquid) in which thermal self-focusing 
is possible. If we suppose that Wcrit'" 0.01 J, then 
condition (5b) will be satisfied in a sufficiently broad 
range of values of Woo Self-focusing in this case leads 
to additional broadening of the envelope if Wo >0.01 J 
or W > 25 J. In the opposite case (W < 25 J) there is no 
distortion in the spatial spectrum of the radiation. 

In conclusion, let us compare the results obtained 
in this section with data on self-focusing in beams 
with regular inhomogeneities. [2,4,24] It is clear from 
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(15) that when condition (5a) is satisfied and ro - 00, 
the radius of the envelope and the beam correlation 
radius for incoherent radiation remain exactly the 
same for z >0 as for z = O. This means that there is 
practically no change in the spatial statistics of inco­
herent radiation with a flat envelope in a nonlinear 
medium. At the same time, it follows from the theory 
of self-interaction of regular waves that an instabil-
ity develops during the propagation of a flat [2,24] suffi­
ciently broad monochromatic beam [4] in a cubic medium 
with E2 >0, which is modulated by a weak signal which 
may eventually lead to the decay of the beam into indi­
vidual fibers and to an appreciable broadening of its 
spatial spectrum. This difference is explained by the 
fact that, in the case of a plane or quasiplane mono­
chromatic wave, the instability which leads to the 
change in the spatial spectrum develops due to the in­
teraction of the field with permittivity fluctuations in­
duced as a result of interference between the main 
wave and the signal superimposed upon it. In contrast 
to this, when an incoherent wave with a broad space­
time spectrum (Le., waves with small correlation radius 
Po and correlation time To) propagates through the 
medium, the permittivity fluctuations do not have a 
substantial influence on the transformation of the 
spatial statistics of the radiation when condition (5a) 
is satisfied. In the last case, the variation in the cor­
relation radius and in the radius of the beam envelope 
is determined only by the mean profile (ENL). 

I)When condition (5) is satisfied on z = 0, it is also satisfied for z 0/= ° 
(including z» zo) since the power Po and the width of the time 
spectrum of the radiation remain practically unaltered during the non­
linear transformation (see Secs. 3 and 4). 

2)The self-focusing of coherent light pulses with complex amplitude 
which is independent of the transverse coordinates in the medium 
with a relaxation nonlinearity leading to the distortion of the fre­
quency spectrum is considered in [21]. 

3)This is confirmed, in particular, by direct studies of the stability of a 
monochromatic spatially incoherent wave (power Po« Pcrit) against 
small perturbations with frequencies differing by ±n from the fre­
quency of the main wave. In a medium with €2 > ° the growth rate 
for the Stokes component with frequency Wo - n is positive, and for 
the anti-Stokes component with frequency Wo + n it is negative. 

4)It is important to note that for real multimode beams the correlation 
radius Po is, in general, a function of the transverse coordinate: with 
increasing distance from the center of the beam, there is an increase 
in the correlation radius. [18] However, near the axis of the beam, 
i.e., in the region where nonlinear conversion occurs most effectively, 
the quantity Po can be regarded as constant. 

S)ln the defocusing medium, the power Pcrit must be replaced by the 
corresponding value taken with the ·sign reversed, i.e., the sign in front 
of the second term on the right-hand side of (13) is positive. 

6) An analogous conclusion with regard to the self-focusing of mono­
chromatic spatially incoherent beams of light can also be deduced 
from the results given in [7]. 
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