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Plasma subjected to a strong pump wave is unstable with respect to the growth of high-frequency 
electron waves (plasmons) due to the decay of the pump wave into two plasmons. This paper reports 
an analysis of the effect of spatial plasma inhomogeneity on this type of parametric instability. It is 
shown that allowance for the spatial inhomogeneity of the plasma leads to a substantial increase in 
the threshold for the decay of the pump wave into two high-frequency electron waves and to the 
trapping of these plasma waves which grow in time in the plasma. The latter effect corresponds to 
absolute instability. 

Plasma subjected to a strong pump wave 
(2) 

Ey(x, t) =Eo(x)sin ( OOot- S ko(x)dx), 

I a 
where the field cp (r, t) is determined by the inhomo­

(1) I geneous particle charge, i.e., 
B,(x, t)=-c S dt' -E,(x, t'), 

ax 

is unstable against the growth of high-frequency electron 
waves (plasmons) due to the decay of the pump wave into 
two plasmons. This decay was observed by Krenz and 
Kino, [lJ who gave an elementary explanation of this 
phenomenon in terms of hydrodynamic equations. 
Jackson[2J investigated the decay with the aid of the 
kinetic equations on the assumption of spatial homogen­
eity of the plasma. He showed that the Wo - 2wLe decay 
is associated with the fact that the wave vector ko of the 
pump wave is finite. The influence of plasma inhomo­
geneity on the growth of the plasma wave and the corre­
sponding growth rates when the frequency of these waves 
is not very different from half the frequency of the var­
iation in the electric field is considered by 
Ramazashvili. [3J The latter paper is restricted by the 
use of a local geometric-optics approximation which 
assumes that the plasma density is a sufficiently smooth 
function of position. The importance of the Wo - 2wLe 
decay as a mechanism for the absorption of radiation by 
plasma is emphasized by Sagdeev. [4J Rosenbluth [5J uses 
the truncated equations for plasmon amplitudes to con­
sider their growth in space. These theoretical studies 
leave as an open question the possibility of the absolute 
instability of the plasma in a strong pump-wave field, 
accompanied by an increase in time of the plasmon am­
plitudes in the inhomogeneous plasma. This question 
can only be answered by studying the spatial dependence 
of the growing perturbations which are localized in a 
finite region of space in the case of absolute instability. 
This approach also yields the solution to the problem of 
the effect of spatial plasma inhomogeneity on the insta­
bility threshold which is found to increase under these 
conditions. 

Since the motion of the ions is unimportant for the 
instability which we are considering, it will be assumed 
that their spatial distribution ni (r) is fixed, and that the 
distribution of electrons in the ground state is 

a ~. 

fo(p,x,t)= [1-'Bx'"{ p,rE(x)sin (ooot- J ko(x)dx). 

VE(x) (J )} a ] ---sin2 OOot- ko(x)dx - F o, 
2000 ap. 
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Ll'l'o(r,t)=-4ne,n.(r)-4ne J dp/o(p,x,t), 

rE(x) = eEo(x)/mew~ is the amplitude of the electron 
oscillations in the field of the pump wave, and UE(x) 
= e2E~(x)/4mew~ is the high-frequency potential. 

The perturbation M(p, r, t) of the electron distribu­
tion is described by the following kinetic equation if it is 
assumed that the associated nonequilibrium perturbation 
of the field, ocp(r, t), is potential: 

a6! a6[ [ v. ] a6[ -. -+v--+e E,(x,t)--B,(x,t) --
{it ar c ap, 

+e [-~+~B,(x, t) ]~-!!3..~=0, ax c ap. ap ar 

where the perturbation potential satisfies the Poisson 
equation 

M'I'(r,t)=-4ne S dp6[(p,r,t). 

The self-consistent set of equations given by Eqs. (3) 
and (4) yields the following set of equations for the 
harmonics of the potential (; cp: 

k.l-2g (00) 1D0- _a_ (g(oo)_a_lD_o) _2ik,j\._a_ID __ I [1- _OO-,-L'_'(,-X,-)_] 
ax ax ax 00 (00-000) 

0, 

" a ( aID_I).. alDo [ OOL.2(X)] k,L'e(OO-OOo)ID- ,-- g(oo-ooo)-. - -21k,K -- 1---,':--'-'-:-
ax iJx ax 00 (00-000) 

alnn,(x) 
0, -ik !K' lDo [1- 6)L,'(X) ] +ik,K'lDo OOL,'(X) 

y ax 00 ("'-000) 00 (00-000) ax 

where 

( )-1 OOLe'(X) (1 . v. i ) e (0 - ---- -1-, 
00' 00 

OOL,'(X)= 4ne'n,(x) 
m, 

and the potential ocp is written in the form 
+~ 

6'1' (r, t) = L e-··,-in··'lDn (r). 

(3) 

(4) 

(5) 

In deriving Eq. (5), we neglect thermal corrections to 
the plasmon spectrum and restrict our attention to the 
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plasmon wavelength region in which Landau damping is 
smaller than the damping due to electron-ion collisions. 
In the limit of the homogeneous plasma, Eq. (5) becomes 
identical with the equations given in [6J • 

We now consider the situation in which the homo­
geneity of the pump-wave amplitude at the plasmon 
wavelength is small. It is convenient to rewrite Eq. (5) 
in the form of a fourth-order differential equation for 
the amplitude of one of the plasmons: 

(6) 

where 

2z+ib 
El= z2+b2 ' 

1+ 1 a,' b=k L (2~+~) ~'=16k..'L'IKI'. P=- -2 z'+b" .L ( ) , ~ • i <ilL' 0 <ilL'(O) 

In deriving Eq. (6), we assume that the plasma electron 
density is a linear function of the coordinate x, i.e., 

UlL/(X) =<ilLe' (0) (l+x/L), (7) 

and that w = W Le (0) + Ii w, where Ii w is a small correc­
tion to the plasmon frequency. 

It will be shown below that plasmons which appear as 
a result of the decay of the pump wave are trapped in the 
plasma and that there is the possibility of their mutual 
transformation. Effects associated with the coupling of 
solutions corresponding to different branches of the os­
cillations are discussed in great detail inC?] which gives 
a classification of the various types of crossing of wave 
solutions in inhomogeneous media. According to this 
classification, Eq. (6) describes the type ill transforma­
tion since the coefficients of this equation near the points 
of crossing of the solutions (they will be called branching 
points) are of the order of unity. 

When the conditions 

16k,'L'IKI'::l>I, 

are satisfied, the geometric-optics approximation is 
valid and, in this approximation, the functions El and E2 
are small because in the plasmon localization region 
discussed below the dimensionless coordinate z is large. 
We shall seek the solution <1>0 in the form 

exp { i J kx(X)dX}, kx=k+bk. 

From Eq. (6), we obtain the following expressions for k 
and lik: 

k'=ki,=k.L'(p± Yp'-I), 

6k=~k.L{~+ (k'-k.L'p)' + e,k'+k.L'(p'-e,)} 
2 k k'-k/p k'-k.L'p 

Since k2 f 0 for any values of x, it is clear that the 
geometric-optics approximation is violated only near 
the branching points of the function k2 , i.e., at the points 

k' 2 6 • 
x.'=4-IKI'L'- ( ___ <il_+~) L' 

k.L' i <ilL' (0) <ilL' (0) . 
(9) 

At these pOints, the wave vectors k 1(x) and k2(x) which 
correspond to different plasmons are identical, i.e., 
mutual transformation of the plasmons is possible. In 
fact, the transparency regions for both types of plasmon 
coincide and lie near values of x defined by x* 
> x > -x*. Outside this region, neither plasmon exists 
since they are damped exponentially when the absolute 
magnitude of x increases without limit. On the other 
hand, it is readily shown that the group velocities of the 
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plasmons in the direction of the plasma inhomogeneity 
are antiparallel. Moreover, it is clear from the follow­
ing representation for the wave vector inside the trans­
parency region 

kl,,=k.L (f p+1± Yp-l}/Y2; 

that at a branching point there can be a change in only 
the sign in front of the second term in this expression, 
i.e., we have transitions of the form k 1 ;= k2, and there­
fore it may be concluded that the incident plasma wave 
approaching the branching point is completely trans­
formed into a plasma wave of another type which is then 
backward scattered. Hence, plasmons are trapped be­
tween the branching points x* and -x* which, for purely 
imaginary liw, lie on the real axis. Therefore, we may 
conclude that the pump wave decays into two plasmons 
which remain in the plasma. 

The quantization condition which describes the growth 
rate for the w - 2wLe decay can be obtained by match­
ing the solutions on either side of the branching points. 
This condition is 

n(2nH). (10) 

For El = 0, this quantization condition becomes identical 
with that given in [8J • 

Integration shows that the second term in Eq. (10) is 
real and small [~(k 1 L)-1 as compared with the first]. 
Finally, we find that the growth rate for the Wo - 2wLe 
decay is given by 

4 (a,/2b-1)<:p(q) b=n (2n+ L), (11) 

where 

1 
<:p(q)=K(q)+-[K(q)-E(q) ], 

q 

q= a,-2b = X_ X"s=2J!s2. IK1 ± (~+~) 
a,+2b x+' k.L <ilL' (0) <ilL,(O) , 

Y = 1m liw (it is assumed that Re liw = 0), and K(q) and 
E(q) are the complete elliptic integrals of the first and 
second kind, respectively. At the threshold, the growth 
rate is zero and the criterion for the Wo - 2wLe decay 
instability in the inhomogeneous plasma is 

~IKI=~~+ n(2nH) . (12) 
k.L 2 <ilu(O) 8k.LL<jJ(q) 

I When the inhomogeneity has very little effect on the 
threshold (in this case, q ~ 0), the last term in Eq. (12) 
is a small correction. The threshold is given by the fol­
lowing expression: 

~IKI=~~+ 2nH _ (13) 
kl. 2 <ilL. (0) 4k.LL 

Conversely, when the argument q is close to unity, the 
inhomogeneity has a substantial effect on the decay 
threshold which is then given by 

(14) 

If 
1 v,; k.LL 

-;:;- <ilu(O) 2nH < e, 

where e is the base of natural logarithms, the solution 
of Eq. (14) may be written with logarithmic accuracy in 
the form 

J!s2.IKI= n(2nH){ln[~~ k.LL ]}-' (15) 
k.L 8k.LL n <ilL'(O) 2n+1 • 
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Comparison of Eqs. (13) and (15) shows that the inhomo­
geneity has a substantial effect on the threshold. 

We can generalize the above results to the case 
where the dissipation of plasma waves is determined by 
their Cerenkov interaction with electrons. This occurs 
when the wave vector for the growing oscillations turns 
out to be sufficiently large: k > kst, where kst is the 
value of the wave vector for which Landau damping is 
comparable with damping due to electron-ion collisions. 
We shall suppose, for the sake of simplicity, that 
ky »kz ' In that case, if 

k.t<k.<kd = _1_ {In [~ V n _111 ] }-". , 
2rD. 8 8 K . 

(16) 

where rDe = vTelwLe(O) is the Debye length of the elec­
trons, then k2 is not very different from ~ in the region x y 
of plasma transparency. We can therefore replace ~ 
by k2 in the expression for the Landau damping, and the 
cor!esponding generalization of Eq. (12) takes the form 

IKI=~~+~(--.::.)'''_1 __ exp{_~_1_}+ n(2n+1) (17) 
2 WL'(O) 8 8 ku'rD" 4 ku'rD.' . 8k.L<p(q)· 

At the same time, in the expression for x* and q we 
must substitute lIei - 2y, where 

1 1 (n ) 'f, filL' (0) { 1 1} 
\1=2""+8 8 ku'rD" exp -4ku'rD.' • 

It is clear from Eq. (17) that the threshold reaches 
its minimum value given by 

IKI= ,,(2n+1) rD' {In [16q>(q) L ]}'/' (18) 
32<p(q) L 1'2n(2n+1) rD' 

for values of the wave vector given by 

km'n = _1 {In [ 16q> (q) L] }-" .• 
2rD. . 1'2n(2n+.1) rD. 

When the value of the wave vector ~in Is close to the 
right-hand end of the interval defined by Eq. (16), i.e., 
~in ~ kd' the argument of the elliptic functions is close 
to zero and the threshold for the excitation of the 
Wo - 2wLe parametric instability is given by the follow­
ing expression: 

IKI= 2n+1 !!:.:...{In[(~)'f'_8_..!:-]}·t.. (19) 
16 L 2 2n+1 rD. 

When the wave vector kmin lies on the left hand part 
of the interval defined by Eq. (16), the argument q is of 
the order of unIty and the threshold for the development 
of the W 0 - 2w Le decay instability is given. by 

IKI= (2n+1)" ~_I_[ln(~_1 __ ~)];h (20) 
32 filL< (0) LIn 4 1'2" 2n+1 rD. ' 

where 1 = v Te III ei is the mean free path. Comparison of 
Eqs. (19) and (20) shows that they are close to one 
another, but their ratio is determined by the particular 
values of the plasma parameters. 

The ratio of the threshold (19) to the threshold for the 
development of the Wo - 2wLe instability in homogeneous 
plasma is given by the formula 

IKI 2n+1 I [ ((" )'f' 8 L )]'10 (21) 
IKlhom=16L In 2 2n+1 -;:;: . 

The square of this ratio gives the increase in the thres­
hold value of the light flux due to the influence of the 
plasma inhomogeneity relative to the threshold flux 
necessary for the excitation of the instability in homo-
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geneous plasma. We shall estimate the threshold radia­
tion flux in the particular case which is of practical im­
portance for producing controlled thermonuclear reac­
tions with the aid of a laser. In this case, the plasma 
electron temperature is 1 keY and the size of the plasma 
inhomogeneity varies from 0.01 cm to 0.001 cm. The 
threshold values of the light flux necessary for the de­
velopment of the Wo - 2WLe decay instability in homo­
geneous plasma is 1012 W/cm2 if the plasma is produced 
by a neodymium laser beam of 1.06 J.1. wavelength, and 
1010 W/cm2 if the plasma is exposed to C~ laser radia­
tion of 10.6 /J. wavelength. The effect of the inhomo~ 
geneity of the plasma amounts to an increase in the 
threshold flux to 4 X 1012 W/cm2 for L = 0.01, and to 
2 x 1014 W/cm 2 for L = 0.001 in the case of the neody­
mium laser; the increase is to 2 X 1012 W/cm2 for 
L = 0.01 cm and to 1014 W/cm 2 for L = 0.001 cm in the 
case of the C02 laser. 

In the region where Eq. (12) is valid, there is a sub­
stantial increase in the threshold for the Wo - 2wLe de­
cay. It may therefore be concluded that when plasma is 
exposed to radiation with an amplitude exceeding the 
value given by Eq. (19), we have excitation of plasmons 
with wavelengths of the order of kmin• 

It is important to note the following fact which is con­
cerned with the effect of thermal corrections to the 
plasmon spectrum: with increasing distance from the 
branching points, this influence can be neglected since 
the wave number k 1 is not very different from kX 
throughout the transparency region. This differs very 
substantially from the situation occurring in inhomo­
geneous plasma without the pump wave, when departure 
from the branching point along the plasma profile leads 
to an increase in kx' i.e., to an exponential increase in 
the damping. 

It is clear from the foregOing that allowance for spa­
tial inhomogeneity of plasma leads to two effects: the 
inhomogeneity leads to a substantial increase in the 
threshold for the decay of the pump wave into two high­
frequency electron waves and these plasma waves, which 

. grow in time, turn out to be trapped in the plasma. This 

. trapping corresponds to absolute instability. 
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