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It is shown within the framework of the Keldysh-Kopaev model with anisotropic band dispersion that the magnetic 
field hinders dielectric pairing. At low temperature, the transition to the dielectric field in a magnetic field is a 
first-order transition. 

1. Different models of the metal-dielectric transi
tion have been discussed many times in recent years. 
In particular, a transition to the dielectric phase takes 
place in a large number of oxides of transition metals 
and is accompanied by structural changes of the lattice. 
One of the models of the transition due to the singulari
ties of the electron spectrum was proposed by Keldysh 
and Kopaev and by Kozlov and lVIaksimov [2J, where the 
basic premise is the assumption of pairing of the elec
trons and holes having Fermi surfaces of the same 
shape, assumed in [1,2J to be spherical. However, the 
isotropy of the spectrum as such is immaterial here, 
and all that matters is the fact that the Fermi surfaces 
are congruent. This circumstance was independently 
used to understand a number of nontrivial properties of 
antiferromagnetism in chromium [3J, for which purpose 
a model essentially in agreement with the premises 
of [1,2J was considered. 

Gor'kov and Mnatsakanov [4J have previously [4J ad
vanced the suggestion that the Keldysh-Kopaev model til 
is capable in principle of describing the appearance of 
small carrier groups. These considerations were based 
on the already known results [5,6J that any violation of 
the congruence of the Fermi surfaces weakens the 
tendency to dielectric pairing. It was therefore 
noted [5,7] that the dielectric transition of the type 
considered in [il cannot be realized in the strongly 
anisotropic bismuth. It was asked instead whether the 
model of two coinciding Fermi surfaces can give rise 
to singularities of the electron spectra of V-group 
metals and semiconductors of the SnTe type. 

A similar assumption concerning the electronic spec
trum of bismuth was first advanced by Abrikosov and 
Fal'kovskii [aJ who carried out, in particular, a phenom
enological analysis of the spectrum in the vicinities of 
high-symmetry points. Without stopping to compare the 
results of [7 ,aJ , we note that the most artificial factor in 
the model of [aJ is the assumption that two electronic 
terms of generally speaking different symmetry coincide 
on the entire surface. For chromium, the presence of 
flat sections on the Fermi surface is usually attributed 
to the applicability of strongly-bound electrons to the 
model (see also [9J). In the case of bismuth [7J it was 
shown that the initial assumption that the electron and 
hole terms coincide in first order is a natural conse
quence of allowance for the singularities of the Coulomb 
interaction in the band theory. 

We consider below, using the model of [1,2J, the role 
of a sufficiently strong magnetic field. From the usual 
point of view, the action of a magnetic field on carriers 
in superconductors and semimetals consists of quan
tizing the motion of the quasiparticles. Therefore a field 
is strong if w~ - ~ or T, where ~ is the gap in the 
spectrum or the magnitude of the overlap, and Wt 
=eH(c8S/8E)-1 1). It will be shown below that the con
sidered model contains a somewhat unexpected parame-
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ter A-(W~EF)1/3/T (wc=eH/mc), which controls the val
ues of the gaps and the volume of the Fermi surfaces. 
Therefore the dielectric undergoes in this model a 
transition to the metallic state prior to the onset of real 
quantization in sufficiently strong magnetic fields. 

2. Just as in [4,7J, we measure the spectrum of the 
electrons (zone 1) and of the holes (zone 2) along the 
normal to the Fermi surface 

s,(p) =v, (PF) t(PF) =v,t, 
( 1) 

s,(p) =-V,(PF)t(PF) =-v,t, 

where t(PF) is the projection of the momentum on the 
positive direction of the normal to the Fermi surface, 
reckoned from the Fermi surface. The transition tem
perature Tco in the absence of a field is determined by 
the condition that there exist a nonzero solution of the 
equation 

~(PI.)= -T.E ~ g(p",p,')~(p,.')do' S dlG,G, 

_\ EFrf, ( ')~( ') do' 
(2) 

- n-1, :yg PF,P. PF . ( ')+ ( ')' 
VI PF V:!. Pl" 

where EF is the cutoff energy -EF, and is immaterial 
in what follows. 

In a magnetic field, the G-functions and ~ acquire 
an additional dependence on the coordinates. Let us con
sider the expression 

IT (r, r') = - T .E G, .... (r, r ,) t1 (r" r,)G, .... (r" r')dr,' dr,'. (3) 

Choosing A= -(1/2)rXH, we write down the equation for 
the G-function of the quasi particles in the vicinity of the 
Fermi surface 

{ . (. () 1 [ eH ] ) } , , !<u .. -s -1;':-+2 r-c- G, ... (r,r )=6(r-r). (4)* 

After making the substitution 

G, ... (r, r') = exp (Tr'l r e~ ]) G, ... {r, r') 

we see that Giwn(r, r') depends only on the coordinate 
difference (r- r'), so that we can go over to the mo
mentum representation 

( 5) 

Expanding ~(p) near the Fermi surface up to terms 
of second order in H, corresponding to the usual weak
field assumption wc« T, we obtain 

(7) 

(8) 

In the derivation of (7) and (8) we used the fact that the 
term of first order in H is 
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[ d eH] 
V(PF) ap--C- >0, 

since d~/dp=V(PF)' 

Using the fact that 

d' d' 
df"G(iOOn±6)= d(ioo,,)' G(ioo.±s), 

we write down final expressions for G1 and G2: 

{ d' 
iOOn-v,t+A.,' d(iOOn) , }G, (IOOn-v,ti p,) =1, 

(9) 

We turn to the definition of O(r, r'). Separating from 
all quantities in (3) the phase factor exp{(1/2)ir'. rXH}, 
we can easily verify that it is possible to go over to the 
momentum representation in Il with sufficient accuracy. 
Indeed, after simple transformations we obtain 

ll;". (p) =; J G,; •• (p+k) ~ (p)G,;". (p+q)6 (k,) 

. x6(q,) ;, exp (~[kqlH )d'k.d'q. 

The z axis determines here the direction of H. 

(10) 

Since GI(p+k) and G2(p+q) depend on k and q via 
VI . k and V2' q, it follows that by choosing Vl( II V2) to 
lie, for example, in the xz plane, we find after integrat
ing with respect to ky and qy that 

IT(p) =G, (p)~ (p)G,(p). 

To determine Tc in the field H we have in place of 
(2) the equation 

~(P.)=-T.E ~g(PF'P/)~(P:) JdtG,(iOOn-V,t)G,(iOOn+V,t). (11) 

Let us consider the expression 

III (OOn) = J dtG,G,. 

We multiply the first equation of (9) by V2G2, and the 
second by V1GI, add the two and integrate with respect 
to t. It is easy to verify that f G1dt and f G2dt are equal 
to their value in the absence of a field. (The density of 
the number of states does not change). We note further
more that 

d'G. 1 d'G. 
d (ioo.) , = -;:O----;JiZ' 0:=1,2, 

After certain transformations we obtain the equation 
d' 

iA.'--Ill'+OOnlll'= - sign 00., 
drojl2" 

V t +V2 
1ll'(OOn)=-znell (OOn), 

, 1 [ eH] [ eH) (V, v, ) A. (PF)=- v- v_ ---, 
2 c, C IL m~:) m!:) 

(12) 

In the case of a quadratic dispersion law in both bands 
we have X3(PF) = O. (For spheres we have m2V2 = mlVl 
=Po)· 

USing the Laplace method, we write down directly the 
solutions for ~ '(wn > 0) and ~ '(wn < 0): 

J [ i(}.,u) , ] 
1ll'(OOn>O)= exp OOnU+-3- du, 

e, 
( 14) 

, J [ i(}.,U)'] III (OOn<O)= exp OOnU+-3- duo 
e, 

The contours C I and C2 are chosen such as to obtain 
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the correct asymptotic form in Wn (see the figure). 
Summing over the frequency and separating ~~ =-1/1 wnl, 
we obtain 

1ll'(PF)=T~ 1ll'(OOn)=ln_E_. _~J~_d_U_(1_cos_(A_U_)_' ) 
~ T 2 shnu 3' 
• , (15) 

A( )_ }.,(P.) (000'8.)'" 
p. --T-"" T 

When A« 1 (weak fields) we get 

E 635W) 
1ll'(PF)=ln-' - A'(PF) 

T 16n' 
(16) 

and thus 

T =T (1- 635~(7) .) 
,,' 16n' A 

where the bar denotes averaging as in [4]: 

~ rh do 
( ... )= 'f -+-IX(PF) I (. .. ), 

VI V2 

~ IX(PF) I' +do = 1. 
Vi V2 

If A »1 but wc« T, we can obtain for ~' the asymp
totic expression 

, E. A. ( T )' III (p.)=lnT-lny+c 1: ' r ('I,) n'3'/· 
c= 

48 

T,(H) = (X,/C)"'(X_X,) ''', 

i.e., a nonzero solution for the gap exists at fields 
stronger than Hc. 

(17) 

3. The dependence of all the properties on the mag
netic field and, in particular, the spectrum, can be ob
tained if we know the solutions of the system of equa
tions for the Green's functions 

G .. (p) =G,(p)+G,(p)~(p)G" (p), 
G" (p) =G, (p) ~. (p) G .. (p). 

The formal solution is 

G .. (p) 
G, (p) G,,(p)= d'(p) . (18) 

1-ld I'G, (p)G,(p) 1-ldl'G,(p)G,(p) , 

The actual investigation of the singularities of expres
sions (18) on the real axis, however, is a complicated 

problem. Even to find G~~A) it is necessary to solve 
(9) with the substitution iWn - E, so as to make the solu
tion analytic in the upper (lower) E half-plane, and 
furthermore, for the solution to decrease asymptotically 
with ( E ± V2t). Expressions (18) are made complicated 
by the possible existence of poles. To understand quali
tatively the character of the variation of the dielectric
phase spectrum with changing field, let us consider, in 
the case of weak fields, the spectrum near the ~xcitation 
threshold: 

t,= 

S. A. Gordyunin 

dlv,-v,1 
(v,+v,) l'v,v, 

(19) 
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In this case we have 

Gr./=(e±ur)) -1+1m G,/, .. a=1, 2. 

~R ~R 
For G1 and G2 we have 

For the spectrum near the threshold we obtain a 
finite imaginary part 

e=eo { 1 +ia ( ~. ) o/'exp [ - ( ~. )./, ] + i~ (:, ) 'I~xp [ - (:, ) '/,]}, (20) 

a, ~~1. 

This result evidently denotes a gapless character of the 
system spectrum. The density of states at E = 0 is also 
finite, albeit exponentially small: 

It is impossible to trace the behavior of the denSity 
of states over the entire field interval, all the more 
since, according to (16), at x-Xc = T co in our picture 
the transition from the dielectric phase to the semi
metallic state at low temperatures turn out to be a 
first-order transition. Attention should be called, how
ever, to the fact that in the vicinity of large fields and 
low temperatures it appears that a superstructure can 
be formed with a period q* -Tc/vF, analogous to the 
superstructure in the superconductor in the exchange 
field [12J. 

In concluding this section we note once more that the 
considered effect is connected directly with the aniso
tropy of the system and is absent in the case of a quad
ratic spectrum. In the latter case, as is well known, 
it would be possible to changeover to the mass-center 
coordinates, and the pairing of the electron with the hole 
would not be very sensitive to the magnetic field be
cause the magnetic field does not act on a neutral for
mation. In the case when there is an anisotropy of gen
eral form, the coordinates of the mass center, as such, 
do not exist. It seems to us that this effect can be re
garded as quantum motion of an electron-hole pair and 
in this sense it resembles, for example, the influence 
of a strong magnetic field on the critical temperature 
in a superconductor. 

4. As a result of the exciton transition, a semimetal 
may be produced with Fermi surfaces in the form of 
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lobes [7J (one dimension -Tc/vF and two others large 
-Po). We compare, for such a semimetal, the role of 
the quantum effects and of the obtained band-motion 
effect. The magnitude of the quantum effects is deter
mined by the parameter welT, where w* =eH/m*c. 
For the indicated form of the spectrum we have m* - m 
and the quantum effects do not have time to develop in 
such a semimetal. The spectrum on Bi is more compli
cated. Therefore the quantization in the field turns out 
to be appreciable at A - 1. However, the relative change 
of the band positions might be controlled by the de
scribed effect. In addition, apart from the pure method
ological interest that might attach to the result, it can 
be assumed that the Fermi surfaces in Sb and As have 
shapes close to those given by this model. 

In conclusion, I am grateful to L. P. Gor'kov for help 
with the work. 

*r. eR] lr c == r X (eR/c). 

liThe dielectric pairing in quantizing fields (we» T) was investigated 
by Abrikosov PO] and by BrazovskiY [11]. 
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