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The time of interband recombination in a semiconductor can exceed the time of interband relaxation, so 
that it is possible to produce an inverse electron distribution in the conduction band with the aid of an 
external source. If the semiconductor gap Eg does not exceed a certain critical value, then a superconducting 
state is produced with repulsion between the electrons. For a single-band metal with repulsion between the 
electrons there exists, besides the trivial solution with zero superconducting gap, a stationary nontrivial 
solution with inverse distribution if the superconducting gap exceeds the limiting phonon energy. It is shown 
that an undamped current corresponding to ideal paramagnetism exists in such systems. The Meissner effect 
is therefore missing in such superconductors and the magnetic field penetrates into the sample, and executes 
spatial oscillations. Models of a semimetal and a two-band metal with overlapping bands and different masses 
are also considered. 

1. INTRODUCTION 
Under equilibrium conditions, the value of the super­

conduCtin~ gap ~ is determined by the following ex­
pression: 1l 

1 = _ g ~ 1 - 2;p (T) ds, ( 1) 
o 

where g is the coupling constant, W the cutoff energy 
of interaction among electrons and np(T) = [e t / T + 1r1 

the distribution function of the excitations. We note that 
Eq. (1) for the gap ~ remains valid even in the non­
equilibrium case if we understand by np the distrib'ltion 
function of quasiparticles that satisfy the kinetic equa­
tion (see Eq. (26) below). Recently, the possibility of 
increasing the critical temperature Tc of the super­
conducting transition by the effect of external fields on 
the distribution function np(T) has been studied. Eliash­
berg[2l has considered the effect of a uhf field with fre­
quency W < 2~(T) on Tc. In this case, its effect reduces 
to a redistribution of the already existent quasiparticles 
with respect to the energy, so that the population of 
states with small E decreases and Tc increases. 

Aronov and Gurevich[3,4l have suggested a method of 
decreasing the effective electron temperature Te by 
means of resonance interband transitions under the ac­
tion of an electromagnetic field and the extraction of 
excitations in tunnel structures; here T c does not 
change. 

If the frequency W ~ 2~ is not a resonance one for 
interband transitions, then the absorption of such radia­
tion is connected with the breaking of superconducting 
pairs, i.e., with an increase in np. 

As is seen from Eq. (1), increase of np in the case 
of attraction between the particles leads only to a de­
crease of Tc (which has been observed experimen­
tally[5-7l). However, it has been shown [al that the 
superconducting state is possible in exactly the opposite 
situation, when 1- 2np and g simultaneously change 
Sign, i.e., for an inverted distribution of quasiparticles 
np > ~ and repulsive interaction between the particles. 

In order to understand the nature of the formation of 
the bound state in repulSion, it is convenient to trans­
form to the representation of quasiholes, for which the 
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distribution will be noninverted, the potential energy 
of the interaction will be positive (i.e., repulsive), and 
the kinetic energy will be negative because of the nega­
ti ve sign of the mass mh' Evidently, because of the 
different signs of the kinetic and potential energies, the 
formation of a bound state becomes possible. 

The basic difficulty here is in the creation and main­
tenance of the inverted population. It has been shown[al 
how one can avoid this difficulty in the semiconductor 
model, when the presence of a forbidden band makes the 
inverted distribution between bands possible. Methods of 
obtaining the inverted population in semiconductors (such 
as optical excitation, excitation by electron beam, ex­
citation by injection of nonequilibrium electrons and by 
breakdown in an electric field) have been described 
by Basov. [9l 

For the single-band metallic model, the possibility 
of the existence of superconductivity in the case of an 
inverted distribution and re8ulsion between particles 
has been shown previously. 10l Attention was drawn to 
the possibility of the creation of an inverted population 
inside the conduction band in a paper by one of the 
authors.[lll In this work, it was shown that if the gap 
that arises as a result of the action of a resonance elec­
tromagnetic field[12l becomes greater than half the 
phonon frequency, then the single-phonon transition 
across the gap becomes impossible. This leads to a 
blocking of the quasiparticles. Such a blocking is also 
possible because of a superconducting gap, so that a 
self-maintaining state is developed in the repulSion with 
a superconducting gap 2~ >wph and an inverted dis­
tribution of quasiparticles. [lOl 

The present work is devoted to a theoretical study 
of the superconducting properties of systems with an 
inverted distribution. The basic result is a demonstra­
tion of the existence in the presence of scattering from 
impurities of an undamped current, the sign of which is 
opposite the sign of the current in the equilibrium 
superconductor. At the same time, in place of ideal 
diamagnetism (the Meissner effect), the system 
possesses ideal paramagnetism. These differences 
can be understood if we take into account the possibility 
mentioned above of a transition to the quasihole repre­
sentation (mh <0). 
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2. INVESTIGATION OF THE VERTEX PART IN 
THE SEMICONDUCTOR MODEL 

We consider a semiconductor with the Hamiltonian 
, 

:Je= L {L e.(p)ao.+a •• + g; L a •• +a:_.ao_.ao.} 

0-' • (2) 

+ ~ La!p+a,"':..a,_.a,.+h.c. 
p 

in a nonequilibrium state with a population which is 
characterized by the chemical potentials J.Ll and J.L2 of 
electrons in the conduction band and in the valence band 
with the respective dispersion laws El(P) = p2/2m + Eg 
and E2(P) =-(p-w)2/2m- Eg (see Fig. 1a). 

It follows from the kinetic equation for nonequilib­
rium electrons and holes in a semiconductor that if the 
dielectric gap 2Eg exceeds the maximum phonon fre­
quency in the system: 

( 3) 

and the extrema of the bands are separated in momen­
tum space by the vector w, then the value of the recom­
bination time TR of electrons excited by an external 
source reaches rather large values, of the order of 
10-5 _10- 6 sec. Inasmuch as the energy relaxation time 
of the carriers (electrons in the conduction band and 
holes in the valence band) is many orders of magnitude 
smaller than the TR found, then the inverted population 
mentioned above is entirely achievable; here 1-'1. and J.L2 
determine the quasi-Fermi levels of the electrons and 
holes, measured from the level J.L = 0 (the center of the 
forbidden band). 

The investigation of the stability of such a nonequi­
librium state relative to the superconductive pairing of 
electrons in the limits of each band reduces to the fol­
lowing set of equations for the vertex functions r ll(q) 
and r 21(q) (Fig. 2), which, for a small transferred 
4-momentum q ={w, q}, has the following form: 

f" (000) =[go+ (g.'-go') II"j/det, f" (000) =g,/det; 

det=l-go(II,,+II,,) + (go'-g,') II"II", 

In the limit q = 0, we easily obtain 

S dp {[2e,(p)-ooo+ill j -" 
II,,= (2:rt) , -[2e,(p)-ooo-illj-', 

e,(p)< fl'} 
e, (p) > fl, 

while lldwo, q) is obtained from lll1(wo, q) by the 
transformation 1 ¢ 2. In the subsequent calculation of 
ITCHl!(WO, q), we make the following assumption, which 

b 

FIG. I. Spectrum of excitations in a semiconductor with inverted 
distribution: normal (a) and superconducting (b) states of the system. 
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FIG. 2. Set of equations for the vertex functions r 11 and r 21· 

is valid only for quasi-two-dimensional structures: 

. dp {No, lel>E, 
--=N(e)de=de 

(2:rt) , 0, lei< E, . (6) 

We note that such semiconductors are being intensively 
studied at the present time (see, for example, [13J). 

We further set ml=m2,Le., J.Ll=J.L2=J.L; No1=No2 =No. 
We then introduce the nondimensional constants gS = Nogo 
and g~ = Nog1 of intra- and interband interaction of the 
electrons (we shall omit the primes below). Then direct 
calculation of the values of llcw(wo) from Eq. (5) with 
the density of states (6) leads to the following equation 
for the poles of the vertex functions: 

+ go'-g,' In 
4 

1 I (2fl) '- 000' 
-go n 200 (4E,'-ooo') 'I, 

(211-000) , In (211 +000) , 
200 (2E,-oo,) 200 (2E,+ooo) 

We first set I go I = I gIl in (7) for Simplicity: 

(7) 

=0. 

i-go In {[ (21-\) '-000']/200 (4E,'-ooo') 'I,} =0, (7 ') 

Depending on the sign of the logarithmic term, the ver­
tex part will have a pole singularity for the case of at­
traction between electrons (go < 0) or for the case of 
repulsion (go >0). It is seen that in the attraction case, 
the corresponding pole Wo turns out to be equal to 
2J.L+in (0=2;:; exp(-1/lgol)).[8J The appearance of the 
real part 2J.L here is connected with the reference en­
ergy chosen and corresponds to the formation of an 
electron (hole) pair near the Fermi level J.L. 

We turn our attention to the case of repulsion be­
tween the electrons (go> 0). Simple calculations give a 
purely imaginary pole: 

ooo=i(Q'-4E,') ''', 

where 

Q= 2~' cxp(-~). (8) 
00 g, 

The fact that the real part of the pole is now equal to 
zero corresponds to pairing of the electrons not at the 
Fermi level J.L but near the extrema of the bands of the 
semiconductor. It is also seen that instability takes 
place only for a sufficiently small width of the forbidden 
band 2Eg <0. In the general case go;o' gl, Eq. (7) is of 
second order relative to the logarithmic term and there­
fore has two roots: 

~ln (21-\)'+Q' __ go_±[ g,' _ ,]'1. 
2 200 (4E,'+Q') 'j, g,'-g,' (go'-g,') ' ~ , 

~='/2[arctg (Q/2E,)-arctg (Q/2OO) j. (9) 

Equation (9) determines the modulus of the purely 
imaginary pole of the vertex part in the case of an 
arbitrary relation between go and gl' From the two 
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FIG. 3. Spectrum of excitations of a two-band systems with inter­
secting bands in the inverted state: a-semimetal, b-two-band metal. 
The broken lines indicate the position of the Fermi level in the 
equilibrium state. 

solutions of Eq. (9), one must take that p~rt which 
corresponds to the larger value of n. Taking into ac­
count that Eg« W, we note that the modulus of n is ac­
tually determined by the logarithmic term only, since 
{3 does not exceed 1T/4. Then the equation is easily 
solved: 

Q=[Qo'- (2E,)']"" 

211' { [gO ,/ g,' 
Qo=-_-exp -2 -,--, - V (2 .)' 

W go -g, go -g, 

(10) 

(11) 

Equations (10) and (11) show that superconductive pair­
ing arises upon simultaneous satisfaction of two condi­
tions: 

a) 2E,<Qo, b) g,>ngo'/4 (12) 

(see Fig. 2 of [8l). 

Among systems that reveal instability in the inverted 
state relative to superconductive pairing for the case of 
repulsion between the electrons, substances with over­
lapping bands deserve mention. For example, the ex­
pression for the modulus of the imaginary pole for a 
semimetal is identical with that obtained for a semicon­
ductor (10) and (11), except that we must now understand 
by Eg the amount of overlap of the electron and hole 
bands of the semimetal (Fig. 3a). Therefore the criterion 
for the production of superconductivity (12) in the case 
of a semimetal is that the band overlap not exceed some 
limiting value (21 Egi <n). 

When the Fermi level of the lower, partially filled 
band touches the bottom of a band (Fig. 3b) with Signifi­
cantly greater mass, then superconductive pairing also 
becomes possible in the case of repulSion, if an in­
verted population of the bands is achieved. 

Here the equation for the modulus of the pole n in the 
vertex function has the solution 

Q= 2~" exp ( __ 1_) , 
to geff 

(13) 

where the locations of the quasi-Fermi levelS i)IJ.1 and 
i)IJ.2 and the densities of states N1 and N2 in each band 
are determined by the values of the corresponding ef­
fective masses: 

m,/m,=N,/N,=6I1,i6 I1'· 

As in the case of a semiconductor and a semimetal, 
the amount of overlap of the edge of the upper "narrow" 
band with the Fermi level of the lower band is limited 
by a condition analogous to (12), i.e., it must not exceed 
the value of n calculated above for the case of touching. 

3. EQUATIONS OF MOTION FOR THE 
GREEN'S FUNCTIONS 

The investigation of the singularities of the Green's 
functions r 11 and r 12 in Sec. 2 shows that instability 
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arises only in the particle-particle channel inside each 
band. In a state with an inverted population, the Coulomb 
interaction in the particle-hole channel corresponds to 
repulsion and the interband .electron-hole pairing[14l does 
not take place. Therefore, for description of the stable 
state of the system it suffices to introduce into consider­
ation, in addition to .the ordinary Green's function 

G,(k.t)=-i<Ta,.(t)a'k+(O) (14) 

the anomalous function 

F,+ (k, t)exp[i(EN+,- EN)t] =(N+21 Ta'~-k(t)a'k+(O) IN>, (15) 

which characterizes only the intraband pairing of elec­
trons (the Green's functions for the valence band are 
introduced Similarly). 

The form of the oscillating factor exp[i(EN+2- EN)t] 
is essentially determined by the position of the pole 
singularity in the vertex functions r 11(wo) and r 21(wo). 
In particular, for the usual Cooper singularity, EN+2 
- EN = 2IJ.o, inasmuch as the instability is generated in 
the attraction case for states close to the Fermi surface. 

In our case, the singularity is important for small 
Wo (measured from the center of the forbidden band). 
This circumstance will be specially taken into account 
in the derivation of the equations of motion for the func­
tions G1 and F~ by setting EN + 2 - EN = O. In othe r re­
spects, this derivation follows stationary techniques 
for T = 0/15l and the equations for the functions (14) 
and (15) take the following form after Fourier expan­
sion: 

(to-E, (p) )G, (w, p) -iL'1,F,+(to, p) =1, 
(W+E,(p) )F,+(w, p) +iL'1,+G, (to, p) =0, 

L'1,+=goF,+ (0) +g,F, + (0). 

(16) 

(17) 

In a model with an inverted population, the spectrum 
of elementary excitations of the restructured phase is 
determined by the negative root w- =-( Ei + <li)1/2 of the 
determinant D of the set of equations (16) (see Fig. 1b). 
The least positive Single-particle excitations in the sys­
tem begin with energies determined by the pOSition of 
the chemical potential IJ.. Therefore the solution of the 
system (16) has the following form: 

(18) 

ffi,±=± {( E,'+L'1,') '1'-i6 sign [ (E,'+L'1,') '1'-11, n, 
'=~_[ + E,(p) ] V>=~[1- 8,(p) ] 

u, 2 1 (8,'+L'1,')"" '2 (8,'+L'1,') 'I, . 
(19) 

The bypassing of the poles of the functions G1 (18) 
used in (19) guarantees the correct population for the 
quasi-equilibrium state at T = O. A more general con­
sideration with the use of kinetic equations is given in 
Sec. 4 for the metallic model. 

For the self-consistent determination of the order­
ing parameter <l~ according to Eq. (17), we need the 
value of the anomalous mean F;(O) for electrons of the 
valence band (a = 2). The derivation of the correspond­
ing equations is entirely analogous to the derivation of 
(16), and the functions G2 and F; can be obtained 
formally from (18) after the replacement 1 = 2, except 
that one must take into account the singularities of the 
population of the states in the lower band, analogous to 
(18) (see Fig. 1). We then find the set of equations of 
self-consistency for the ordering parameters <l1 and ~ 
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from the definition of the mean value at coinciding ar­
guments: 

where 

"'t+=goFt+(O)+gtF,+(O), 

"',+=goF,+(O)+gtFt+(O), 
(20) 

;;, . t 
F.+(O)="'.+~ N(e)de 2 (e,2 + "'.'),1. sign[(I-'.'-"'.')'I'-ej. (21) , 
For identical masses ml = m2, the ordering parame­

ter also turns out to be the same, ~l = ~2 = ~, and obeys 
only one equation of self-consistency 

2 ~ sign [(u' - ",')'1, - ej 
go + g, = i N (e) de (e" + ",,),/, (22) , 

In the approximation of constant density of states 
N(E:)=N, the equation (22) is solved for ~ (compare 
with (11)): 

21-" ( 
"'o=&exp 

In the three-dimensional case, when 

N(e)=(2m)'I'(e-E.)'I'/4n', (23) 

the conditions for the generation of superconductive 
pairing become more rigid, since the density of states 
N( (0) is small in the region where the superconducting 
gap A is formed. 

However, in the case of repulSion between electrons 
considered here, the interaction constant go can turn 
out to be sufficiently large as to compensate the small­
ness of the density of states near the extrema of the 
bands. This is also confirmed by the numerical solution 
of Eq. (22) in the three-dimensional case with the den­
sity of states (23). Figure 4 shows the dependence of 
the normalized superconducting gap ~ on the value of 
the semiconductor gap Eg for several values of the 
ratio wi Jl. 

4. SELF-SUPPORTED SUPERCONDUCTING 
STATE IN THE "METALLIC" MODEL 

At first glance, it may appear that the inverted dis­
tribution of electrons in the conduction band of a metal 
(or a doped semiconductor) is impossible even in the 
presence of a source I which transforms electrons from 
a state with energy below the Fermi surface of the 
metal Jlo into a state above the Fermi surface, Jlo 
= n5 /3 (31T2)2/3/2m. Then the equation for the gap (1) has 
only the trivial zero solution (~=O, np<~) with repul­
sive interaction (g > 0). 

However, as will be shown below, in addition to this 
solution, there exists a nontrivial solution (with ~ '" 0 

1173 

FIG. 4. Dependence of the super­
conducting gap AI Ao on the value of 
the semiconducting gap Eg at will = 
1.00; 1.25; 1.50; 1.75 and 2.00 
(curves \-5, respectively). Ao is the 
value of the gap for constant density 
of states. 
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and np >~, which corresponds to an inverted distribu­
tion) of the joint system of equations for the gap (1) and 
the kinetic equation for the distribution functions of the 
quasiparticles np (25). Such a self-supporting ~t~te.is 
realized under the condition (27). In the nonequlhbrlUm 
case, the Green's functions of the electrons (14), (15) 
can be written in the form[16J 

G (p,w) = w+~ + 2nin,[u'6 (w-e,) - v'6(w+e,)], 
w'-e,'+iI\ 

i'" n'" F+(p,w)= ". -n,[6(w-e,)+6(w+e,)]. 
w'-e,-+l<5 e, 

(24) 

The kinetic equations for np can be found with the help 
of the Keldysh technique[16 (see, for example, [17J) or 
that of Gor'kov and Eliashberg:[lBJ 

!.!2. = 2n \"1 I <D (p, p', q) I'{[n,' (i-n,) +N. (n,,-~,) ] at ~ 
p' ,q 

x (uu' -vv') <5 (e-e' +w.) 

-[n,(i-n.,) +N.(np-np')] (uu'-vv')'<5(e'-e+w q) 
(25) 

-[n,n.+Nq (n,+n p,-1)] (uv'+u'v)'<5(e+e' -wq )}, 

Nq = (e°.'T -1)-t, 

where Nq is the distribution function of the phonons and 
<I\p, p', q) is the matrix element of the electron-phonon 
interaction. We note that in this case the equations take 
into account only Single-phonon processes of scattering 
and annihilation of quasiparticles (i.e., the transition of 
the particles through the gap ~). The equation for the 
gap can be obtained if we substitute (24) in the self­
consistent condition ~= gF(O): 

Thus the nonequilibrium superconductor is described 
by the set of equations (25) and (26). 

(26) 

It follows from the form of (25) that if the condition 

(27) 

is satisfied, the annihilation term (the third term) in 
(25) vanishes. This condition is equivalent to the con­
dition (3) for the "semiconductor" model. Consequently, 
tranSitions of quasiparticles through the gap are pos­
sible only due to multiphonon processes. Therefore 
the time 1R is much greater than the time of energy 
relaxation of the quasiparticles above (below) the gap, 
and blocking of the quasiparticles takes place. With 
account of the effect of the source I, the distribution 
function of the quasiparticles is given by the expression 

n p =[exp(e-I1)IT+1]-t, (28) 

where Jl is the quasi-Fermi level of the quasiparticles, 
determined by the intensity of the source I and the time 
TR' 

Substituting (28) in (26), we get at T = 0 

(29) 

The obtained solution with the gap ~o in the nonequi­
librium state, is self-supporting in the presence of the 
source: the gap leads to an inverted distribution of the 
particles, which, in turn, leads to maintenance of the 
gap. 

The problem of the transition of the system from 
the state with vanishing solution to the state of super­
conductivity with ~ '" 0, np > ~ is an important one. One 
of the methods was proposed previously. [1OJ It consisted 
of the creation on the Fermi leve I of a bare gap A> wpbl2 
due to interband transitions under the action of a strong 
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electromagnetic field. (Here ~= dEo; d is the dipole 
moment of the transition, Eo is the amplitude of the 
field.) 

5. CURRENT WITH ACCOUNT OF ELASTIC 
SCATTERING FROM IMPURITIES 

Inasmuch as the superconducting gap is not formed 
on quasi-Fermi levels ±/l, then the minimal excitation 
energy of the quasiparticles is equal to zero, as also 
in the nonsuperconducting state, i.e., at ~=O. Therefore, 
the question arises as to whether an undamped current 
exists in such a system in the presence of scattering. 
For the study of this problem it is necessary to find the 
current in an alternating field E(t) = Eoeiwt with account 
of elastic scatteriny from impurities. We shall follow 
Mattis and Bardeen 19J in the method of taking the im­
purity scattering into account. 

Then, with the help of the Keldysh technique[16J an 
expression is obtained for the current that is tl}e sa~e 
as the expression of [19J except that np( E) = [eE/T + 1] 1 
is replaced by the nonequilibrium distribution functions 
of the quasiparticles np ' which obey the kinetic equa­
tions (25): 

e'N(O)vo . S R[RA.(r')]I(oo,R,T)e-R1L d ' 
j (r, t) = 2,,' e'·' R' . r, 

I(oo,R,T)= SOO SOO {L(oo,;, ;') n(;)-:- n,(;') }cosa(~-nd;d;" 
; -s 

(30)* 
, 1 ( ;;'+t1' ) (n'-n n'-n) 

L(oo,6,£ )=4 1+~ e-e'-(oo--is) + e-e'+(oo-is) 

1 ( ££'+t1' ) (1-n-n' I-n-n') +- 1--- + , 
4 ee' e+e' - (oo-is) e+e'+ (",-is) 

,,--+-+0, a=R/voli, R= Ir-r'l. 

We now find the expression for the current in the 
limiting case (w/n) - 0 that is of interest to us, sub­
stituting the functiorts np of (28) in (30): 

(31) 

where ON = 2e2nvoL/3m is the normal conductivity and 
L is the free path length. 

It is seen from Eq. (31) that such a system can be 
described by the two-fluid model of superconductivity. 
Here the first term in (31) corresponds to the normal 
(non-superfluid) component and is due to scattering of 
the excitations near the quasi-Fermi levels ±/l. The 
conductivity of the superfluid component (the second 
term) becomes infinite as w -0, Le., it is insensitive 
to the scattering. We note that the sign of the second 
term is opposite the sign of the corresponding term in 
the current of the equilibrium superconductor. 

The physical meaning of the obtained result is 
easily understood with the help of Fig. 5. Figure 5b cor­
responds to the current state (Le., pairing of electrons 
with a nonvanishing total momentum) without account of 
scattering. Account of scattering leads to symmetriza­
tion of the electron momentum distribution on the quasi­
Fermi levels ±/l (see Fig. 5c), while at P"'PO the asym­
metry remains due to the suppression of the scattering 
because of the presence of the gap. 

We note that at ~ = 0, we get the usual expreSSion for 
the current from (31): 
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FIG.S. 

The corresponding calculation for the semiconductor 
model follows the scheme outlined above. In the approxi­
mation of constant density of states, the expression for 
the current has a form that is identical with (31), where 
by ON we understand the conductivity ON = e2mJJ.L/37r2 
over the band with concentration n= (2m/l)3/2/37r2 of 
electrons at a free path length L = VoTtr. In the three­
dimensional case, when the density of states is propor­
tional to ..f€, we must replace the factor ~/ w in 
expression (31) for the current by ~3/2/(JJ.Wl/2), so that 

Hr, t) =E(r, t) (2+in~t1'I'/ll-oo'/')aN' ~-1. 

6. ANOMALOUS PARAMAGNETISM IN A 
NONEQUILIBRIUM SUPERCONDUCTOR 

The paramagnetic portion of the Fourier component 
of the current under the action of a weak constant mag­
netic field in a nonequilibrium superconductor is given 
by the usual expression: 

i .. = _-_e'-s doo dp(pAq)p[G(p, oo)G(p+q, "')+ Pip, oo)F(p+q, (0)], 
m2 (2,,)' 

(32) 
where the functions G and F are equal to (24) and the 
distribution function of the quasiparticles np obeys the 
kinetic equations (25). 

Substituting (24) in (32) and integrating over w, we 
get an expression for jP that is formally identical with q 
the well-known expression of [lJ if in place of 
[exp( E/T) + It1 we substitute the distribution function 
of quasiparticles that satisfy the kinetic equation (25): 

e' 
iq' = m' (2,,) ,. S dp (2p+q) pAqL(e" e,+q) , 

, 1 1-n-n' ( £6'+t1') 1 n' -n (1 + ££'+t1') . L(e,e )=---,- 1---,- +---, --,-
2 e+e ee 2 e-e ee 

As q - 0, the first term in L( 10, 10 ') vanishes because 
of the vanishing of the coherent factor, while the second 
term transforms into an/aE. Then the total current, 
with account of the diamagnetic current, takes the form 

. e'no ( 21-'0 00 , iJ n ) 
Jqlq_o=-- 1+-Sp -.-dp A 

m po~ 1I o£ 
(33) 

Substituting the expression for n( E) in (33) at T« /l, we 
finally obtain 

. e'n (21-' ) e'n 
J=- -1 A""-A 

me (1-"-t1'),/' me' (34) 

Le., the current is equal to the current in the equilib­
rium superconductor, but with opposite sign. This 
means that the considered system possesses anomalous 
paramagnetism, which leads to penetration of the mag­
netic field into the sample, and that the magnetic field 
undergoes oscillations with period (47rnoe2 /m)1I2. 
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The physical meaning of this result is easily under­
stood if we refer to Fig. 5a. A contribution to the -
paramagnetic field is made by electrons near p = PI 
P = P2, while the contribution at p = po vanishes due 
to the gap. Thus the paramagnetic current is doubled, 
so that the total current with account of the diamagnetic 
current is equal to the expression (34). 

The corresponding expression in the case of the 
semiconductor model has the form 

e'n 2tJ.' 
jqlq~o=--, A, 

m ~ 
(35) 

where n=(2mll)3/2/37T2 is the number of nonequilibrium 
electrons in the conduction band of the semiconductor. 

It should be noted that renormalization of the dia­
magnetic current due to superconductive pairing was 
taken into account in the calculation of (35). 

We now consider the effect of temperature on the 
superconducting state. A change in the distribution func­
tion of the order of unity takes place in the layer kT 
near the quasi-Fermi levels ± Il as the temperature is 
raised. Inasmuch as the change of np(T) in the energy 
range near th,? superconducting gap turns out to be of the 
order of e- III T, it is clear that the transition temper­
ature Tc- Il. 

We give estimates of the intensity I of the pump 
source at the frequency w ~ 21l. The stationary state is 
established at KI=n/TR, n=(2mll)3/2/re, where K is the 
absorption coefficient. We then obtain the following re­
lation from the condition (27) of the existence of a self­
maintaining solution 

1 [m'CJ)Phw ( 1 )] 'I. 
1>- --exp - . (36) 

X'tR 2 g 

At TR-lO-s sec, ti~-l eV, m-(O.l-l)mo, g=0.5, 
and K = 103_104 cm-I, we obtain a value of the order of 
103-105 W/cm2 for the intensity 1. The corresponding 
critical temperature T c -ti(KTRI)2/3/m turns out to be 
of the order of 103 "K. We note thatour estimate of the 
intensity is rather illustrative, inasmuch as more op­
timal variants, the discussion of which lies beyond the 
limits of this paper, are possible. 

For realization of superconductivity at g > 0 in the 
metallic model, as has been observed above, it is nec­
essary to produce a dielectric gap A over the whole 
Fermi surface, due to interband transitions, by means of 
a strong monochromatic field. For this purpose, the form 
of the surface of constant energy of the second zone at a 
distance tiw from the Fermi level must be the same as 
that of the Fermi surface. Inasmuch as such an agree­
ment is possible only near the extremal pOints, it is 
necessary to have the corresponding semiconductor, 
the Fermi population in which is established by doping 
with an impurity. 

As was noted above, in semiconductors (Eg >0) and 
semi metals (Eg < 0), superconductivity with an inverted 
population is possible if the condition 21 Egi < ~ is 
satisfied. Thus, one must investigate the narrow-band, 
layered semiconductors, and also semiconductor com­
pounds of the type A2BB, the alloys BiSb, Bi2Te3, etc., 
and to obtain sufficiently long lifetime of the excitations, 
rather pure materials with noncoincident band extrema 
in momentum space are most suitable. 

To establish the necessary conditions in two-band 
systems for the Fermi level of the lower, partially 
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filled band (see Fig. 3b) to touch the bottom of an up­
per band with much larger mass, semiconductors with 
several noncoinciding minima (in momentum space) of 
the conduction band may be suitable - such as GaAs, 
which is used in Gunn diodes. The position of the Fermi 
level that is necessary for the superconducting state can 
be obtained in this case by appropriate doping with a 
donor impurity. 

The condition 1 Egi < Llo would appear at first glance 
to be impossible to meet, since the forbidden band should 
be larger than the Coulomb coupling energy because of 
the electron-hole Coulomb attraction in the stable state 
of the dielectric (exciton dielectric).[14] However, for an 
inverted population in the layer of ~ from 0 to Il, the 
Coulomb interaction will correspond to electron-hole 
repulsion. At Il '" Llo, the condition 1 Eg 1 < ~ can be 
satisfied. 

But if the pump intensity is below this threshold level, 
(Il < Llo) then the condition for superconductivity will 
nevertheless be satisfied because of the suppression of 
the effects of electron-hole pairing by scattering from 
the charged impurity. 

Furthermore, at Il <~, the superconductivity condi­
tion can turn out to be satisfied at a temperature above 
some critical value if it is not satisfied at T = O. The 
fact is that the critical temperature of electron-hole 
pairing is of the order of Eg{ln[EgI(~-Eg)Jr\ while 
that of superconductivity is of the order of Il, as was 
shown above. Therefore, superconductivity is possible 
at Eg{ln[Eg! ~_Eg)JrI < T < Il. 

The authors are deeply grateful to V. L. Ginzburg 
and to the participants in his seminar, V. M. Galitskil, 
L. V. Keldysh and D. A. Kirzhnits, for discussions and 
valued comments. 
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