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Equations are derived for equal-time Green's functions and describe the dynamics of superconductors 
during a time that is short in comparison with the electron energy relaxation times T ph and Tee' 

The time evolution of small initial perturbations of the order parameter 6. is investigated. It is 
established that following initial perturbations of a definite type the energy gap relaxes only as a 
result of inelastic collisions of the electrons during a time on the order of T ph , Tee. In the 
general case, the order parameter at t 0( T ph' T" oscillates with a frequency - 26. and with an 
amplitude that attenuates asymptotically with time in accord with a power law. 

1. INTRODUCTION 

Much progress has been made recently in the prob­
lem of the nonstationary phenomena in superconductors. 
Equations describing the kinetics of superconductors 
were obtained. These equations are of simplest form in 
the case of gapless superconducti vity(1-3]. In this case 
they are closed equations for the order parameter D. 
and generalize the Ginzburg- L'lndau equations. At the 
same time, there are many problems in which an im­
portant role is played precisely by the presence of the 
finite gap in the energy spectrum of the superconductor. 
One such problem arises in the problem of perturbation 
relaxation in superconductors. It is easy to verify that 
in gapless superconductors the perturbations of D. de­
crease exponentially to zero. What remains unclear is 
the character of the relaxation of D. in the absence of 
external field in superconductors with gaps. In particu­
lar, one can conceive of a situation in which the pertur­
bations of D. experience natural undamped oscillations [4] 

(within a time short in comparison with the inelastic­
relaxation times). The kinetics of superconductors with 
finite gaps is described by sufficiently complicated 
equations, obtained by Eliashberg[5] for equal-time 
Green's functions. 

In this paper w~ examine, on the basis of equations 
derived from the Eliashberg equations, the behavior of 
a small initial perturbation of D. in the absence of 
fields, and in a time interval small in comparison with 
the electron energy-relaxation times. 

which reach 10-8 sec in order of magnitude. 

It will be shown below that for a definite type of per­
turbation, the characteristic time of variation of the 
initial perturbation is D. -t, which is small in comparison 
with Tph and Tee' Then the inelastic collisions of the 
electrons do not influence the evolution of the perturba­
tion during the course of times that are short in com­
parison with Tph and Tee, and the corresponding colli­
sion integrals can be neglected. This enables us to 
Simplify greatly the initial Eliashberg equations for the 
equal-time Green's functions and to change over to 
eq uations relative to Green's functions with coinciding 
times (accurate to ~wi5). The derived equations can be 
regarded as "collisionless" kinetic equations for the 
superconductor. 

In Sec. 2 we derive first the Eliashberg equations by 
a different method, which in essence is a generalization 
of the Keldysh technique[6] to the case of superconduc­
tors. This approach is Simplest and most lucid. 
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2. DERIVATION OF THE FUNDAMENTAL 
EQUATIONS 

Keldysh's method consists of ordering the second­
quantization operators in the Green's functions on a 
double time-dependent contour conSisting of two axes, 
one extending from - "" to +"", and the other from +"" 
to - 00. The time on the second axis is assumed to be 
longer (in the sense of ordering of the operators) than 
any time on the first axis, while the ordering of the 
operators on the second axis is in antichronological 
order, i.e., the operator with the' smallest time, closest 
to - 00, is located to the left. In accordance with the 
fact that the time of each of the two I/! operators in the 
Green's function can be either on the first or on the 
second axis of the contour, four functions making up the 
matrix are possible. In the case of generalization to 
include superconductors, it is necessary to introduce 
also the spin indices of the operators (the Gor'kov­
Nambu technique[7]): 

$,(1;)==$.(1;), $,+(1;)==$,(1;), 

where 1 is the aggregate of the spatial coordinates and 
time, and i is the index of the temporal axis. Thus, the 
Single-particle Green's function of the electrons 

(1 ) 

constitutes a matrix both in the spin indices (a, fl) and 
in the temporal indices (i, k), while the angle brackets 
denote averaging with the denSity matrix taken at the 
instant to at which the Heisenberg operators coincide 
with the Schrodinger operators. 

In addition to the functions (1), we define also the 
retarded and advanced functions, and also the function 
introduced by Ke ldysh [6] : 

Ga,n (11') =i-'8 (t.-t,') ({$a (1), $,+ (1') }+>, 

Ga~A (11') =i8 (t,' -t.) ( {$a (1), $,+ (1') h>, 
G.,"(11') =Ga,"+Ga,"=i-'([ $a(1), $,+(1') 1->. 

(2 ) 

From the definitions (1) and (2) we get the following 
relations[6] (the spin indices have not been written out): 

G"+G"=G"+G2I , 

GA=G It _G21 =Gt2 _G'I.2, 

GR=G"-G"=G"-G". 

(3) 

If the system contains no fields acting directly on 
the electron spins, and if the spin-orbit interaction can 
be neglected, then 

G~~ (11')=(-1)"'P~ (11'), (4) 

where the bar over the index denotes its replacement by 
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the opposite: i = 2 and 2 = 1. From (4) and (3) it fol­
lows that 

G:r,' (H')=(_i)a+p~ (11'). 

In addition, it is easy to verify that 
G •• K' (11') =_G •• K (i'l), 

G.,K (11')=G.,K (i'l), ct*~. 

In Dyson's equation for the Green's function 

o,Go-' (1) G (11') -~ (12) G (21') =1·6 (1-1') 

the operator 

(Go -'(1)) .,=6.,iiJliit,- (H (1))., 

is a matrix in the space of the spin indices, with 

~ (H 0) 
H= 0 -H' , 

(5 ) 

(6) 

(7) 

where H( 1) is the single-electron operator of the en­
ergy, reckoned from the Fermi energy, with allowance 
for the external fields, In addition, (uz hk in (7) is a 
Pauli matrix, while (1 )l~ = Ila fjllik. In the phonon 
model, the mass operator is given by a well known sum 
of diagrams[8] in which, however, each vertex is set in 
correspondence with the matrix 

(g"'(0) (12.; 3));~' = (a,)i;li,. (a,) .,6 (i-2)6 (1-3). 

In the first-order approximation we have 

~.,i;( 12) =i( -1) .+O+I+;G.,i;( 12)D;i(21). (8 ) 

The contribution made to ~ by the direct interaction 
is also given by the usual sum of diagrams [8], in which 
each elementary four-corner vertex is set in corre­
spondence with the matrix 

(r(1) (12; 34)) .~~~~~: =-iv (12) (a,) .,.,6., •• 1i .... { (a,) a,.,6 (1-3) (a,) •••• 6 (2-4) 

-(a,) .... 6(1-4) (a,).,.,6(2-3)}, (9) 

The mass operators are connected by a relation[6] that 
follows from (3): 

The equations for GR, e>A, and GK follow from (7): 

where 

Go -, (1) GR(A) (11') _~n(A) (12) GR(A) (21') =6 (1-1'), 

Go -, (1) GK (11') _~RGK+QGA=O, 
(10 ) 

(11 ) 

These equations differ from the corresponding equations 
of Keldysh's paper[6] only in that all the quantities are 
matrices in the spin indices, 

Relations (4) and (5) for the Green's functions corre­
spond to the following relations for the mass operators: 

~~;=(_I)a+~~~ , 
(12 ) 

If we write out the spin indices in (10) explicitly and 
use (5) and (12) then, as can be easily verified, we ob­
tain the Eliashberg equations [5]1) . It is necessary to 
bear in mind here the following correspondence between 
the notation of our paper and[5]: 

G:t(A)=_GR{A) , C:2(A)=_FR (A) , GUK=-G, Gt'J.K=-F, 

~~(A) =_~iR(A), ~~~A.) =:r.:(A) , Ql1=-~I' Qu=Lz. 
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We write out explicitly only the equations for G~ and 
G~, which we shall need later on (together with the 
conjugate equations): 

(iiJliit,-H(1) )U II K (11') _};"RGlI l'+};I2"G 12K'+Q"G"A+Q 12G 12 A'=O, 

(iill ot:+H'(I')) GII K (11') +G"K};"A+G"K};"A'_G,,"Q, ,+G"RQ,,'=O, (13) 

(iilliit,-li (1)) G"K (11') _};"nGI2K_~,/'G"K'+Q"G"A-Q"G,,_"=O, 

(iiiliit,' -H(I')) G"K (11') _G"K};"A>+G"K~I2A_GI2RQ,,' -G,,"Q,,=O. (14) 

As is well known, (~fi + ~1\ )/2 plays the role of the 
operator of the energy gap .0. of the superconductor. 
We represent ~fi and ~1\ in the form 

~~;A) (12) =Ll (12) +, I, (};~;A) (12) - };;';(R) (12)). (15 ) 

We add Eqs. (13) for Gft and, in similar fashion, Eqs. 
(14) for G~. The result can be represented in the fol­
lowing form (we neglect renormalization effects de­
scribed by Re ~fi(A) [5]): 

(iiJliit-H (1) + H' (1')) G"K( 11') 
+/\ (12) G"K' (21') +G"K (12) Ll' (21') =/" (11'), 

(iiJliit-H (1) -H (1') ) G"K (11') -/\ (12) G"l(' (21') 
+G "K (12) Ll (21') =/" (11'). 

Here t = (t1 + t~ )/2, and the form of the "collision in­
tegrals" III and 112 can be easily obtained from (13)­
(15). From the expressions for ~~ and ~1\ (see (11) 
and (8)) follows the well known results[5] 

L'. (12) ='/,i-'G"K (12) [DA (21) +DR(21) ]. 

Here the sum of the phonon functions nA + DR, regarded 
as the function T = t1 - h, is a narrow peak of width 
~wD. Therefore the energy gap is 

"D 

S ig'S dp S de A(Rt)= drdt"A(12)=- -- _G"K(Rt;pe), 
2 (2n)' -W

D 
2n 

where 
R=(r,+r,)/2, r=r,-r" 

G"K(Rt;pe)= S drdt"e- 'p·+'''G"K(12). 

(17 ) 

In a number of problems, the reCiprocal of relaxation 
times in a superconductor are much smaller than .0. and 
then the characteristic frequencies of all the quantities 
as functions of t. In this case III and 112 can be dis­
carded in (16). We can simplify the obtained collision­
less kinetic equations further by USing the already men­
tioned narrowness of .0. (12) as a function of T, and by 
using the fact that to determine .0. ( Rt) we need the func­
tion Gfi at practically equal times (T ~ wIj). This 
makes the system of collisionless equations (Eqs. (16) 
without the right-hand sides) for Gfi and G~ with 
T:::' wIj, together with expression (17) for .o.(Rt), a 
closed system. 

We introduce the notation 
1 CIln 

g(p;Rt)=- S de GIIK(Rt; pe), 
2n 

-Wn 

1 "n 

f(p; Rt) = - S de G12 K(Rt; pel. 
2n 

(18 ) 

Taking into account the approximations made above, we 
obtain from (16) 

[iiiliit-H (rtf) +Il' (r:t) ]g(r,r,'t) +/\ (r,t) f'(r,r,'t) +A' (r,'t)f(r,r,'t) =-0, 

[iiil iit- H (r,t) - H (r,' t) It (r,r,'f) - Ll (r,t) g' (r,r,'t) + Ll (r,'t) g (r,r,'f) =0. (19) 

We note that these equations are obtained in the BCS 
model without additional assumptions. In accordance 
with formula (9) for r( 1) in the self-consistent field 
approximation we have 

A. F. Volkov and Sh. M. Kogan 1019 



~.,;i(12) =-i(cr');i{ (cr,).~v(13) G,/i (33) - (-1) .HG.,;;(12) v (21)}. 

In this approximation ~ij = 0 at i;.o j and n = 0, and 
A 

the mass operat~rs ~:f3 and ~!(3 reduce to ~~1{3 or 

_~~2f3' Next, as usual, we include ~TI and 2:1\ in the 

chemical potential, and express t:. (12) = Y2P;g - ~~~) 
in the form 

i'i (12) =_'/,iG"K (12) v(21) ='/,ig6 (12) G"K (11) =~ (1) 6 (12). 

When relations (5) are taken into account, we arrive at 
(19 ). 

It should be noted that the obtained equations (19) 
describe the behavior of the Green's functions inte­
grated with respect to € (see (1~)), and not with re­
spect to ~ = (p2 - p~)/2m as in Eliashberg's paper[51• 
Therefore the first equation of (19) goes over at t:. = 0 
into the usual collisionless kinetic equation. 

3. COLLISIONLESS EVOLUTION OF PERTURBATIONS 
IN A SUPERCONDUCTOR 

We use Eqs. (19) to investigate the evolution of the 
initial perturbations in a superconductor during times 
that are short in comparison with the energy-relaxation 
times Tph and Tee. We confine ourselves to the spatially 
homogeneous case and assume that all the quantities 
are independent of the direction of p, and that there are 
no fields. After applying a Fourier transformation with 
respect to the difference coordinate r - r 1 - r~, Eqs. 
(19) and (17) take the form 

Wg(st)!iJtH (t)/'(st) +:"(t)f(st) =0, (20a) 
(W!iJt-2s) test) +2i'i (t) g(st) =0, (20b) 

i'i(t)=i ~ S ds/(S,t). (20c) 

We took into account here the fact that in accordance 
with (6) g is pure imaginary. Assume that arbitrary 
initial perturbations Ogo (~) and Ofo( ~) have occurred 
in the superconductor and are described by the devia­
tions of the functions f and g from their stationary 
values go and fo. The perturbations can be produced 
either by electromagnetic radiation or by injecting 
quasiparticles or pairs into the superconductor. Let us 
find the evolutions of the perturbations with the aid of 
the linearized system (20). We see that the problem is 
quite analogous in its formulation with the Landau prob­
lem of evolution of perturbations in a collisionless 
plasma[91• The electric seli-consistent field in the 
plasma corresponds in the superconductor to the 
"field" t:. (t). 

The stationary functions fo and go can be repre­
sented, according to (20), in the form 

f,(s) =-ii'iX(S), g,(s) =-iSX(S), (21) 

where the form of X = X * is determined by the particu­
lar conditions for the production of the stationary state. 
Under thermodynamic equilibrium we have 

x=[th(e!2T) lIe, 

where € = (~2 + t:. 2 )1!2. We linearize (20) with respect 
to the stationary values in (21): 

(W!iJt-2s) 6/(st) -2isxM (t) +2Ll6g (st) =0, 

W6g! iJt-2I1XM" +2Ll6!' (st) =0. 

The prime and double prime denote here the real and 
imaginary parts of the function, respectively. We 
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note that, at s mall perturbations, 15 t:.' is the change of 
the ,gap I t:.1, while 15 t:."/ t:. is the change of the phase of 
the order parameter. 

We separate the imaginary and real parts of the 
equation: 

iJli!" !iJt+2s6!, -2hM" =0, 

iJ6!' !iJt-2sbj" -2sxM'+2Ll6g" =0, 

u6g"! iJt+2i'ix6i'i" -2i'i6t' =0. 

For the Laplace transforms of the sought functions 
Of( s) we obtain from (22) 

(s'+4e') 61' (s) -4e'xM"(s) +2sxsM' (8) =6i:+sli!,' -2sXM', 

(8'+4e') 6!" (8) -2sxsM" (s) +4s'XM' (s) 

=-~(6i:+s6f:)+ 4S'''M:+~(s'+4e'). 
s 8 S 

(22) 

(23) 

Here 15t:. ~ = [15t:.' (t)]t = 0, etc. In the derivation of (23) 
we have expressed Ogo with the aid of the section equa­
tion of (22) in terms of [dOff dt ]t = 0 == oi~ and 15f~. 

We multiply (23) by .\/2 and integrate with respect 
to ~. We confine ourselves to the case of functions X 
that are even in ~. Then, taking (23) into account, we 
obtain 

o'F(s)M" ( )=( 6i:+s6/: > 
• s ~+4~' (24a) 

(s'+4i'i')F(8) (M'(8)- M: )=~( 2s(f'do'+S6/o'». 
s s s'+4e' 

(24b) 

We have introduced here the notation 

F(S)=( s';48')' 

'i. OD 

<. .. >=2 S ds ... 
-OD 

and used the equality X= 1, which follows from (20c) 
and (21). 

If 15i~ = 0 and Of~ = 0 (but Of~;" 0) then as seen from 
(24b), Ot:.' ( s) = Ot:.~/ s, meaning that 15t:.' (t) = 15t:. ~ 
= const and that the energy gap relaxes only as a result 
of inelastic collisions during a relaxation time much 
larger than t:. -1. If t:.f~ + sor~;" 0, then that part of this 
function which is even in ~ determines the time varia­
tion of 15t:."(t), i.e., the change of the phase of the order 
parameter", while the odd part determines the variation 
of ot:.' (t), i.e., of the modulus of the gap. 

Let us investigate the analytic properties of F( s) in 
the complex s plane. Near the imaginary axis s = in 
+ 15, where 15 - 0, we have 

F(S)=!:...{ °e dsx(e) -i~s n(Q6) x(Q!2) 8(Q2_M')}. (25) 
2 J 4e'-Q' 2 g (Q'_4i'i')'h 

-OD 

At I n I ;> 2t:., the imaginary part of F( s) experiences a 
discontinuity when s crosses the imaginary axis. 
Therefore F( s) has a branch point at s = ±2i t:., and 
the single-valued branch F(s) should be chosen by 
drawing the cuts as shown in the figure. 

The functions in the right-hand side of (24) have the 
same branch pOints as F(s). Therefore ot:."(s) has in 
the general case branch points at s = ± 2it:., and in ad­
dition poles of first and second order at zero, while 
15t:.' ( s) has, in addition to these branch pOints, also a 
first-order pole at zero. It is important to emphasize 
that 15t:.' (s) has no poles at the point s = ±i2t:.. Ind~ed, 
the right-hand side of (24b) differs from zero if oro 
+ sor~ has a part that is odd in ~. At the same time, 
from the continuity of this part at the point ~ = 0 it 
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5" 

2 0 
Zit. 

0 
~ 

s' -til 
follows that it can be represented in the form 1; '1/ (1; ), 
where 1)( 0 is an even function having no singularities 
at zero. Then the right-hand part of (24b) can be trans­
formed into 

(IJ}-(s'+46.') (_IJ_). 
S'+48' . 

The first term does not depend in general on s, and 
the second factor at s 2 + 4 A 2 has the same singularities 
as F(s). 

Since the function OA' (s) has no poles at the points 
s = ±i2A, it follows that the energy gap, even if we 
neglect the inelastic collisions, has no natural undamped 
oscillations with frequency 2A (cfYl). 

Let us illustrate the behavior of OA(t) under the 
following concrete initial conditions 

(jfo'=2a,h+a,)(, (jio'=2~,£)(+~,)(, 

where eli and (3i are small constants. It follows then 
from (24), with allowance for (23), that 

M" (s) = ~ + ~ = ~ + ~ 
S2S S2 s' 

5Ll'(s)=~+ ~,+a,s ~,+a,s 
s s(s'+4Ll')F(s) s 

Taking the inverse Laplace transform, we find that the 
imaginary part of the gap, which is proportional to the 
phases, increases linearly with time: 

M" (t)=.s~o"t+Mo", 

while the real part is given by 
ioo+O' 

M'(t)=M;-~ +_1_ S ds(~,+a,s)e" (26) 
1 2"i. s(s'+4Ll2)F(s) 

_Io:>+a 

The integral can be represented here in the form of a 
difference of the integral over the entire closed contour 
in the figure and the integrals over sections 1, 2, 3, and 
4 of the second contour. As a result we obtain 

1021 

1 ;~+. ds(~,+a,s)e" 

2"i S s(s'+4Ll2)F(s) 
_1""+0' 

2 S~ 1m F (Q) 1 [ cos Qt . ] 
--; dQ IF(Q) [' Q2_4Ll2 ~l-Q--a,smQt . 

2. 
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(27) 

In the calculation we took into account the fact that the 
imaginary part of F( s) on opposite sides of the cut 
along the imaginary axis (see the figure) differ in sign, 
and that F(s) = F( -s). 

It is easy to verify that at t = 0 the integral in (26) 
is equal to (31 and that OA' (0) = OA~, as should be the 
case. To understand the character of the time variation 
of the gap perturbation, let us find the asymptotic value 
of the integral in (27) at 2t A » 1. It is determined by 
the behavior of the integrand at n >::l 2 A. It can be 
shown that Re F( s ) has no singularities as s - 2i A 
(see (25)) and that 1m F/I F 12 = (1m Ftl near this point. 
Substituting 1m F from (25) and taking the equilibrium 
value of X, we obtain 

~ ( 2 ) 'I, 1 
M'(t)=M;-~,+ 4Ll2F~O) + -; t.th(M2T) 

X(2tLl)-"'[~lCos(2Llt+: )-2a1Llsin(2M+ :)]. 

We see that the perturbation of the gap, as a func­
tion of the time, take the form of oscillations having a 
frequency ~2 A and an amplitude that attenuates like 
t-1/2. It is important that with increasing t (but at 
t « Tee, Tph) in the considered collisionless approxima­
tion the gap perturbation oA' (t) tends .generally speak­
ing neither to zero nor to OA~. 

The authors are grateful to B. I. Ivlev and G. M. 
Eliashberg for useful discussions. 

l)We note that the term (271')4 (w)5(k) in Eq. (13) of Eliashberg's paper [51 
should be discarded. 
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