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The rotation group representations are used to express, in the adiabatic approximation, the excitation 
cross sections of individual rotational levels in terms of the j symbols and of quantities representing 
the scattering of electrons by a molecule with fixed positions of the nuclei. Formulas are also derived 
for the case when the Born approximation is applicable and the cross section depends only on the 
difference between the momenta of the incident and scattered electrons. 

The distribution of diatomic molecules over the ro­
tational levels after electron excitation is not only of 
intrinsic interest but also of practical importance in 
connection with the spectroscopic method for the deter­
mination of gas temperatures. [1] In this method the 
analysis of the experimental results is complicated 
considerably by the absence of simple relationships for 
the excitation probabilities of individual rotational 
levels, similar to the formulas for the intensity factors 
of radiative transitions. 1) Although the problem of elec­
tron excitation of molecules has rio simple general solu­
tion, the use of rotational symmetry makes it possible 
to obtain some information on the relative probabilities 
of excitation of the rotational levels, which is the sub­
ject of the present paper. A similar approach has been 
used by Baltayan and Nedelec (3] in the problem of the 
depolarization radiation emitted by molecules excited 
by electron impact; however, Baltayan and Nedelec have 
restricted their treatment by several assumptions re­
lating to the electron part of the transition matrix. 

We shall use the adiabatic approximation[4] because 
during a collision of an electron with a molecule the 
nuclei are not greatly displaced. We must stress that 
this approximation is not always valid and, in particular, 
we cannot use it if the scattering is of a resonant nature 
leading to the formation of an intermediate long-li ved 
metastable state. We shall exclude such scattering 
from the scope of our analysis. The adiabatic approxi­
mation has been applied to the scattering of electrons 
by molecules in several papers[5-8] but they have only 
been concerned with transitions within one electron 
state and have ignored the exchange scattering and 
multipole order. 

It is convenient to express the excitation cross sec­
tions in terms of the T matrix.[9] We shall separate 
clearly the dependence of this matrix on the spin opera­
tor of the incident electron. Since the T matrix is a 
scalar operator and, moreover, any function of the spin 
matrices of an electron can be reduced to the linear 
form, we can write 

(1) 

Here, t is a scalar operator independent of the spin of 
the incident electron; SA are the covariant co~onents 
of the spin operator of the incident electron; fJ is a 
contravariant operator, which is a vector relative to 
spin transformations (but not to spatial rotation[lOJ); the 
index A has the values -1,0, and 1. We shall use the 
spherical components of the vectors (see[lO,ll]) and, as 
usual, we shall assume that doubling of the upper or 
lower indices respresents summation. The relation­
ship between the covariant and contravariant compon-
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ents is given by a "metric" tensor (see, for exam­
ple,llO]). 

Since the spin-orbit interaction can be ignored in the 
first approximation, the total spin of the molecule and 
the incident electron should be co~served. Hence, it 
follows readily that the operator t commutes with the 
spin of the molecule and, consequently, the intercom­
bination transitions occur only because of the second 
term in Eq. (1). However, Eq. (1) does not represent 
the splitting of the T matrixA into the direct and ex­
change components because t includes generally the 
contribution of the exchange scattering. 

We shall determine the dependence of the T-matrix 
element on the rotational quantum numbers of a mole­
cule in two stages. We shall first consider the matrix 
element only for the variables of a free electron. Let 
XJ.L and <I>k be, respectively, the spin and coordinate 
(normalized to the 0 function of the momentum) wave 
functions of an electron whose wave vector is k and 
whose z projection of the spin is J.L. It follows from 2 ) 

(2) 

that 
- ( I-' 1 '/, ') , <x.ll>kITlx",Il>,.>=b,,,.t(k, k,)-1'6 '/ e (k, k,). 

,1.1-'. 
(3 ) 

Here, t(k, ko) and eA(k, ko) are the operators which 
apply to the molecule alone. The numerieal coefficient 
in front of the 3j symbol is selected so as to simplify 
the final expressions. 

In order to use the properties of the rotational sym­
metry of the ~lecule, we shall expand the operators 
t(k, ko) and e (k, ko) as series in spherical functions 
of the vectors k and ko (more exactly, in terms of 
spherical functions of the corres ponding unit vectors): 

t(k, k,)= .E Ym'(k) Y'::.(k,)t~.""'(k, k,), (4) 

". 

(5) 

It readily follows from the transformation properties 

of the spherical functions that the operators t~rO and 

eUomoA are transformed during rotation in accordance 

with the product of irreducible representations of the 
rotation group with weights land lo (we are speaking 
only of the transformations of the spatial coordinates 
which do not affect the spin variables). 

As usual, it is convenient to employ quantities which 

Copyright © 1975 American Institute of Physics 684 



transform in accordance with the irreducible repre­
sentations : 

"'tl(k, ko)=(2r+1)'/' (P l lo ) t,~m'(k, ko), (6) 
r m mo 

"'e/' (k, ko) = (2r+1) 'I. (P l lo ) e;';,m'" (k, ko). (7) 
r m mo 

Here, llot~ is an irreducible zero-spin operator of 

rank r with components p; 1l0efA is a double-sided 
(in accordance with Wigner's terminology[lO]) operator 
of rank r with respect to the spatial rotation and of 
rank 1 with respect to the spin. The inverse transforma­
tions can be obtained quite easily utilizing the ortho­
gonality of the 3j symbols yO] 

The calculation of the dependence of the matrix ele­

ments of the operators llot~ and 1l0e~A on the rota­
tional quantum numbers of a molecule is given in the 
Appendix. Using Eqs. (A.4) and (A.8), we obtain the 
following expression for the T matrix: 

<X,<llk 'I' ~~;I TI X",<llk. 'I' :'-::''';.> = [ (21+1) (210+1) ]'/' 

X .EYm' (k) Y,!(ko) (2r+1) 'I, (: ~ 7,0) [ 6,", (: ; ;;,) 
He T 

- 1 '/ (8) x< "F 81"'1""'-"1 ",Fa. >G -1'6(ft ') cP erA r cP GAo r 1/2 ')...1-10 

X<SAvll"'fj,IISoAovo> .E (2j+1) ( M ~ 10 ) (P ').. j ) Ii,,] , 
ill M. r 1 Ul 

where the components of the operators t and e apply to 
a moving system of coordinates (see Appendix) and the 
corresponding electron matrix elements describe the 
scattering of electrons of a given energy by a molecule 
with fixed positions of the nuclei. The dependence of 
the matrix element on the vibrational quantum numbers 
can be dealt with, as in the emission of light, with the 
help of the Franck-Condon principle.[l] 

The total cross section can be expressed quite 
simply in terms of an element of the T matrix.[9] After 
the prescribed integration over the angles and summa­
tion over the projections of the moments, we obtain (m 
is the electron mass) 

OJ.A._JA=4n'm'Il' k: (21+1) [.E G,'.E I <F'As<p.I"·I~-A IF:A..<p",> I' 
II. 

(9) 

+ .E(2j+1)Ii:'.E I <SAvll"'ij,IISoAovo> I'] . 
Jr 110 

In practical applications of Eq. (9) we must bear in 
mind that in the case of terms exhibiting the A doubling 
we must associate a A doublet with two states having 
opposite values of the projection of the electron momen­
tum on the axis of the molecule. Strictly speaking, this 
approach is incorrect (see Appendix) but if the compon­
ents of the A cannot be resolved spectroscopically and 
have the same populations in the initial state, the ap­
proach is permissible. Then; if r ~ IA 1+ IAol and if 
A as well as Ao do not vanish, the electron matrix 

( ll~ ll~ 
elements SAv II °e r II SoAovo ) and (SAv II °e r II SO, 
-Ao, vo) are not linked to one another by a simple sym­
metry relationship. This also applies to the electron 

matrix elements of the operators llot~. However, if at 
least one of the electron states is of the ~ type, the 
situation simplifies because of the inversion relation­
ship (see Appendix). 
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The electron matrix elements in Eq. (9) can be de­
termined theoretically or experimentally. The theoreti­
cal methods of calculation of the electron functions are 
not yet sufficiently accurate but it is possible to deter­
mine the unknown quantities by an experimental inves­
tigation of the intensities of the rotational lines result­
ing from the excitation of molecules by electron im­
pact. In this case, the unknown quantities are the terms 
on the right-hand side of Eq. (9), which are the sums 
(over l and lo) of the squares of the electron matrix 
element corresponding to fixed values of r; the corre­
sponding angular factors Ijr1 and Gr are given by 
Eqs. (A.5)-(A.7) and (A.9). However, we must bear in 
mind the following point. We can easily check (by ap­
plying the rules for the summation of the j symbols[ll] ) 
that 

is independent of J. Therefore, if the groups of spectro­
scopic terms which make the principal contribution to 
the population of the upper levels are themselves popu­
lated in proportion to their statistical weights (for ex­
ample, in the case of equilibrium over the rotational 
levels and a small-compared with the rotational tem­
perature-difference between energies within a group), 
the excitation of the upper levels is independent of the 
rotational structure of the electron terms (in this case, 
the rotational temperature of the upper state is differ­
ent, see[l]). However, this dependence may appear when 
the rotational momentum and rotational quanta become 
greater. 

We shall conclude by conSidering the scattering in 
the case when the Born approximation is applicable and 
the exchange can be ignored. In this case, eA;o 0 and 
t is solely a function of q ;0 ko - k which is the differ­
ence between the electron momenta before and after 
scattering. Instead of Eq. (4) we now have 

The expression for the differential cross section be­
comes 

The total cross section can be found by integrating the 
transferred momentum. [12] 

The author is grateful to V. N. Ochkin and N. N. 
Sobolev for their interest in this problem and for dis­
cussing several questions. 

APPENDIX 

Before we consider the total matrix elements of a 
molecule, we shall give the factorization relationship 
for the electron (more exactly, electron-vibrational) 
matrix elements. It is convenient to use a moving sys­
tem of coordinates linked to the nuclei. This system 
can be defined in various ways; we shall use the defini­
tion given in[13]. Let A~~ be the components of a two­
sided[lO] electron tensor operator of rank r with re­
spect to the spatial rotation and of rank c with re­
spect to the spin (p = -r, -r + 1, ... , r; A = -c, -c 
+ 1, ... ,c). A tilde above an operator means that its 
spatial components are taken in a. moving system of 
coordinates. However, the s pin components will be re­
ferred to a laboratory system of coordinates at rest. 
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It follows from the Wigner-Eckart theorem applied 
to the spin variables and from the axial symmetry of a 
diatomic molecule that (see[13]3) 

S " s. (0 A S, ).,. () <FaAcp.I.if" IF .... cp .. )=6, ... -A S C o. <SAvll.8."IIS.A.v,); A.1 

Here, F~A and 'Pv are the electron and vibrational wave 
functions; S is the electron spin; a is the z projection 
of the spin; A is the projection of the orbital momentum 
of electrons on the axis of the molecule; v is the vibra­
tional quantum number; the subscript "0" represents 
the corresponding quantity in the other state of the 
molecule; <SAv II Arc II SoAovo> is the "reduced" 
matrix element; 6p,A o-A is the Kronecker delta. If 
c = A = 0, i.e., in the case of a zero-spin operator, Eq. 
(A.1) reduces to 

<Fa~cp.IIA:IIF'::'cp.,)= 1)ss.1)aa,4SAvIlA,IIS,A.V,). (A.2) 
(2SH) 

If A .. 0, the electron functions F~A and F~ -A are 
different. It is convenient to select their phases so that 
on reflection in the 1;01/ plane of a coupled system of 
coordinates (see[13]) they transform into one another 
("reflection" means only a spatial transformation 
w hic h does not affect the spin variab les ). If A = 0, we 
must distinguish between the L+ and L- states. In the 
case of the electron matrix elements we have an easily 
verifiable equality which we shall call the inversion 
relationship (see[13]): 

(SAvIlA"IIS,A.v,)=±(-1)'+p(S, -A, vIlA"IIS., -A" v,). (A.3) 

Here, p = 0 if ~~ is an even operator and p = 1 if this 
operator is odd; the minus sign of the right-hand side 
is used if one of the two electron states is L- and the 
plus is taken in all other cases (both or neither of the 
states are of the L- type). If A = Ao = 0, Eq. (A.3) 
transforms into the corresponding selection rule. 

We shall now consider the total matrix elements of 
a molecule.[13,3] We shall first consider the transitions 
between the states having fixed (including sign) values 
of the projection of the electron momentum on the axis 
of the molecule. These states, with the exception of the 
Lones, cannot be attributed a definite sign because of 
the inversion transformation. The changes associated 
with allowance for the A doubling and for the inversion 
symmetry are considered below. 

A matrix element of the operator A~~ can be repre­
sented in the form 

<IMASv1IA~II,M.A,S,V'1')=[ (2IH) (2I,H) l"'<SAvIlA"IIS,A,v,) 

x ~ (2'H) ( M (J) I, ) ( P A ; ) I (A.4) 
~ I I j M, r C (J) ,,,. 

J 

Here, J and M are, respectively, the angular momen­
tum and its projection along the OZ axis; Y is the set 
of quantum numbers which are not written out explicitly 
and which depend, in particular, on the coupling scheme; 
j and ware the summation indices corresponding to the 
irreducible representations into which A~~ splits in the 
case of simultaneous spin and spatial rotation; the 
limits of summation over j follow automatically from 
the condition that the 3j symbols in Eq. (A.4) should 
not vanish and that the angular factors occurring in 
ljrc should not vanish either. Here, Ijrc is a coef­
ficient which depends on the coupling scheme and we 
shall now give expressions for this coefficient. 

If both states have the a-type coupling (according to 
the Hund nomenclature), we find that 

686 SOY. Phys . .JETP, Vol. 38, No.4, April 1974 

( 1 ; I.) I = (-1) J_O+8._'. 
'" -Q Q-Q, Q, 

( r C j) (S C S. ) 
x A.-A ~,_~ Q_Q, ~ ~._~ _~" . 

(A.5) 

Here, L is the projection of the electron spin onto the 
axis of the molecule and n = A + L. If both states have 
b-type coupling, then 

K K {KrK.}, 
I,,,=(-1)K.-A·[(2KH) (2K,H)]"'(A A.~A _~) S C S, . (A.6) 

1 j I, 
Here, K is the quantum number of the orbital angular 
momentumY] The 9j symbol is enclosed in braces. [11] 

Finally, if the first state is the a-type according to 
Hund and the second (identified by the subscript 0) is 
the b-type, we have 

1,,,= (_1)'+O+K.-A'(2K,H) 'I. L (2"H) (_~Q ~ ~) . 
x (" r K.) . {~ : ~:} . 

(A.7) 

AA.-A -A, S C S, 

If it is necessary to consider transitions between 
the components of the A doublets, the wave functions of 
the molecule should be taken in the form .of linear com­
binations of functions with opposite values of the projec­
tion of the angular momentum of electrons onto the axis 
of the molecule (see[13]). The corresponding matrix 
elements are linear combinations or quantities of the 
type in Eq. (A.4). They can be partly simplified by the 
inversion relationship (A.3) and by the rules governing 
the changes in the signs of the projections of the mo­
menta.[lO,ll] 

Since these transformations are Simple, we shall not 
gi ve them here because of lack of space (see[13]). 

It follows from Eqs. (A.4)-(A.7) and (A.2) that we 
can again obtain easily the formulas for the electron 
zero-spin operators (see[13]). Let us assume that Bf 
is such an operator. Let 

(A.B) 

where the angular brackets < ... ) on the right-hand 
side denote an electron-vibrational matrix element; Gr 
is a factor which depends on the coupling scheme: 

( I r I,) 
G,= (-1) J·+"·1)u. Q Q,_Q _Q, ' 

G,=(-1)J+'+8-Ao[(2KH)(2K.H)l"'(K r K, ){r 1 I, } 
A 11.,-11. -A. S K, K 

G,=(2K,H)'1, (' r I.) ( I, K. S) 
A+~ 11.,-11. -A,-~ -A,-~ A, ~ 

(A.9) 

which apply to the transitions between states with the 
a and a, band b, and a and b Hund couplings. The 
inversion relationship for the zero-spin .operators is 
fully analogous to Eq. (A.3) [see Eq. (A.2)] and can be 
used to simplify the matrix elements of the transitions 
between the components of the A doublets. 

We shall now consider the operators t(k, ko) and 
eA(k, ko). Using the standard separation of the nuclear 
and electron coordinates employed in the theory of 
molecules,[1,14] we can easily show that i.n the adiabatic 
approximation t(k, ko) and eA(k, ko), if expressed lP 
terms of the coordinates of the momentum vectors k 
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and ko in a moving system of coordinates, cease to de­
pend on the angular coordinates of the nuclear axis 
although they include the internuclear distance as a 
parameter. Hence, it follows that if we allow for the 

transformation properties of llOtf and lloe~A, we find 
that Eqs, (A.8) and (A.4) are applicable to these quanti­
ties. 

!)The assumption, which is occasionally made, that the probabilities of 
population of rotational levels are proportional to the probabilities of 
radiative transitions [2) is not always justified. 

2)This equality is the special case of the Wigner-Eckart theorem; here and 
later we shall use covariant as well as contravariant components in the 
3j symbols. [10) 

3)The notation used in [13) differs slightly from that"adopted here (see 
also Footnote 2). 
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