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A solution of the general relativity equations is found describing a macroscopic body of zero rest 
mass. Such a body moves as a whole with the speed of light and can emit electromagnetic waves 
only if it interacts with outside particles. 

According to the theory of relativity, particles of fin­
ite mass cannot move with the speed of light. However, 
this assertion is valid only for free particles. An inter­
acting particle can move with the speed of light. Such a 
possibility is realized, for instance, in the case when a 
particle of finite mass is part of a body which as a whole 
has zero rest mass, and therefore always moves with the 
speed of light. In this case the rest mass of the particle 
must be compensated by the negative mutual attraction 
energy of the particles making up the body. Motion with 
the speed of light of massive particles is in fact realized 
in the following realistically observable process. As­
sume that at some point in space a positron and an elec­
tron annihilated. :If the photon produced in this way again 
produces an electron and a positron, then, since nothing 
prevents one from considering the particles produced to 
be the same as the ones before the annihilation, the posi­
tron and the electron have moved with the speed of light 
as a result of the process under consideration. * 

In a preceding paper[lJ the author has shown the pos­
Sibility, in principle, of existence of a macroscopic body 
of zero rest mass, where the finite rest mass of the 
component particles is compensated by the gravitational 
attraction energy. Owing to the presence of the gravita­
tional field, probe particles of finite mass which are 
situated at a finite distance of such a body can, not only 
stay behind it, but also remain at rest or even catch up 
with it, in spite of the fact that relative to a distant ob­
server the body is moving with the speed of light. If the 
distant observer would interpret the motion of the parti­
cle which catches up with the zero-mass body as a mo­
tion in flat space under the action of some forces, he 
would be forced to attribute to the particle a speed ex­
ceeding the speed of light. 

It is quite possible that there exist in nature astro­
nomical objects which are bodies of zero rest mass, 
moving with the speed of light. The proper luminosity 
of such objects would be equal to zero, since a zero­
mass object cannot by itself emit electromagnetic radia­
tion, as a consequence of the conservation of energy and 
momentum. In other words, one can say that such a body 
does radiate, but that owing to the Doppler effect the 
frequency of the radiation is always shifted to zero, 
since the source moves with the speed of light. Radia­
tion at a finite frequency is possible only as a result of 
interaction with outside particles. We shall use the term 
"tachar" for the description of such a body, which seems 
reasonable in view of the properties mentioned above. 

The present paper is devoted to a quantitative clari­
fication of the properties of a tachar consisting of dust­
like matter, i.e., of matter with vanishing pressure. In 
this case it turns out to be possible to obtain an exact 
solution of the equations of the general theory of relativ­
ity. In its mathematical aspects, this solution is com­
pletely analogous to the well-known Tolman solution 
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(cf. [2J , problem 4 in Sec. 100) for spherically symmetric 
dustlike matter. The physical meaning of these two solu­
tions is of course quite different. 

1. We shall look for a solution of the' Einstein equa­
tions corresponding to a tachar exhibiting the maximally 
possible symmetry. We first consider a body of finite 
mass, situated in a space which is Galilean at infinity. 
By means of an appropriate Lorentz transformation one 
can always make the total momentum P of the body as a 
whole vanish. Then the energy will be equal to the total 
mass m of the body. In this reference frame the most 
symmetric object of finite mass is spherically symme­
tric. The corresponding solution of the field equations is 
invariant with respect to the rotation group, which is the 
little group (stationary subgroup) of the 4-momentum 
(m, 0, 0, 0) of the body. 

The three-momentum of a body of zero mass cannot 
be made to vanish by means of a Lorentz transformation. 
One can however reduce the 4-momentum to the form 
(E, 0, 0, Pz) with Pz = E. A zero-mass body will exhibit 
maximal symmetry if the corresponding solution of the 
field equations is symmetric with respect to those 
Lorentz transformations which leave invariant the 
4-vector (E, 0, 0, E). As is well known, these trans­
formations form a group (little group) isomorphic to the 
group E(2) of motions (translations and rotations) of the 
Euclidean 2 -plane [3J . Thus, we must search for an 
E(2)-symmetric solution of the equations of the gravita­
tional field. It should be stressed that, in the same man­
ner in which the spherical symmetry of a solution guar­
antees the vanishing of the 3-momentum of the body, the 
presence of the E(2)-symmetry guarantees the equality 
of the energy and momentum, i.e., the light-like charac­
ter of the motion of the body as a whole. 

The most convenient coordinate system for the dis­
cussion of spherically symmetric solutions are spherical 
coordinates, where there are two coordinates (the radius 
and the time) which are invariant with respect to the 
rotation group. Quantities which define a spherically 
symmetric field can depend only on these two coordin­
ates. A similar role for the E(2)-symmetric solutions 
is played by the so-called horospheric coordinate sys­
tem (cf. [4J ), which for our purposes is most conveniently 
defined in the following manner. We introduce the coor­
dinates 1;, 11, u, v in terms of the Cartesian coordinates 
t, x, y, z by means of the relations 

X='lu, Y='lV,'l=t-z, \;=~- (x'+Y')/'l, (1) 

where ~ = t + z. 

The transformations of the group E(2) are those 
Lorentz transformations which reduce to the transla­
tions and rotations of the (u, v) plane for constant 1/. 
Since the product 1;11 = e - x2 - y2 - Z2 is invariant under 
general Lorentz transformations, the coordinate I; is 
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automatically invariant with respect to the group E(2). 
Quantities which define an E(2)-symmetric field can de­
pend only on the coordinates 1) and {;. 

Using Eq. (1) it is easy to determine the metric of flat 
space in horospheric coordinates: 

d"'=dT)d~-I']' (du'+dv') , (2) 

It is interesting to note that such a metric arises near 
the front of a plane gravitational wave (cf. [2J, Sec. 103). 
The transformation (1) was used to reduce it to Galilean 
form. 

The most general metric exhibiting E(2)-invariance 
can be written in the form 

ds'=A(T, W)dT'-B(1:, w)dw'+D(T, w)d1:dw-C(T, w) (du'+dv'), (3) 

where the coordinates T and w can be subjected to the 
transformations 

W'=W'(T, w), T'=T'(1:, w), 

which do not violate the E(2)-symmetry. We make use of 
this arbitrariness in order to reduce to zero the quantity 
D(T, w) and the w-component of the velocity of matter. 
The components of the velocity along u and v vanish on 
account of the E(2)-symmetry. The energy-momentum 
tensor of matter has consequently, in the general case, 
the following nonvanishing components 

where E is the energy density, p is the pressure. The 
coordinates T, w, U, v have been denoted here by the 
indices 0, 1, 2, 3, respectively. 

From the conservation equations ~ k = 0 we obtain 
two equations ' 

, seA' 
e+ (2B +c) (e+p)=O, p'+'2A(e+p)=O; (4) 

where the dot denotes differentiation with respect to T 
and the dash denotes differentiation with respect to w. 
These equations coincide exactly with the analogous 
equations in the spherically symmetric case (cf. [2J , 
problem 3 of Sec. 100). For vanishing pressure it can 
be seen from the second equation of (4) that the function 
A can be selected equal to one, i.e., the metric is simul­
taneously comoving and synchronous. Setting C = 1)2 we 
find the following field equations: 

1']" B~ B'I']' ~' 1']" 
Snke=-2-+-+-+---

BI'] B1'] B'I'] 11 2, B1']" 
•• • ~/2 • 

21']1']+1']'-8=0, Sl']'-2BI']'=0, 

ii ~' 1 B' 1']" 1 B~ 1 B'I']' 
-+------+--+--=0 
2B I'] 4 B' BI'] 2 BI'] 2 B21'] , 

Here k is the Newtonian gravitational constant. 

From the third equation of (5) it follows that 

B=I']"II(w), 

(5) 

(6) 

where f(w) > 0 is an arbitrary function. The second and 
fourth equations in (5) are equivalent to the single equa­
tion 

~'=I-F(w)/I'], (7) 

where F(w) is yet another arbitrary function. Integrating 
(7) we obtain 

±(-to (w)-1:) = +-In - + --1 (fl']'-FI']) 'I. F {( II']) 'I. (II'] ) 't.} 
f 1" F F ' 

(8) 

where To(W) is also an arbitrary function of the variable 
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w, the quantity 1) being assumed to be positive. By sub­
stituting these formulas into the first equation of (5) we 
find for the denSity of matter 

e=-F'/Snk1']'I']'. (9) 

Equations (6), (8), and (9) determine the required ex­
act solution of the Einstein equations. If one selects in 
place of w the variable f = f(w) one obtains 

ds'=d1:2-I']"df'/I-I']'dl', (10) 

where d [2 = du2 + dv2; here and in the sequel the dash 
denotes differentiation with respect to f. 

2. In the preceding paper of the author r 1J and earlier 
in the paper of Aichelburg and Sexl[5J the gravitational 
field of a point particle of zero mass and energy E was 
determined in the linear approximation. The corre­
sponding metric has the form 

ds2=d~dl']-dr2-r'dcp'+8kE6(I']) In rdl']', (11) 

where 

r= (x'+y') 'I" cp=arctg (y/x), 

where it was assumed that the particle has only a 
z-component of the momentum Pz = E and moves along 
the line x = y = O. 

We show that one can impose such conditions on the 
arbitrary functions F(f) and To(f) that the solution 
(8)-(10) has the same structure at large distances as 
the solution (11). This allows one to relate the energy 
and momentum of the tachar with parameters which de­
termine its internal structure. 

By means of a transition from the variable f to the 
variable 1) one can rewrite the interval (10) in the form 

d' 2 F 'I, F 
ds'= __ 1']_+_ (1--) d1']dT+-dT'-I']'dl', (12) 

1 1 '1 i1'] 

where the two signs correspond to those in Eq. (8). If 
F == 0 matter and the gravitational field are absent. In 
this case the metric (12) reduces to the form (2) by 
means of the transformation 

~= ~+2S1:;dl 
1 r . 

For F/f1) « 1 one can linearize all the relations with 
respect to F. Introducing in this case the variable 

I'] - S To'dl 3 F 11'] 
~=-+2 --+--In-+x(n) 1 f'" 4 t' F " , 

(13) 

where X (1) is some function for which the concrete form 
will be selected later, we obtain from (12), taking into 
account (8) 

dS2=d~ dl']-I']'dl'+ F' In(fr}/F: .(~_ dl'] d~) -~dl']'+~d~'. (14~ 
4 I']±21 (''to 1 d1'] 41'] 

The last terms here are small corrections to the first 
two terms. 

In cylindrical coordinates 

r=I'] (u2+v') ''', cp=arctg (vlu), ~=~+r2/I'] 

one can rewrite Eq. (14) in the following form 

ds'=d~dl']-dr'-r'dCjl2+ F' In(f;/F) [~-dl'] (d~+~dl']-~dr)] 
4 j'1jJ +1'] j 1']' I'] 

dx F ( r' 2r)2 __ dl']2+_ d~+-dl']--dr , 
dl'] 41'] 1']' I'] 

where lj! (f) is an arbitrary function, related to To(f) 
through the relation 
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1/l(f)=±2 S :':. TO" 

The density of matter in the approximation under con­
sideration is 

(16) 

We assume that for f - 0 the function F(f) tends to 
zero like f2, and the function l/!(f) being positive, tends to 
infinity like h(f)/f, where the function h(f) tends to infin­
ity, but slower than the sq1)are root of In(l/f). Setting 
for definiteness h(f) ~ ln1ln(l/f), with n > 2, we have 

1/l(f)""'aj-' In'/' (1/f) , F(f)""'bf. 

Here a > 0 and b > 0 are constants having the dimen­
sion of length. 

Let us determine the asymptotic behavior of the me­
tric (15) for constant ~ and 71 and as r - 00. Recognizing 
that according to (13) we have 

j=~ln'/ (~), 
r' a'1 

we obtain 
, "b r d'1' 

ds =dsd'1-dr -rdcp +-In--. 
2 ab '1 

(17) 

The matter density tends to zero according to the law 

e=~ln./n(~). 
21lkr' a'1 

Let now 71 - 00 for constant rand t, i.e., we consider 
the region far behind the body. In this case 

j=exp[-('1/a)'), 

and if one selects 

x ('1) =-'/4b( rjla) ", 

the metric becomes 

nb('1)"-' [('1)"] ds'=ds d'1-dr'-r' dcp'+ 2a"" -;; exp - ;-

{ ns ( '1 ) .-1 } b [( '1 ) • ] x d'1 ds- -;;- -;; d'1' + 4tl exp -2 -;;: ds'· 

The matter density is 

bn ('1) ft_' [ ('1 ) "1 8=-- - exp -2 - . 
21lka' a a 

(18) 

The last two equations show that the constant a has the 
meaning of the size of the tachar in the z-direction. 

Thus, the gravitational field in the region 71 > 0 de­
creases exponentially for 71 - "", increases logarith­
mically for r - 00 and has a singularity on the planel) 
Tj = O. For this reason we must assume ,that for Tj < 0, 
i.e., ahead of the body, there is no gravitational field. 

Comparing (17) and (11) we determine the total en­
ergy and the momentum of the system: 

E=P,= 8~ S ~'1 (19) 

In order that the last term of (17) should indeed repre­
sent a small correction to the Galilean metric it is 
necessary that the inequality Tj »b be verified. On the 
other hand, we have assumed in the derivation of (17) 
that the first term in the right-hand side of (13) is much 
smaller than the second term which is equal to l/! (f). 
This means that the wuation (17) is valid only under the 
condition 71 »a ln1/Il(r2/a71). Therefore, if one neglects 
the double logarithms, one must use a quantity of the 
order a as an upper limit in the integral (19) and a quan-
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tity of the order b as the lower limit. Moreover, it is in 
any case necessary that b «a. Taking all this into ac­
count, we obtain 

E=p,=~ln~ 
8k b' (20) 

This formula is valid only in the case when the dimen­
sion a of the object is considerably larger than its gravi­
tational radius kE. In the opposite case the whole match­
ing procedure to the linear approximation and the linear 
approximation itself loses all meaning. It is important 
to note here that, as can be seen from the results of the 
linear apprOXimation, the gravitational field of the zero­
mass body does not vanish at infinity. Therefore the 
usual method for the computation of the energy and mo­
mentum by means of the energy-momentum pseudotensor 
(cf. [2J, Sec. 101) is in general not applicable, and the 
only possibility is matching up the solution to the linear 
approximation. 

From what was said one might have drawn the con­
clusion that the existence of zero-mass bodies is im­
possible. However, the fact that the photon and the 
neutrino exist means that in reality general relativity 
experiences difficulties in describing such bodies. This 
difficulty becomes essential for energies of the order 
a/k. For a photon a characteristic dimension is the 
wavelength filE, and the linear approximation becomes 
incorrect for energies of the order of (fi/k)l/2 ~ 1028 eV 
~ 10-5 g. For photons of lower energy, as well as for 
macroscopic bodies which satisfy the condition a »kE 
the indicated difficulty does not play an important role. 

If a ~ kE it is impossible to relate the energy to the 
parameters which determine the solution. In this case 
one can find the most general form of the metric far 
behind the body (for large 71) where the matter density 
is small and can be neglected. If EO = 0 it can be seen 
from (9) that the function F equals a constant. In this 
case the metric (12) reduces to the form[!J 

(21) 

where 1) 0 = F/4 > 0 is a constant. The case considered 
above corresponds to TJo = O. In the general case the ex­
ponential decrease for Tj - 00 may be replaced by the 
considerably slower decrease according to the 1/71 law, 
as can be seen from (21). 

In the metric (18) the boundaries of the light cone 
ds = 0 for du = dv = 0, i.e., in particular, for motion 
along the axis along which the tachar moves, are deter­
mined by the equations 

b [ ('1 ) • ] n'b ('1) ,.-, [( '1 ) .] d'1=-~exp -2 -;; ds, ds= 2a' S -;; exp - -;; d'1. 

Similar formulas for the metric (21) have the form dTj 
= -(71o/71)d~, d~ = O. In both cases the interior of the 
future cone will contain directions corresponding to a 
~ecrease of TJ. It follows that probe particles of finite 
mass which are at a finite distance from the tachar can 
catch up with it. For the metric (21) this is true for 
1)0 > O. Subjecting the metric (21) to the transformation 
71 - -71, , - -t, the quantity Tj 0 changes sign. At the 
same time the energy of the system changes sign. 
Therefore the case 710 > 0 corresponds to a physically 
meaningless object with negative energy, which gravita­
tionally repels particles. For negative 71 0 even light is 
compelled to stay behind the body. 

Since the variables f, u, and v are the space coordin­
ates of a comoving frame, their values for each given 
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particle of matter remain constant. Therefore Eq. (13) 
determines the law of motion of the matter situated on 
the exterior part of the tachar. The "velocity" of matter 
along the z axis for 1} - 00 (in this case 1} "" Jz J) is 

dz [(11)"] dt~j-2exp - --; , 

i.e., it is smaller than the speed of light but by a quantity 
which decreases exponentially for JzJ - 00. Matter 
lags behind the "center" of the/tachar, but in an ex­
tremely slow way: 1}(t) = a In1 nt. 

The radial "velocity" of matter for 1} - 00 is deter­
mined by 

~~ ~ 2; exp [ _ ( : ) n] . 
Along the z axis, i.e. for r - 00, the analogous formulas 
have the form: 

~~1_2112 ~~~ 
dt r' dt r 

An interesting feature is exhibited by the motion of mat­
ter in the region 1} - 00 for finite 1) ()o If F (and conse­
quently 1} 0) is constant but small, it can be seen from 
(14) that the metric (12) reduces to the form (21) by 
means of the transformation (13) with X (1}) = O. This 
yields for the speed of matter 

dz 1-/ 
dt'~ H/ 

which, since f is positive, is smaller than the speed of 
light. The metric (21) is however invariant with respect 
to the transformation 1;;' = -I;; _1}2/21}0' Therefore, in the 
coordinates (1;;', 1}) the space is also Gahlean for 1} - 00. 

The "velocity" of matter in the new coordinate system 
equals 

~~1+~ 
dt 11 

i.e., it is larger than the speed of light. 

3. If the arbitrary function <J! (f) in the solution under 
discussion remains the same, but one assumes that as 
f - 0 the function F(f) tends to zero sufficiently rapidly, 
one can obtain a metric that approaches the Galilean 
metric arbitrarily rapidly at infinity. The computation 
of the energy and momentum by means of the pseudo­
tensor leads in this case obviously to a vanishing result. 
Such a solution corresponds to a body moving with the 
speed of light, but as a whole not having any energy or 
momentum. 

A completely analogous procedure can be carried out 
in the spherically symmetric solution of Tolman. As a 
result there arises a solution corresponding to a resting 
body (or in general to a body moving with a speed below 
the speed of light), with nonvanishing energy and mo­
mentum. 

Here it is important to make the following remark. 
The solution (8)-(10) has a singularity for 1} - 0 and 
finite u and v, i.e., for 1} - 0 and r. - O. In view of the 
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speed of light with which it moves the singularity appears 
also in the whole 1} = 0 plane. Assume that the matter is 
distributed in such a manner that the body has vanishing 
energy and momentum and that the body collides with a 
small outside particle. As a result of the collision at the 
"periphery" of the body there appears a perturbation, 
but the speed of light with which the singularity moves 
does not change, obviously. After a certain "relaxation 
time" part of the matter will be emitted into the sur­
rounding space and the body will move, like the Singular­
ity, with the speed of light and will now have energy and 
momentum equal to each other, but generally nonzero. 
In a similar manner a body moving below the speed of 
light. but not having energy and momentum will be trans­
formed by a collision with an arbitrary small particle 
into a usual body with finite rest mass. Thus, the equa­
tions of the general theory of relativity admit solutions 
describing bodies without energy and momentum, but 
.such solutions are unstable. 

I express my gratitude to Ya. B. Zel'dovich, 1. M. 
Lifshitz, E. M. Lifshitz, I. D. Novikov, L. P. Pitaevskir 
and I. M. Khalatnikov for useful discussions of this work 
and valuable remarks. 

*l This reasoning is obviously false, since one-photon annihilation (and the 
subsequent pair production) cannot occur without the presence of a 
spectator particle which takes up the necessary momentum balance. If 
the annihilation is into two photons, it becomes necessary to bring the 
two photons together again in order to produce the "same" electron­
positron pair at a different point. The reader will find other instances 
of loose reasoning in the body of the article. [Translator's note J. 

IlIn order to avoid misunderstandings we make the following remarks. 
As can be seen from Eq. (12) on the line u = v = 0, 7J = const. the 
metric is defined by ds2 = (F/f7J)dr2 > 0, i.e., is timelike. It might seem 
that one could conclude from this that the singularity 7J = 0 moves with 
a speed below the speed of light, as does the body as a whole. It is clear, 
however, that such an analysis of the "world line" described by a sin­
gularity has nothing to do with the speed of motion of the body as a 
whole. It suffices to remember that in the famous Lemaltre metric 
(cf. [2J, Sec. 100) for a centrally symmetric field the singularity r = 0 
describes a space like "world line," which does not however imply that 
it moves with a speed exceeding that of light. 

lAo F. Andreev, ZhETF Pis. Red. 17, 424 (1973) [JETP 
Lett. 17, 303 (1973)]. 

2 L. D. Landau and E. M. Lifshitz, Teoriya polya (Class­
ical Field Theory), Nauka, 1967; English Transl. 
Pergamon-Addison-Wesley, 1968. 

31. M. Gel'fand, R. A. Minlos and Z. Ya. Shapiro, 
Predstavleniya gruppy vrashchenil i gruppy Lorentza 
(Representations of the Rotation Group and of the 
Lorentz Group), Fizmatgiz, 1958, p. 336. 

4 N. Ya. Vilenkin and Ya. A. Smorodinskir, Zh. Eksp. 
Teor. Fiz. 46, 1793 (1964) [Sov. Phys.-JETP 19, 1209 
(1964)] • 

5 P. C. Aichelburg and R. U. Sexl, General Relativity and 
Gravitation, 2, 303 (1971). 

Translated by Meinhard E. Mayer 
132 

A. F. Andreev 651 


