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The structure of a shock wave (SW) propagating through a plasma in which the electromagnetic 
radiation density exceeds the nuclear and electron density, i.e., p, > Pm' is considered, and relations 
between the plasma parameters ahead of and behind the SW front are found. The radiation, which 
has a nonequilibrium spectrum directly behind the SW front, interacts with the rarefied matter 
through the Compton mechanism, and after multiple scattering (at k T <m.c 2) by electrons,_ its 
spectrum becomes a Bose-Einstein equilibrium spectrum characterized by a photon-density deficiency 
compared with the blackbody radiation density. The missing number of photons is produced by 
bremsstrahlung emission and absorption processes. The thermodynamic-equilibrium emission spectrum 
is the result of the combined action of the bremsstrahlung and Compton processes at considerable 
distances from the SW front. 

A radiation-dominated plasma (RDP) is one in which 
the electromagnetic radiation density is higher than the 
nuclear and electron density: 

p,=e,/c'=8.4·1O-" T,'>Pm. 

Such a plasma presumably existed in nature over a long 
segment of the evolutionary path of the hot universe at a 
temperature (in degrees Kelvin) of 109 > T > 104 • When 
ordinary matter is sufficiently strongly heated, it also 
goes over into the RDP state. 

Certain variants of the modern theory of cosmology 
consider the production and ~ropagation of shock waves 
(SW) in RDP. Thus, Peebles 1J has considered the hy
drodynamics of shock waves in the universe during the 
era before the recombination of hydrogen (T > 4000), and 
has obtained limitations on the amplitudes of the matter
density and matter-velocity perturbations. In this paper 
we shall be interested in the structure of the shock waves 
and in the distortions of the black-body spectrum of the 
relict radiation, distortions which are connected with 
energy dissipation in the shock waves. 

In the theory of the homogeneous and isotropic uni
verse (Friedmann's theory) there are no shock waves, 
but this theory does not explain the present inhomogen
eity in the distribution of matter and the existence of 
clusters of galaxies. If we perturb the homogeneous 
universe, then the development of shock waves is pos
sible. Shock waves are apparently inevitable at the late 
stage of the evolution. At the early stage, when RDP 
exists, the appearance of shock waves is pOSSible, al
though not inevitable. Under laboratory conditions, 
RDP can be realized only by means of powerful actions 
that are inevitably accompanied by shock waves. For 
these reasons it is of interest to consider the laws 
governing the propagation of shock waves in RDP. In 
the asymptotic limit, when Pr» Pm, we can neglect 
pm in the investigation of the thermodynamics of the 
shock waves. It is sufficient to give the equation of 
state of the RDP: p=E/3=pc2/3. The presence, how
ever, of nuclei and electrons in the composition of the 
RDP is important for the structure of the shock waves. 
It is precisely the scattering of the photons by electrons 
that maintains the spatial isotropy of the photon distri
bution. Because of this isotropy, the RDP can be treated 
as a Pascal fluid with an isotropic stress tensor. With
out the electrons, we would have to deal with a collision
less gas of neutral particles. The energy exchange be-
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tween the electrons and photons and the bremsstrahlung 
processes are necessary for the relaxation of the photon 
spectrum into the equilibrium Planckian spectrum in 
the compressed plasma located sufficiently far away 
from the shock-wave front. The evolution of the spec
trum of the radiation in RDP compressed by a shock 
wave is the main subject of the present paper. 

1. THE THERMODYNAMICS OF THE SHOCK 
WAVES 

The general theory of relativistic shock waves has 
been considered earlier. [2-4J Here, for convenience, we 
shall give the calculation for the case p= E/3, together 
with the general formulas. 

Let the shock wave be at rest. The RDP flows in 
from the left with velocity (in units of the velocity of 
light) ua, electron density na, and pressure Pa, and 
flows out with ub, nb, and Pb respectively. Let us em
phasize that na and Pa are measured by an observer 
moving with velocity Ua (similarly, for nb and Pb the 
velocity of the observer is ub). The velocities are rela
tivistic: uft > 1/ v'3, since the velocity A of sound in the 
RDP is 1/v'3. Therefore, in constructing the conserva
tion equations, we should "Lorentz-transform" all the 
quantities into the rest frame of the shock wave. The 
quantities in this frame will be written with a superior 
bar. Thus, 

The conservation of the number of electrons yields 

/I"u,i (1 ~ua') '1'=nbul'/ (1 ~u;') 'j,. 

Further, the components of the energy-momentum tensor 
can be written in the form 

and similarly for the quantities with the subscript b. 

The nonrelativistic equations of conservation of 
momentum 

and energy 
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become 
(Tl1 ).=(Tl1 )., (TOI).=(TOI )., 

from which, by dividing one equation by the other, we 
obtain 

u./(1+3u.') =u,/(1 +3u.'). 

The function u/(1+ 3u2) has a maximum at u= 1/13, 
whence it can be seen that a nontrivial solution for ub, 
with ub < 1/13 and ub '" Ua, exists only for Ua > 1/13. It 
is evident that the nontrivial solution is ub= 1/3ua. We 
shall, for brevity, henceforth set Ua = u and ub = 1/3u. 
Then uaub = A2 identically. We find the relation 

p, 9u'-1 
p:= 3(1-u') . ( 1) 

It is worth noting that ntlna = 3u2 in the rest frame of 
the shock wave. In the system of coordinates in which 
the matter compressed in the shock wave is at rest the 
free-stream velocity is ua=(3u2-1)/2u, while the 
density ratio is 

(2) 

similarly, in the rest frame of the matter still uncom
pressed by the shock wave the velocity is U"b = (3u2 - 1)/2u, 
and the density ratio is 

( n,)" n, 1 2u' 
n. = n. [1-(u,")']'f' = 1-u' 

In the nonrelativistic theory, the compression ratio 
in the shock wave is finite. This result should be com
pared with the expression nb/na = 3u2, which varies from 
1 to 3 as u varies from 1/13 to 1. The ratio nb/na 
includes the Lorentz contraction and therefore tends to 
infinity as u - 1. The specific entropy for the equi
librium RDP is S = ap3/4n-l. We obtain 

S,IS.=rp"", 
9u'-1 

rp= . 
27u'(1-u') 

As was to be expected, the entropy increases: when 
u > 1/13 the quantity cp > 1. For u = 1/13 + 1(, where. 
I( « 1, we have 

rp=1+12l'3 x', Sb/S,=1+3l'3 x' 

This is in accord with the general shock-wave theory, 
in which it is shown that 6.S/Sa:(6.U)3a: 1(3. 

2. THE STRUCTURE OF THE SHOCK WAVES 

(3) 

The general structure and the division into regions 
are shown in Fig. 1. The region [--00, A] contains an un
perturbed equilibrium RDP having (in its rest frame) 
the quantities na and Pa, and flowing with the velocity 
Ua = u. The changeover to the quantities nb, Pb, and ub 
occurs in the layer AB. For this purpose, a few colli
sions of the photons with the electrons are sufficient. 
Therefore, the thickness of the layer is of the order of 
[AB] a: (nuTf\ where n-na -nb and aT is the 
Thompson scattering cross section. For a weak wave, 
for which u = 1/13+ 1(, I( « 1, the thickness increases: 
[AB]a: l(-l(nUTf\ in accord with the general theory of 

I ! 

A 8 c D +00 

FIG. 1 
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shock waves. In this case, however, there arises 
around B a spatially isotropic, but substantially non
equilibrium, spectrum which is a linear superposition 
of Planckian spectra and which satisfies the two condi
tions Nb = NanWna for the photon density and €b = 3pb 
= €aPWPa for the energy density. The spectral energy 
density of the radiation can then be expressed by the 
formula 

e,=f p (v,l')R(T)dT, (4) 

where R(T) is the temperature distribution function 
obeyeing, as shown by theory[5l, the conditions 

R>O, S R(T)dT=1. (5) 

Here 

81thv' [ ( hv ) ] -. P(v,T)=-c'- exp kr -1 

is the spectral energy density in a black-body radiation. 
The conditions on the photon density and the energy can 
be written with the aid of (4) and (5) in the form 

That R(T) does not reduce to a 1i-function is clear from 
the fact that the entropy exceeds the initial entropy. It is 
obvious that the above two conditions cannot determine 
completely the function R(T). 

In the limit of weak shock waves, however, the dis
tribution function R, being close to a 1i-function, can bQ 
speCified by two parameters: the Rayleigh-Jeans tem
perature e and the dimensionless quantity b charac
terizing the width: 

8= f TRdT, b,=_1-S (T-8)'RdT. 
28' 

We neglect the influence of the remaining moments of 
the type J (T - e )nR dT , n > 2, which are of higher order 
in smallness with respect to I( = u-l/f3. Let us expand 
the Planck function P(v, T) in a series about the tem
perature e up to terms of second order in T-e. Omit
tinfi the intermediate calculations, which can be found 
in 5l, we obtain a spectrum of the type 

e,= SP(V,T)RdT""P(v,8)+b'8,-f}-'P_(v-,-,_T_) I 
8T2 T=8 ' 

a radiation energy density 

e=e(8) (1+12b'),. (6) 

and a photon density 

N=N(8) (1+6b'), (7) 

where €(e) and N(e) are the photon energy and density 
in black-body radiation of temperature e. Comparing 
(6) and (7) with the formulas (1) and (3), and taking ac
count of the fact that 

e(8) = (Nf8») ,/, = (~)' 
e. Na Ta 

we find the Rayleigh-Jeans temperature e and the 
parameter b for small 1(<< 1: 

8=T,u1'3=Ta (1+xi'3), b'=x'l'3. 

Thus, the width of the distribution function R, char
acterized by b, is proportional to 1(3/2 • On the face of 
it, the Doppler effect should, when the velocity of the 
RDP changes by a value of the order of 1(, yield b- 1(. 

The decrease of the width to 1(3/2 can clearly be under-
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stood from the following arguments. The radiation, on 
crossing the shock-wave front, is scattered a large 
number of times K- 1 »1 by the free electrons. The 
temperature spread of the function R over one Thomp
son mean free path is proportional to the velocity differ
ence across this path: (l>u) 1 a:: K l>u a:: K2. In the subsequent 
scatterings this temperature spread grows according to 
the diffusion law in proportion to the square root of the 
total number of collisions, i.e., b - K2~ = K3/2. In the 
case of a strong shock wave (u - 1) the shape of the super
position function R(T) and, consequently, the spectrum 
of the radiation behind the front are approximately de
termined in the Appendix. The general conclusion is that 
the photon spectrum is non-Planckian, being of the 
Rayleigh-Jeans type in the low-frequency region, and 
falling off exponentially in the high-frequency region. 
The Rayleigh-Jeans temperature is, however, rela-
tively small, and does not correspond to the total en-
ergy density. How does the nonequilibrium spectrum 
further evolve and approach equilibrium? This question 
was first precisely formulated for the tenuous plasma 
by Kompaneets. [6] Let us return to Fig. 1 showing the 
division of the shock wave into zones. 

In the zone BC, as a result of the Compton exchange 
of energy between the photons and electrons, the spec
trum is reconstructed into an "equilibrium spectrum at 
the given photon density ," Le., into the Bose-Einstein 
(indicated by the index BE) form 

8nhv' [ (hV ) ] -, e,(fl,TBE)=--,- exp -T-+fl -1 , 
c k BE 

in which the temperature TBE and the chemical poten
tial IJ. are determined from the relations 

S e, (fl, TBE)dv=e,,, S e, (fl, T BE) d '=N 
I "'" tv 

Thus, in the case u= 1/13+ K, K« 1, using (6) and (7), 
and expanding the formula (8) for small IJ.« 1, we ob
tain the relations 

where 

TBE' (i-d'fl) =8' (i +i2b'), 

TBE'(i-d,fl) =8'(i+6b'), 

3) x'(ex-1)-'dx 
d,= ""1.11, 

S x' (eX-i) -, dx 

2 S x (eX-i) -, dx 
d2= ""1.37. 

S x' (eX-i) -, dx 

Hence we obtain 
4b' 

fl= -'1-- =9.6x'=5.6b', 
,d,-d, 

TRE=8(1+3b'+'[.d'fl) =8(1 +7,9x') =8 (1 +4.5b'). 

In the limiting case of a strong shock wave when 
U'" 1 and the chemical potential is large, Le., IJ. > 1, 
the radiation spectrum has the Wien form: 
I:va:: v3 exp(-hvlkTBE) with the temperature 

and the value for the chemical potential 

(16n)'h ( B )" So 
fl=4In--- -- =4InO.9-. 

N 3he S, 

(8) 

The thickness of the zone BC (in the rest frame of the 
matter compressed in the shock wave) is approximately 
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mec2/kT times the photon mean free path. This cor
responds to an interval of time sufficient for the Comp
ton diffusion of the photons in frequency space to bring 
about the formation of a Bose-Einstein distribution. 

Finally, in the zone CD, owing to the still slower 
bremsstrahlung process, the radiation spectrum is con
verted into a black-body radiation spectrum (or a 
Planckian spectrum, indicated by the index Pi) with 
temperature 

[ 9u'-i ] '1. 
Tp,=T, 3(1-u') 

and the corresponding photon density 

[ 9u'-i '1. [9u'-1 'I. SO 
N ,=N ---] =N ] =N-

p '3(1-u') b 27u'(i-u') b s, ' 

exceeding the photon density in the radiation in the zone 
BC by a factor of Sb/Sa. The Planckian spectrum is 
realized in the layer D and further does not change up 
to +00. . 

Notice especially that the reconstruction of the spec
trum in the regions BC and CD is accomplished at con
stant energy 1:, Le., the relation p= 1:/3 does not de
pend on the type of spectrum. Therefore, the entire 
process proceeds at constant velocity ub and constant 
matter denSity nb. These mechanical quantities vary 
rapidly in the layer AB and at once assume constant 
equilibrium values-the same as at +"". The formation 
of the black-body radiation spectrum takes place via a 
series of Bose- Einstein spectr~ with a gradually de
creaSing chemical potential. The production of the 
deficient number of photons in the radiation occurs 
during the emission of bremsstrahlung photons at fre
quencies hv.2: XokT , Xo « 1, which are picked up by the 
Compton diffusion toward the region of higher energies 
hv- 3kT (cf. the picture developed in [6,71). 

The frequency Xo« 1 characterizes the weakness of 
the bremsstrahlung absorption and emission as com
pared to the gaining of energy by the low-frequency pho
tons when they undergo Compton scattering by hotter 
electrons: 

where 

l'3 2.35 
g(x)=-ln--

n x 

is the Gaunt factor (,see, for example, [81) and wff = 1.43 
x 1O-27ne2Tl/2 is the rate of volume energy loss by a 
plasma of density ne and temperature T during the 
emission of bremsstrahlung. Since each regenerated 
quantum increases its energy on the average, the al
ready existing quanta must lose this energy in order for 
the total energy I: to remain unchanged. In conse
quence, the radiation temperature T = 1:/3fkN (where 
3fkT = dN is the mean photon energy) should fall, the 
factor f weakly varying in the process from 1 for the 
Wien spectrum to 0.9 for the black-body radiation 
spectrum. 

The equations for the energy and the rate of photon 
production during bremsstrahlung emission can be 
written in the form: 

3tkTN=e, 
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FIG. 2. The shape of the radiation spectrum in the various zones be
hind the shock-wave front. The radiation energy density is €b = 6 X 1012 

erg/cm-3, the particle concentration in the plasma is nb = 1014 cm-3, and 
u = 0.99. The curve I is a superposition of black-body radiation spectra 
(the region B), and the curve 2 is the plot of a Bose-Einstein spectrum 
with a chemical potential JI. "" 2 (the region C). Because of the brems
strahlung processes, the radiation spectrum near /I';;; 1015 Hz obeys the 
Rayleigh-Jeans law; the curve 3 represents the final blackbody radiation 
spectrum with a temperature of Tpl = 5 X 106 OK (the region D). 

The function F( j1., Xc) takes account of both the 2.5g2(Xc)
fold increase in the rate of energy loss by the plasma due 
to Comptonization when j1. > Xc[6J and the decrease in the 
energy loss as a result of the bremstrahlung self-absorp
tion when j1.<Xo[9,1O]; this function is of the form 

{
2.5g,(X"), ft>1 

F(ft,x") = 2.5[g'(x") -g'(ft)], x"<j.I<1. 
1.4ftg(x,)/x" ft<x, 

In the case of a small chemical potential (j1. < 1) the 
number of photons in the radiation 

N=Np , [1+ft ('/,d.-d,) 1 =Np,(1-0,53ft) , 

and the equation for the rate of production of photons 
can be written in the form 

0.53edft/dt=-w"F (ft, x"). 

(9) 

It follows from (9) that for Xc < j1. < 1 the chemical po
tential decreases almost linearly with the characteris
tic time r=0.2€j1.o/wffg2(Xc), while in the case when 
j1.< Xo it decreases exponentially with the characteris
tic time r=0.4€Xc/wffg(Xc). To this time corresponds 
the zone width [CD J = rc/3u. Figure 2 shows for u = 0.99 
a few spectra characteristic of the different zones of 
the shock wave (the conditions roughly correspond to 
the hot Universe with z = 2 X 106 and n = 1 when €b = 6 
X 1012 erg/cm3 and nb=1014 cm- 3). 

We have presented above the available results per
taining to the observable (in principle) quantities. The 
justification of the picture and the methods of the calcu
lation in their most general form are contained in 
Kompaneets's[6J and Waymann's[Il] papers, and, in 
greater detail, in our previous papers on spectrum re
laxation. Owing to the constancy of nb after the layer 
AB, the solution of the cosmological problem can be di
rectly carried over to the shock-wave problem. 

We take this opportunity to thank G. S. Bisnovatil
Kogan and R. A. Syunyaev for a discussion of the paper. 
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APPENDIX 

Let us find for the case of a strong (u-1) shock wave 
the approximate form of the radiation spectrum near the 
point B directly behind the shock-wave front and the 
superposition function R*(T). Let us imagine an ob
server moving with velocity ub relative to the shock
wave front, but located in the zone [-00, AJ (the observer 
moves with velocity u~ = (3u2 -1)/2u relative to the mat
ter before the shock-wave front). From the point of view 
of this observer, the radiation in the zone [-00, AJ is 
anisotropic; remaining in each element of solid angle 
a black-body radiation, it has the angle-dependent tem
perature: 

T(I/l) =T.[ 1- (a.') 'J"'!(1-a.' cos I/l). (A.1) 

Mter being scattered several times by electrons in the 
zone AB of the shock-wave front, the radiation be-
comes isotropic, the photon density increasing, accord
ing to (2), by a factor of r3"(nblna)'=(9u2-1)/2, and 
the energy of each photon increasing by roughly a factor 
of r in the process. It follows from this that the 
photon density 

N' d 
b _ Sf T'( ) cos '" --r ",--=1 

Nb 2 

coincides with the exact value (Nt, = Nb). 

The radiation energy denSity differs slightly from €b, 
which characterizes the accuracy of the approximation: 

eo 'f T'( ) deos", (3a'+1)' -=r I/l --= ~1.6 as u~1. 
eb 2 (36u'-4)'i. 

The superposition function R*(T) is easily found (the 
angle z/! is connected with the temperature through the 
formula (A.1»: 

! T,T, 1 
- T.<T<T" 

T,-T. T" 
R'(T)=~ deos", = 

2 dT' 0, T<T" T>T, 

where 
, Ha (gu'-1) 'i, 2,25 

T,=l o--- ~T.= as a~1, 
(i-U')'I. (3u+ 1) 2'1, l'1-u' 

l'i-a' (gu'-i)'i. --
T.=T. 'I ~1.iT. l'i-u' as a~1. 

Hu (3u-i)2' 

Using the approximate function R*(T), we obtain the 
Rayleigh-Jeans temperature 

8'= STRdT=To Yi-u'(9u'-1)'/'ln 1+a 3u-i ~T.ln_i_ as u~1 
2'h(3u'-1) i-u 3u+l 1-u 

and the form of the spectrum 

where 

e/= SP(v, hR' dT=Bv' ln 1-exp( -hvfkT,) 
1-exp(-hvfkT.) 

{ 
Bv'ln (T,fT,) , hv<kT, 

"" Bv'ln(kT,fhv) , kT,<hv<kT" 
Bv'exp(-hvlkT,), kT,<hv 
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