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A weakly turbulent wave system is considered which can be described by a kinetic equation in which 
scattering of waves by each other is taken into account. Stationary solutions are found by symmetry 
transformations of the collision integral in k space. These solutions are not power functions and are 
nonisotropic deviations from solutions of the Kolmogorov type. These transformations change the 
quadrangle expressing the law of conservation of momentum and energy in scattering into a similar 
one for constant energy and momentum of one of the quasiparticles. The general properties of 
nonisotropic solutions with flows along the spectrum are considered. It is shown that the drift terms 
describe the appearance of constant flows of conserved quantities (momentum, particle number, or 
energy) which are absent in the initial single-parameter distribution. Locality of the solutions is 
investigated. As an example, distributions in turbulent systems of gravitational waves on the surface 
of a liquid and of Langmuir waves are considered. 

1. INTRODUCTION. FLUXES OF CONSERVED 
QUANTITIES IN THE TURBULENCE 
SPECTRUM 

In weakly-turbulent systems of waves obeying a 
"nondecaying" dispersion law w( k), the conservation 
laws associated with collisions do not allow decay (co­
alescence) processes involving the participation of 
three quasi-particles,!) and the four-particle scattering 
processes 

k, + k, = k, + k., rot + ro, = ro, + ro •. (1.1 ) 

become the most probable. We consider isotropic media 
with the 1;aves satisfying a power-law dispersion law 
w( k) ~ k (f3 < 1), which is essentially utilized below 
in connection with the symmetry transformations, and 
we also consider systems (of the Langmuir-wave type) 
having a small dispersion correction w(k) ~ k f3 (f3 ~ 1) 
to the activation frequency Wo (which drops out of Eqs. 
( 1.1). In the kinetic equation that describes the weakly­
turbulent distributions N(k)y,2] the collision integral is 
cubic with respect to the distribution function Icoll{N} 
~ N3, and conserves the number of particles. Local 
turbulence spectra of the Kolmogorov type appear in the 
presence of a source which is localized in k-space, and 
correspond to nonvanishing fluxes of conserved quanti­
ties. For isotropic stationary distributions Nw the 
energy flux (or the number of particles) remairis con­
stant in frequency space (which is natural in view of the 
one-dimensional nature of the problem in the isotropic 
case). As Zakharov showed,[3 j these distributions Nw 
can be found from the equation 

Icoll{N(k)} =0 (1.2) 

with the aid of a special transformation that takes the 
symmetry of the collision operator averaged over 
angles in w-space into account. 2) 

Nonisotropic solutions of Eq. (1.2) are obtained in 
the present article with the aid of transformations which 
utilize the symmetry of Icoll in k-space[8 j (see Secs. 
2 and 3). The obtained distributions are sums of power­
law functions and are no longer one-parameter distribu­
tions. In contrast to solutions of the Kolmogorov type, 
which correspond to a single non vanishing flux in the 
turbulence spectrum, they correspond to nonvanishing 
fluxes of the three conserved quantities, namely, the 
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number of particles, the energy, and the momentum 
(see Sec _ 4). As a consequence of the anisotropy,of the 
obtained distributi0Vs, in order to interpret them it is 
necessary to consider the fluxes of conserved quantities 
in k-space. Thus, we write the kinetic equation 

ilN(k) / ilt - D(k) = I coU {N(k)} (1.3 ) 

(D( k) denotes the strength of the source of particles) 
in the form of an equation of continuity: 

ilN(k) /ilt+div.Q=D(k), (1.4) 

where Q (k) is the vector density of the particle flux in 
k-space, which is defined by the equation 

div.Q 55 -Icoll{N(k)}. (1.5) 

Here N(k) is normalized by the condition 

ElpLd = S dk~(k)N(k) (1.6) 

(p denotes the density of the medium, d is the dimen­
sionality of k-space, E is the energy of the disturbance, 
and w(k) = Wo + w (k». 

The energy and momentum conservation laws corre­
spond to similar equations (see Sec. 4) obtained from 
Eqs. (1.4) and (1.5) by replacing N(k),Q(k),and D(k) 
by wN(k), P, 15(= wD 3 » and kiN(k), IIi (k), and D(= kD) 
where the energy flux density P and the momentum flux 
density IIi are determined by the following equations 
relating them to the distribution N(k): 

div.P 55 -ro(k)Icou {N}, ilIl.d ilk; "'" -kJ coll{N}. (1.7) 
We note for an acti vational dispersion law, P repre­
sents only that part of the energy flux which is not con­
nected with the particle flux. 

On the other hand, under stationary conditions 
( a Nj at = 0) the continuity equations enable us, as is 
clear from Eq. (1.4), to express the flux densities in 
terms of the moments of the sources (or else in terms 
of the moments of the sinks if they are localized near 
k = ° whereas the sources are located at infinity). Let 
us consider, for example, the equation of continuity for 
the energy in the stationary case: 

div.P = fJ (k). (l.a) 

Imposing the condition curl P = 0, we arrive at a con­
venient electrostatic analogy, where 15/471 plays the 
role of the charge density, and P plays the role of the 
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field. We obtain the following result from Eq. (1.8) in 
the three-dimensional case: 

f ' D(k') 
P=-VIji, Iji(k)= elk 4nlk-k'l . (1.9) 

For a point source located at the origin of coordinates, 
D(k)/41T = Po(k) with P = const ("charge"), we have 

ip(k) =Pik, P(k) =Pklk'. (1.10 ) 

According to Gauss' theorem the "charge" P has the 
meaning of a constant energy flux in the space of the 
moduli k (or, what amounts to the same thing, in the 
space of the frequencies w). The constancy of this 
quantity is an essential attribute of the theory of iso­
tropic local turbulence. In similar fashion the particle­
flux density Q( k) can be expressed in terms of its own 
"charge" (the particle-flux Q): Q(k) = Qk/k3. The 
electrostatic analogy can be extended even further. 
Thus, for example, a point source with a "dipole 
moment" B leads to a particle-flux density given by 

Q(k)=3x(xB)-B x=~ (1.11) 
4nk" k ' 

and P( k) is thus exactly expressed in terms of the 
dipole moment of the energy source B (for more details, 
see Sec. 4). 

Thus, in the general case the distribution is charac­
terized by the multipole moments of the source, where 
constant fluxes (scalar quantities) correspond to point 
"charges," and the fluxes are not constan.t for higher 
multipoles. A dipole source of particles leads (together 
with the particle-flux (1.11) to the appearance of a 
non vanishing momentum flux density 

Il" = E,k, / 4nk'. (1.12) 

Here the quantity k 2(IIi' K) = Bd47T, having the meaning 
of momentum flux, is constant. We note that a point 
scalar charge leads to IIi = O. The dipole moment of 
the source generates a "vector charge" in the equation 
of continuity for the momentum. 

The stationary solutions derived below for the 
kinetic equation (1.3) and causing the cOllision integral 
to vanish (Sec. 3) represent the deviations from iso­
tropic distributions. We show that the anisotropic devi­
ations describe the appearance of a constant momentum 
flux in the turbulence spectrum (Sec. 4). The isotropic 
deviations also have a similar meaning. Thus, in the 
solutions corresponding to a constant energy flux, a 
term arises describing a small particle-flux, and so 
forth. The localizability of these distributions is inves­
tigated (Sec. 5). The deviations from the equilibrium 
distribution, corresponding to the formation of fluxes 
of energy, momentum, and number of particles in the 
spectrum, are also derived (Sec. 3). 

In the same way as the one-parameter isotropic 
distributions, the found turbulence spectra can be ob­
tained from dimensional considerations. However, for 
a system of waves with dispersion, it is still necessary 
to use the connection between the flux and the distribu­
tion which is dictated by the kinetic equation (for more 
details, see[9). According to Eqs. (1.1) and (1.7) we 
obtain N ~ Ql/3 and N ~ pU3 (for a decaying spectrum 
Icoll ~ N2 and N ~ p U2 ), from which it follows (see Eq. 
(2.16) that the distributions are given by 

(1.13 ) 

Writing down the multiple-flux distribution in terms of 
a dimensionless function F of the flux ratios, 
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, ( 6P k6B) , ( w6Q w (k6B) ) N(k)=Q"w'"Fo - -- N(k)=P"w"F, --,--- , 
wQ' k'Q ' P k'P 

(1.14) 
in the approximation linear in oQ, oP, and oB we arrive 
at the distributions given by Eqs. (3.8) and (3.9). It is 
important, however, that these distributions are found 
below as the exact solutions of the kinetic equation. 

2. Transformation of the collision integral 

Only processes involving the scattering of the parti­
cles by one another are allowed for a non-decaying dis­
persion law, so the collision integral has the form 

{ou{N(k)} = f dTkW",I.,.,j(kkdk,k,), (2.1) 

where dTk == dk1dk2dk3, Wk; Wkk11 k2ks is the transi­
tion probability, 

W",I.,k, = 6 (k + 10, - k, - k,)6(w + w, - W2 - w,) U'k,lk,k" (2.2) 

and the function fk is given by 

tk =0 f(kkd k2k,) = N,N2N, + NN2N, - NN,N, - NN,N" (2.3) 
N=oN(k), N,=oN(k,) etc. 

Here both Uk and Wk have the following symmetry 
properties: 

they are invariant under rotations g in virtue of the 
isotropy of the medium, and they are homogeneous func­
tions of their arguments in view of the assumed self­
similarity: 

(2.5 ) 

As is clear from Eq. (2.3), the function fk is sym­
metric under interchange of the arguments in each of 
the pairs and is antisymmetric with respect to the inter­
change of pairs of arguments 

f(kkdk,k,) = f(k,klk,k,) = -f(k,k,lkk,). (2.6) 

The integral Icoll vanishes for the equilibrium distribu­
tion 

No(k) = (Wk - ku - !!)-' 

because the function 

(2.7) 

J(kk,lk,k3) =0 N,N,N,N(N-'+N,-'-N,-'-N,-') (2.8) 

vanishes as a consequence of the conservation of energy, 
momentum, and number of particles during collisions. 
The parameters u and JJ. represent the drift velocity and 
the chemical potential of the quasi-particles, and here 
we assume the activation term in the spectrum to be in­
cluded in JJ.. 

We shall utilize the symmetry properties of the col­
lision integral in order to discover nonequilibrium solu­
tions with fk'" O. Temporarily denoting the integration 
variables in (2.1) by ql, q2, and qs so that k + ql = q2 
+ qs, we consider the transformations determined by 
the conservation laws (2.2) which leave the region of 
integration invariant: 

G,: q, = G,'k" q, = G,k" q, = G,k" (2.9 ) 

where the operation G1 is determined by the condition 
(see the figure) 

G,k, =k, 
and analogously 

G,: 'I, = G,k" 'I, = G,'k" q, = G,k, (G,k, = k), 

G,: q, = G,k" q, = G3k" q3 = G/k, (G3k, = k). 

A. V. Kats and V. M. Kontorovich 
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k, The transformation G, = Al g, (A, = 
k/k I) transforms the quadrangle k + k I -
k2 - k3 = 0 which expresses the law of 
momentum conservation during the 
scattering process, into a similar quad­
rangle k + q, - q2 - q3 = 0 associated 
with the invariant energy w(k) and 
momentum k of one of the quasi­
particles. 

As is clear from Eqs. (2.10)-(2.12), the geometrical 
meaning of the transformations Gi = Aigi consists in 
rotations gi and dilatations Ai = k/ki' successively 
converting ki into k while preserving the similarity of 
the quadrangle that expresses the law of momentum cons­
servation (see the figure). The power-law nature of the 
dispersion law wk = k {3, guarantees that under the trans­
formations (2.9), (2.11), and (2.12) the law of energy 
conservation will be satisfied in te rms of the new vari­
ables, provided that it was satisfied in terms of the old 
variables: 

",(k) + "'(q,) - "'(q,) - ",(q,) 

= ±I![",(k) + ",(k,) - ",(k,) - 00 (k,) J. 
Taking the symmetry properties (2.4) and (2.5) into 

account, the transition probability is transformed into 
itself to within the scale factor Ai = k/ki: 

= A~-d-~ W klklk~k" 
(2.13 ) 

1 F kq,lq2th = Tll Gaka, GlIr.3\Glk, G21t, 

= A~-d-fl W k2kJlkk, etc. 
Thus, with the aid of the symmetry transformations 

(2.9)-(2.12) the collision integral is brought to the form 

{oulN (k)} = 'I, S dT, W,[/, + I., '10" + AdG" + A,'Ia,,], (2.14) 
r=m+3d-~ 

or (in detailed notation) 

{ou{N (k)} = 'I, Sdk, dk, dk, W .. "k,k,[f(kk, I k,k,) 
+ (kl k,)'/(G,k" G,klG,k" G,k,) + (kl k,)'/(G,k" G,k,IG,k, G,k,) 

+ (kl k,)'f(G,k" G,k,IG,k" G,k) J. (2.14') 

For isotropic and homogeneous distributions, N( k) = Nw 
= wS , the function fk = flc is invariant under rotations, 
fgk = flc' and is also homogeneous. As a result the in­
tegrand in Eq. (2.14') can be factorized: 

10 {Nw} = :' S dT, W,I,O(w-' + ",,-' - 00,-' - 00,-'), (2.15 ) 
t," = ("'00,002 00 ,)'(00-' + 00,-' - ",,-' - 00,-'), 

V"'V(8) =ar+38=a(m+3d) -1+38, a'" 11~. 

As is evident from Eq. (2.15), the collision integral 
vanishes either because flc = 0 for s = 0, -1 (which 
corresponds to the limiting cases of the equilibrium 
distribution (w - Il r1 for Il » wand Il « w), or else 
because the last factor vanishes at values of s = so, S 1 

such that II (so 1) = 0, -1. Here the vanishing occurs as 
a consequence 'Of energy conservation (s = -1, v = -1) 
or conservation of the number of particles (s = 0, v = 0) 
during collisions. The nonequilibrium distributions of 
the Kolmogorov type 

N(oj=W 8D, 

1 a 
8°=3-3(m+3d), 

8, = -~(m+3d) 
3 

(2.16 ) 

correspond to the constancy of the particle flux (s = so) 
and of the energy flux (s = s 1) in the turbulence spec­
trum (compare Eq. (2.16) with Eqs. (4.5) and (4.6». 

For isotropic distributions one can also obtain the 
solution from the collision integral averaged over 
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angles, by using the symmetry properties in w-space. 
In fact, averaging over the angles in Eqs. (2.15) and 
(2.0 only affects the transition probability Wk. In this 
connection the averaged transition probabilit/4 - 6J 

Tww1\ W2 W3 is homogeneous and in frequency space it 
possesses the same symmetry properties (2.4), which 
permits us to factorize the integral (2.1) with the aid of 
the linear-fractional transformations of the frequencies 
proposed by Zakharov: 

""~( :)'''''' 
00 

00,-+-(03, 
00, 

00 
012--012, 

00, 

00, ~ L~ )'00" 

00, ~ :,00" "" ~ :, 00" 00, ~ ( :,) , "". 

It is obvious that these transformations correspond to a 
reduction of the vector transformations (2.9)-(2.12) in 
k-space to frequency space. But whereas the Zakharov 
transformations are only applicable in the case of iso­
tropic distribution functions, the transformations (2.9)­
(2.12) enable us to also determine the nonisotropic dis­
tributions . 

3. DRIFTING STATIONARY DISTRIBUTIONS 

In the same way that the more general distribution 
N~( k) = (wk - k . u - Ilr1 given by Eq. (2.7) corresponds 
to the Rayleigh-Jeans distribution N~ = w-\ it is 
natural to seek analogous distributions which correspond 
to the turbulence spectra (2.16). In view of the nonequili­
brium nature of the distributions (2.16), it is impossible 
to obtain the drifting distributions corresponding to 
them by the simple replacement w - w - k . u - Il . 
However, if the drift parameters are small, then one 
can seek the distribution N( k) in the form 

N(k)=N.(1+",'Il!!+ro P (x/iu», N.=",', x=klk, (3.1) 

in the approximation linear in the drift parameters Oil 
and ou. For the distribution (3.1) one can rewrite the 
linearized collision integral (2.14 ') and the function fk 
in the form 

1 = 10 + I.Ihl + Iu(x/iu), I, = 1,° + !."6!!+ (f,/)u), 

where flc is given in Eq. (2.15), 

f. = xwP~ + x,,,,,P~, - x,,,,,P~, - x,,,,,P~,, 

and the quantities ~ are given by the equations 

(3.2) 

(3.3 ) 

(3.4) 

It follows from Eq. (2.14') that by using the proper­
ties of the symmetry transformations Gi gi·ven by Eqs. 
(2.9)-(2.12) the integrals III and Iu reduce to the fol­
lowing factorized form: 

I~= "'~' ~dTkWkkdk'k,f1'(kkllk2ka)("'-"+w~'t-w;'t-w;'t), Vt==v+t; 

(3.5) 
'p 

I" = -;- ~ dTkW kk,J "k,f (kk,J k.ka) [x",-'p + Xl"'~'P - x2''';'v - xaw;'V], 

vp==v+p. (3.6) 

The integral 10 and also v = v(s) are given in (2.15). 
In deriving Eq. (3.6) we have used the fact that the 
angles transform one into the other under the transfor­
mations (2.9)- (2.12): 

(3.7) 

The vanishing of the collision integral (3.2) indicates 
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Parameters and distributions - • Deviations-~ 
~ 1 Turbulent distributions [, equilibrium 0 
>, distributions , 
~ ';::J~ ~ N=ws <1+wl &P.+ ill N=ws (1+wt 5v.+wPxSu) Turbulent 0 . 2 • ~ +wl s!=l+wPx!;u) 
~ ~ " € systems i " u II 

I 
~ . 

I II 
E c. ~ I 3=-1 s=o o~ ~ ""~ 

S=$1 3=$0 
S 

~ \ d 1m \ m, \ 3, \ p, \ I, \ " I P.\ 1.1 1,\,+,\ 1,1,+, 
Gravitational I ., 

2 

I : [ • [-8['J -, 
t I-"'['J -2[-11-20 -21 -22-23 ~2·1-23 waves I'" 

Plasma waves 2 3 0 _3/,[']" S,'3 i _7/a[t] _1,'," -1 _1, _I': -t -';2 -'r 
'Turbulent distributions-nonlocal. 

that each of the terms 10, Ill' and lu vanishes independ­
ently, which determines the exponents s, p, and t in the 
distribution (3.1). It follows from the condition 10 = 0 
that s = 0, -1, so, Sl (2.16). 

Let us consider turbulent distributions. As is clear 
from Eq. (3.5), III = 0 if lit = 0, -1. A solution which 
violates the homogeneity of the distribution arises when 
II and lit are determined by different conservation laws 
(II = 0, lit = -1 and II = -1, lit = 0). For lit = II (t = 0) 
the normalization constant in the distribution Nw is 
simply changed. The vanishing of lu occurs when lip 
= - a because of the law of momentum conservation. 
Finally we obtain two solutions. They correspond to 
small deviations from the distributions with a constant 
flux of particles (3.8) and a constant flux of energy (3.9) 
in the spectrum: 

N(k) ~ w',[ 1 + w-'c5f,t + w-'"(Mu)], to ~ -1, po ~ -a, (3.8) 

N(k)~w',[1+wc5f,t+w'-2"(kc5u)], t,~1, PI~1-a. (3.9) 

It is clear that these solutions cannot be obtained by 
expanding the quantities (wk - k . OU - Oil) s at s = so, 
Sl' This is due to the nonequilibrium nature of the 
initial isotropic distribution (see[9J). Whereas the drift 
distribution N°( k) = (wk - k' u - Il r 1 corresponds to 
the equilibrium associated with non vanishing total mo­
mentum of the quasiparticles, here we are dealing with 
essentially nonequilibrium distributions. Nevertheless, 
they are also determined by a small number of "drift" 
macroscopic parameters, formed in accordance with 
the conservation laws associated with the presence of 
flux in the spectrum (a source at the origin of k-space). 
We shall return to a discussion of the physical meaning 
of the distributions (3.8) and (3.9) in the next section, 
after a detailed investigation of fluxes in the turbulence 
spectrum. 

Now let us dwell on the stationary, nonequilibrium 
deviations from the isotropic Rayleigh-Jeans distribu­
tion. It turns out that the equation (1.2) together with 
the equilibrium drifting distribution 

N°(k) ~ (Wk - Mu - c5f,t)-' ~ w- I [ 1 + Mu/ w. + c5!li w.j (3.10) 

also leads to nonequilibrium deviations from the distri­
bution N~ = w- 1 • Let us return to formulas (3.2)-(3.6) 
for s = -1. It is easy to verify that the exponents t and 
p, which lead to the vanishing of f/J. and f, correspond 
to an expansion of the locally equilibrium distribution 
N~-k. OU-Oll and to its renormalization, Le., they cor­
respond to a change of the temperature. This is also 
clear from the fact that fM and f represent deri vati ves 
of fk which vanish for the equilibrium distribution (2.7). 
However, other solutions of Eq. (1.2) exist and can be 
obtained by choosing the exponents t and p in such a 
way that the last factors in 1M and lu vanish. This 
gi ves the following values for the exponents in the dis-
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tribution (3.1): 
t2 ~ -,:(-1) = 4 - a(m + 3d), 

12=-1-v(-1) =3-a(m+3d) (s=-1), 

P2~-V(-1) -a~4-a(m+3d+1). 

(3.11 ) 

Thus, we obtain modified Rayleigh-Jeans distribu­
tions of the form (3.1); the final expressions for these 
distributions and the values of the exponents for specific 
systems are given in the table. 

Similar nonequilibrium drifting deviations from the 
solution Nw = 1 (s = 0) are found in a similar manner; 
the corresponding exponents in (3.1) are given by the 
expressions 

t, ~ -v(O) = 1- a(m + 3d), 

1,~-1-v(0) =-a(m+3d) (s=O), 

p, = -v(O) - a = 1- a(m + 3d + 1). 
(3.12 ) 

We note that one can also obtain the deviations from the 
equilibrium distributions by dimensional considerations, 
by resolving the dimensionless function F with respect 
to small fluxes (cf. (1.14)): 

N=-.!...F(~ _wc5Q W(kIlB)) 
pm x J x' kz"x ' 

(3.13 ) 
s= -1, 

where x is a quantity having the dimensions of an en­
ergy flux and T is the temperature. Thus, we arrive at 
the distribution corresponding to (3.11), and by replac­
ing T/pw by T/PM in (3.13) we arrive at expression 
(3.12). 

4. THE CONNECTION BETWEEN THE 
DISTRIBUTIONS AND THE PROPERTIES OF THE 
SOURCE AND THE PHYSICAL INTERPRETATION 
OF THE OBTAINED SOLUTIONS 

To clarify the meaning of distributions of the form 
(3.1), ret us turn first to the equations for the fluxes of 
the conserved quantities. Under steady-state conditions 
they take the form 

divkQ=D(k), divkP=D(k), divkni~~J),(k), (4.1) 

where the sources appear on the right-hand side. In 
analogy to (1.9) we express the solutions of Eqs. (4.1) in 
terms of potentials: 

( 'Jl(k»)= fdk' (k-k') (D(k')) 
q,(k) g D(k') , 

cp(k)= Sdk' g(k-k')D(k'), 

(4.2) 
where q(k), which is equal to 1/41Tk in the case of 
three dimensions and is equal to (21Tr 1 In k-1 in the 
two-dimensional case, is the Green's function for 
Poisson's equation. The particle-flux and energy-flux 
densities are given by Q = -v <p and P = -vip, and the 
momentum flux density is given by ni = -V<Pi. 

In the inertial interval where, by definition, the 
distance to the source is large, the solutions (4.2) are 
expressed in terms of multipole moments: 

( Q ) ( A ) ( B, ) ( Cij ) P =- ;r Vg+ 11, V,(Vg)- c,; V,v;(Vg)+ ... , 

II.; = -A,V;g + BilV,V;g - ... 

Here A, B, and Cij denote the charge, dipole m~m~nt, 
and quadrupole moment of the particle source; A, B, 
and Cij denote the corresponding moments for the 
energy source; A denotes the "vector charge" of the 
momentum source, Bi is its "dipole moment," etc. 
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A= S dkD(k), B" = Sdk kiD, (k) and so forth. 
(4.4) 

If the sources are related (D '" wD, D = kD, see foot­
note 3), then A = B, that is, the "charge" source of 
the momentum is equal to the dipole moment of the 
particle source, and so forth. 

When only one of the multipole moments does not 
vanish, we have a power-law distribution that can be 
determined (to within its angular dependence) from 
dimensional considerations. Here the functional depend­
ence of the distribution on the multipole moment !U/ is 
determined bi the kinetic equation WI' ~ Icoll ~ N3 so 
that N ~ WIll. For example, the distribution ~orrespond­
ing to constant energy flux p;o (p. k) kd-2 ~ A = const 
(when the particle flux vanishes) is given by the expres­
sion 

(4.5) 

In analogous fashion the constant particle flux 
Q ~ (Q . k) kd-2 ~ A associated with zero energy flux 
corresponds to the following distribution (compare 
expressions (4.5) and (4.6) with (2.16»: 

N = Q'''[w(k) l"'k-d- m". (4.6) 

Here we note that the degree of homogeneity of the 
matrix element can also be determined from dimen­
sional considerations under the conditions for complete 
se If-similarity 

m=10-2d, .Vc.J /'h('+d"" N=Q',,[w(k)l"'k-(!O+dJ/', (4.7) 

when characteristic parameters having the dimensions 
of length and time are not present in the system. Such 
parameters exist for long waves on the surface of a 
liquid and for Langmuir waves, leading to the dimen­
sionless combinations kh and w(k)/wp e, where h is 
the depth of the liquid, wp,e d~note the 'ion and electron 
plasma frequencies, w( k) ~ k is a small dispersion 
correction, and consequently these systems are not 
completely self-similar. 

Now let us discuss the physical meaning of the dis­
tributions found in the preceding section. First let us 
consider the deviations from the solutions (4.5) and 
(2.16) corresponding to an energy flux P = (P 'k)kd-2, 
Q = 0, lli = 0. From Eqs. (1.5) and (1.7) we obtain the 
following results for the corrections to the fluxes: 

dh' bQ "" -b! = 0, div bP "" -wb! = 0, div bIli "" -kiM = 0, 

where 
(4.8) . 

M = I.b" + '.("bu).· 

Let us show that the solution (3.9) corresponds to the 
appearance of a particle flux oQ ~ ojJ. and a momentum 
flux ~ou. On the strength of the linearity of Eqs. (4.8), 
let us first consider only the scalar correction. Then, 
according to Eq. (3.5), kdoI ~ WIl+tOjJ. = ojJ., so that we 
obtain di v oQ ~ k- d ojJ. from (4.8). By comparing this 
result with the field of a point charge, oQ = -oQV'g 
~ oQk-d +\ we see that oQ ~ ojJ., whereas the remain­
ing equations in (4.8) can only be satisfied for oP = olli 
= 0. Thus, we have verified that a small isotropic devi­
ation from the distribution with a constant energy flux 
corresponds to the appearance of a constant particle 
flux in the turbulence spectrum. In analogous fashion, 
an anisotropiC deviation does not give any contribution 
to the particle and energy fluxes, leading instead to the 
appearance of a constant momentum flux A: oQ = oP = 0, 
olli = -AiV'g ~ k--d+l (compare with expression (1.12» 
where A ~ ou. 
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In exactly the same way, by considering the solution 
(3.8) we find that in this case the isotropic correction 
leads to the appearance of a non vanishing energy flux 
oQ= olli = 0, oP ~ k--d+10jJ.; the anisotropic term corre­
sponds to the appearance of a momentum flux. 

. The nonequilibrium deviations from the distributions 
Nw = w- l and Nw = 1 (see Eqs. (3.1), (3.11), and (3.12» 
are also related to the appearance of constant fluxes in 
the spectrum, whe~ t,he two isotropic terms correspond 
to an energy flux (t2, t 3 ) and a particle flux (t 2, t g), and 
the anisotropic term is associated with a momentum 
flux. 

We note that the laws of energy and momentum con­
servation in the form (4.1) are also valid for the case 
of strong turbulence. The Kolmogorov spectrum is 
associated with the total "charge" of the source. The 
dipole moment B of the source should lead to the ap­
pearance of momentum flux in the spectrum; a purely 
dipole source leads to a distribution of the form 

...f'(k) - B",k-""/(") , /(,,)-1 (4.9) 

and corresponds to a constant momentum flux (see 
expression (1.12», where here ...f'(k) is normalized to 
the energy density cW/pL 3 = J dk.lt'"(k). According to (4.9) 
the spectral energy density E(k) = J dK...f'(k) is propor­
tional to E(k) ~ k- 7/ 3 in contrast to the spectrum for 
isotropic turbulenceyo,llJ where E(k) ~ k-S/ 3 • 

5. THE LOCALlZABILlTY OF THE ANISOTROPIC 
TURBULENT DISTRIBUTIONS 

The distributions obtained above will be local if the 
region of small and large wave vectors gives a negligi­
ble contribution to the collision integral (2.1) and the 
inertial region, wioJ.ere kl' k2' kg N k, gi ves the major 
contribution to the integral. This requires convergence 

. of the integrals appearing in the collision term. The 
localizability of the distributions for gravitational waves 
on deep water and for plasma oscillations was discussed 
in[4,6J• 

First let us consider a system with a non-activational 
dispersion law, w( k) = k (3 with f3 < 1. In this connection, 
as a consequence of the conservation laws only two wave 
vectors in the interval (2.1) can be small (large). Let 
kJ, 3 - ° (k l,3 « k, k2). As a consequence ofthe fact 
that N( k) - "" as k - ° the most dangerous terms in 
(2.1) are N1N3(N2 - N). It is convenient to represent 
the asymptotic behavior of the matrix element in the 
form 

( k+k'i ) U .. "k,k,=(k,k,)m'''(kk,)"''''u -2- k"k, , (5.1) 

k" k3 <t:: k, k 2• mt + 1n2 = m, 

where u ~ 1 is a function of zero degree of homogeneity, 
which is symmetric with respect to interchange of the 
last two arguments (as a consequence of the symmetry 
of Uk with respect to interchange of pairs of arguments 
as indicated in (2.4». The values of the exponents ml 
and mare given in the table for specific systems. Per­
forming the integration over k2 in (2.1) at the expense 
of the o-function in the momentum, we obtain the follow­
ing result for the dangerous terms in Icoll: 

Sdk, dk,li[k' + k,' - k,' -Ik + ql'] (k,k,)"""( Ik + qlk)",,/3 
(5.2) 

Xu (k+ ~ I k"k, )N(k,)N(k,)[N(k+q)-N(k)]' q ""I<,-k3• 

Since the principal term of the asymptotic transition 
probability in (5.2) 
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Olk,~ - k,' - ~ (kq)kH ] (k,k,)m'/'km'u(kl k" k,) 

is even under the exchange k1 ~ k3, it gives a non­
vanishing contribution to the integral upon integration 
with the quadratic term of the expansion of N( k + g) 
- N(k): 

Sdk, dk, c5(k,~ - k,') (k,k,)md 2u (klk" k,)q,q;N(k,)N(k,), (5.3) 

where we have omitted the factors which do not influence 
the convergence. 

For {:3 < 1 it is not difficult to verify that the odd 
(with respect to the interchange 1 ~ 3) part of the 
transition probability, upon being combined with the 
linear term of the expansiOn of N( k + q) - N( k), leads 
to an integral that converges no worse than (5.3). For 
N(k) of the form (3.1), upon linearizing (5.3) with re­
spect to 011 and OU, we obtain the following convergence 
conditions: 

6.,>0, 6.,+~t>O, 6.,+~p>O, 

6., "" m, + 2d + 2 - ~ + 2~s 
(5.4) 

for the distribution Nw (3.1) of the isotropic and 
anisotropic corrections, res pecti ve ly . 

Without reproducing the analogous calculations, in 
which the same asymptotic expression (5.1) is used, let 
us present the convergence condition (2.1) on the dis­
tributions (3.1) for large values of k: 

6., < 0, 6. 2 + ~t < 0, 6., + ~p < 0, 
(5.5) 

6., "" d - 1 + ~s. 
For an acti vational dispersion law ~ {3 can be either 

smaller or larger than unity (wk = k is a small cor­
rection to the activation frequency). For (:3 > 1 the 
conservation laws permit the vanishing of one of the 
wave vectors. Therefore it is necessary to consider 
the convergence of the collision integral in four regions: 
both k1 3 «k kz and k1 3 » k, kz and also for the case 
of one ~mall ~rgument, 'for example, k1« k, k Z,3 or 
k « k1,z,3. Therefore, in order to estimate the resultant 
integrals, we need in addition to the asymptotic behav­
ior (5.1) also the asymptotic behavior of the matrix 
element associated with one small argument: 

U .. ".,., = k,m'v(k!k2 , k,), 
(5.6) 

where v( k \ k2, k3) IS a homogeneous function of degree 
m" = m - m', which is symmetric with respect to the 
last two arguments. By considering the convergence of 
the collision term in each of these regions in the same 
way as has been done above, we obtain the following con­
ditions for localizability of the turbulent distributions 
(3.1): 

6.' > 0, 6.' + ~t > 0, N + ~p > 0, 6.' "" m' + d + ~s, 

6.,>0, 6., + ~t>O, 6., + ~p>O, "', "" m, +2d+ 1 +2~s; 
(5.7) 

6., < 0, 6., + ~t < 0, 6., + 1 + ~p < 0, 6. 2 "" m2 + d - 3 + ~s, 

6." < 0, 6." + ~t < 0, 6." + ~p < 0, 6." "" m" + 2d - ~ +-2~S', 
(5.8) 

where (5.7) guarantee convergence at zero and (5.8) 
guarantees convergence at infinity. 

It is of special interest to note that for the case of 
Langmuir turbulence considered in [6 J, when the non­
linearity is due to the interaction with ions, 4) the matrix 
element 

U ... ,k,., = [(xx,) (x,x2) + (xx,) (x ,x,) p, Xi = k i / k" (5.9) 

is symmetric_ with respect to a change in the sign of one 
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of the wave vectors, kj - -k·, which leads to the sam~ 
property of the functions u( k ~ k1, k3) and v( k I k2, k3) ill 
expressions (5.1) and (5.6). In this connection the condi­
tions for convergence at zero of the integrals arising 
from the anisotropic corrections are improved--in (5.7) 
it is necessary to make the replacement {:3p - {:3p + 1. 
The last condition in (5.8) is also weakened-instead of 
~ " + {:3p < 0 we ha ve ~" - 1 + {3p < O. 

The results pertaining to the localizability of the 
turbulent distributions found for specific systems are 
given in the accompanying table. 

The authors thank Y. E. Zakharov for a helpful com­
ment. 

J)In this work we only consider systems of interacting waves under 
random-phase conditions, and the terms "particle" (quasi-particle) are 
employed to denote the elementary excitations (wave packets). 

2)Isotropic distributions for gravitational waves on the surface of a deep 
liquid are found in [4,5] , and the distributions for plasmons are found 
in [6,7]. 

3)The source may be found in a region where a description with the aid 
of the kinetic equation is not applicable; however, sources of the con­
served quantities D, 5, and D, playing the role of the boundary condition 
as k -> 0, can always be introduced into the conservation laws. Therefore, 
they are generally independent (i.e., the equalities indicated inside the 
parentheses may not hold). 

4)The other case of Langmuir turbulence, when the nonlinearity is 
purely electronic, is treated in [12]. See [8] for a discussion of the 
drifting solutions. This case apparently has an extremely narrow region 
of applicability. [13] 
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