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The theory of magnetic freezeout in a compensated semiconductor is developed. For this 
purpose a quantum mechanical generalization is made of the authors' previously devel
oped[6J theory of nonlinear screening. The dependence of the critical magnetic field 
(Le., of the magnetic field strength at which the transition from metallic conductivity 
to activational conductivity occurs) on the degree of compensation is found. It turns out 
that in a compensated semiconductor the electrons are not localized on individual im
purity centers but on large-scale fluctuations of the potential, which include many 
charged centers. The activation energy after the transition is therefore greater than 
the ionization energy of an isolated center. It is also shown that some of the electrons 
experience an analogous transition every time the Fermi level approaches the bottom of 
one of the Landau sub-bands. This explains the previously observed oscillations of the 
Hall coefficient when the magnetic field is varied. The amplitude of the oscillations is 
estimated. 

1. INTRODUCTION 

Let us consider a semiconductor doped with shallow 
hydrogen-like impurities (to be definite, we assume the 
impurities to be donors). We assume that the doping is 
strong, Le., the Bohr radius of the electron on an isola
ted donor, a, is much larger than the average distance 
between donors ((Na3)113 ~ 1). Here N is the donor con
centration, a = tlKo/me2, m is the effective mass, Ko is 
the dielectric constant of the lattice, and e is the electron 
charge. In the case of strong doping the donor levels 
merge with the conduction band, and the electrons form 
a weakly-nonideal Fermi gas of high density. The con
ductivity of such a semiconductor is metallic in nature, 
Le., it is large and does not depend on the temperature. 

The nature of the conductivity is substantially modi
fied in a sufficiently strong magnetic field. The magnetic 
field, which compresses the wave functions of the elec
trons, facilitates their localization in the potential of 
the impurities. If the magnetic field is large enough, the 
states in the neighborhood of the Fermi level (which 
exists in view of the low temperature) turn out to be 
localized, and a transition takes place from metallic 
conductivity to activational conductivity (the MA-transi
tion). This phenomenon is called magnetic freezeout of 
the carriers. It has been observed in InSb, [I, 2J in 
!nAs, [3J and in GaAs. [4J 

It is customary to assume [5J that the freezout begins 
when the volume occupied by the wave function of the 
electron localized on an isolated donor becomes smaller 
than the average volume N-I per single donor. This wave 
function has the shape of a cigar with a radius of order 
A = (l1c/eH)I/2 and a length of order a In-I (a/A) (A « a). 
Therefore, apart from logarithmic factors, the indicated 
condition is of the form NA 2a = 1 or 

H, ~ cnNal e, (1) 

where HI is the critical transition field. 

We shall show below that condition (1) corresponds to 
a transition only in the case of a weakly compensated 
semiconductor. In experiments with III-V crystals one 
often has to deal with the case of strong compensation. 
In this case, in addition to the donors there are also ac
ceptors in the semiconductor, with the acceptor concen
tration NA close to N ((N - NA)/N « 1). At low tem-
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FIG. I. Phase diagram of the MA-transi
tion. The region located to the right of the 
ordinate axis, in which n < N, has physical 
significance. The region having metallic 
conductivity is cross-hatched. The dot-dash 
line describes an MA-transition under the 
conditions of resonance localization. Here 
n stands for the electron concentration in 
the "resonance" subband, and the field H3 
is determined by the resonance condition. 

1nH 
H, 

peratures the acceptors capture N A electrons, and only 
n = N - NA electrons per unit volume are left in the con
duction band. The small number of electrons turns out 
to be in the random field created by the large number of 
negatively charged acceptors and positively charged 
donors. As is well known, [6J compensation leads to 
localization of the electrons in the potential wells and to 
a transition from metallic conductivity to activational 
conductivity even in the absence of any magnetic field. 
Therefore, it is quite clear that the critical magnetic 
field Hc associated with the MA-transition must, in gen
eral, depend on the degree of compensation. As we shall 
demonstrate, compensation even modifies the qualitative 
picture of magnetic freezeout. In the presence of com
pensation the electrons are no longer localized on indi
vidual impurities, but rather in potential wells, created 
by fluctuations of the density, which include a large num
ber of charged impurities. 

One of the results of the present work is the phase 
diagram which is shown schematically in Fig. 1, where 
the magnetic field and the electron concentration n are 
plotted along the axes. At points corresponding to the 
cross-hatched region the conductivity is metallic in 
nature, and in the remaining region-it is activational. 
The boundary between the two phases corresponds to the 
curve Hc(n). This curve has three sections. The two, 
lower sections can be understood very easily. As we 
showed earlier, [6J when no magnetic field is present the 
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MA-transition appears when the rms fluctuation of the 
potential, 

'Y (ro) = ~(Nro ') 'I, 
xoro 

becomes of the order of the Fermi energy ti2n213jm 
(ro denotes the electron screening radius). This equality 
corresponds to the electron concentration nl = ~ 13a. 
Since the quantizing magnetic field can only facilitate the 
breakdown of metallic conductivity, for concentrations 
n < n1 the conductivity can only be activational. The 
vertical segment of the curve with n = n1 (below point A) 
is associated with this. 

Now let us go on to the description of the segment AB 
shown on the phase diagram. If n substantially exceeds 
nl, the magnetic field Hc inducing the MA-transition 
must be such that all electrons are found in the lowest 
Landau band. In this case the Fermi energy, measured 
from the bottom of this band, decreases with magnetic 
field according to the formula 

I.t = n'n''),.' I m, (2) 

and the screening radius, obtained in the Thomas- Fermi 
approximation, is given by 

(3) 

(Here we do not write down numerical factors since we 
only need these formulas for estimates.) 

As is shown in [sJ, one can regard the potential relief 
as classical at H = O. First let us assume that it is also 
classical in the case under consideration. With the aid 
of Eq. (3), let us calculate the average amplitude of the 
potential relief 

(4) 

The Fermi energy ~ decreases with A faster than y (ro). 
In accordance with sJ the MA -transition appears when 
y(ro) ~ lJ.. Equating expressions (4) and (2), we find the 
following result for the critical magnetic field Hc: 

(5) 

Now let us verify the assumption concerning the 
classical nature of the potential. It is obvious that in 
order to do this, one should compare the electron wave
length ti(mlJ.f1h with the length roo It is easy to verify 
that the classical nature of the potential is preserved for 
H = Hc provided that 

n < 112, n, = N I (Na') 'f,. (6) 

Therefore, the dependence (5) is valid on the phase curve 
only between points A and B. 

Now let us discuss the magnitude of the activation 
energy in the nonmetallic phase in the region n < fi2. 
Since one can regard the potential as classical in this 
region, the theory of nonlinear screening developed 
inCsJ is applicable. According to this theory, the acti
vation energy E (provided that the correlation radius in 
the impurity distribution is larger than Rc) is determined 
by potential fluctuations of the order of Rc = N1 i:ljn213, 
and the order of magnitude of the activation energy is 
given by 

(7) 

for n « nc' and as n - n the activation energy tends to 
zero according to the lawcindicated in[sJ. Here nc de-
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notes the concentration at the MA-transition point. We 
note that the electronic states themselves may Signifi
cantly depend on the magnetic field. Since the field re
duces the size of the wave function, the classical ap
proach to large-scale fluctuations is preserved; how
ever, the binding energy of the small-scale fluctuations 
increases logarithmically with the field and may become 
comparable with expression (7) in a very strong magnetic 
field (far from the transition). 

Now let us go on to the region n > fi2. In this case 
upon increasing the magnetic field the electron wave
length becomes comparable with the screening radius 
until localization occurs, i.e., still in the free electron 
region. In this connection the electron gas also remains 
ideal with regard to the electron-electron interaction 
(the condition (mJJ.) I12a/ti » 1 is necessary for this). 
However, in this region the screening is not described 
by the Thomas-Fermi equation and it becomes substan
tiallyanisotropic. (We shall call this quantum screen
ing.) The linear theory of quantum screening in a mag
netic field is basically worked out (see, for example, the 
review article by Horing[ 7J); however, it is, of course, 
only applicable in the free-electron regime, that is, 
before the MA-transition. The method of describing the 
MA-transition which is developed in[sJ is essentially 
quasiclassical and is not applicable to this case. The 
quantum theory of nonlinear screening and localization 
of electrons is developed in the present article. We have 
shown that for n > n2 the critical field Hc is given by 
the equation 

(8) 

The relation (8) is plotted on Fig. 1 to the left of the 
pOint B. When n = N the field Hc = HI' In the nonmetallic 
phase the order of magnitude of the activation energy is 
given by 

e=~(~)' 
mat n 

for n « nc ' and tends to zero as n -fie. We note that 
the activation energy in a compensated semiconductor 

(9) 

is larger than the binding energy of an isolated impurity. 

In Sec. 3 we obtain results (8) and (9) from qualitative 
considerations. In order to do this, however, certain 
results of the linear theory of screening are required, 
which we did not find in the literature, and therefore we 
present these results in Sec. 2. Finally, the equations 
describing the electronic states both above and below the 
transition pOint are derived in Sec. 4. 

The theory developed in Secs. 3 and 4 explains the 
oscillations of the Hall coefficient in a strong magnetic 
field, which have been observed in a large number of ex
periments (see, for example, [8,9]). Let us consider an 
uncompensated semiconductor in the metallic region. As 
the magnetic field is varied, the Landau levels move 
with respect to the Fermi level. If the Fermi level is 
close to the bottom of one of the Landau sub-bands (see 
Fig. 2), the electrons in this sub-band have smaliiongi
tudinal kinetic energies and are localized inside the im
purity potential wells. Thus, with a variation of the 
magnetic field near the Fermi surface the localized 
states periodically appear and disappear. 1) The localized 
electrons do not contribute to the static conductivity. 
Therefore, spikes of the Hall coefficient should be ob
served every time the Landau level intersects the Fermi 
energy. We shall call this phenomenon resonance local-
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FIG. 2. Energy diagram illustrating 
the passage of the Fermi level through 
the bottom of one of the Landau sub
bands. The occupied states are cross
hatched. The densely shaded region cor
responds to the resonance sub-band. 

ization of the electrons, and we shall investigate it in 
Sec. 5. We note that it has previously been indicated[8] 
that localization of the electrons might explain the os
cillations of the Hall effect. However, they had in mind 
localization on individual impurity centers, which cannot 
occur in the case under consideration. 

2. CERTAlN RESULTS OF THE QUANTUM 
THEORY OF SCREENING 

As is well known, [7] when the spatial dispersion is 
taken into account the dielectric constant of electrons in 
a magnetic field takes the form 

%(q) = %.0(1+ k,'(q) I g'). (10) 

We are interested in the case Clx, qy « A -1 (the magnetic 
field is directed along the z-axis). Then ICs only depends 
on qz and is of the form 

k.'(g,)=-:-L In/ PN .• +g,/2 1, 
%01. g,a N . .' PN" - g,/2 

PN, , = /i-' [2m (~ -/iQ (N + 'I,) - s!lBH) p. 
(11) 

Here !; denotes the Fermi energy, n is the Larmor fre
quency, N is the Landau quantum number, s = ± 1, and 
j.J.B is the effective magnetic moment. The expression 
inside the square root sign must be positive. As qz - 0 
the quantity k~ (qz) coincides with the reciprocal of the 
screening radius in the Thomas-Fermi approximation: 

'() 2 \"1 -, _, 
k, 0 = "1.2a~PN,.=rO • (12) 

N,' 

Let us assume that the electrons exist only in the 
lowest Landau band. Then the sums in (11) and (12) con
sist of only the single term with PN, s = PF' where PF is 
the wave vector of the lbngitudinal motion at the Fermi 
surface. Let us consider the case of quantum screening, 
when PF « r~1. 

The variation of the potential along the magnetic field 
has been treated in the majority of articles on quantum 
screening. However, we shall be interested in screening 
in a direction perpendicular to the field. We confine our 
attention to two examples. 

1. The screening of a point charge. The potential of a 
charge e, located at the origin of coordinates, is given 
by the formula 

4"e d'g e-1q• 

<per) = (2,,),s if~ 

=~e-S dg,e-'q"Ko(p[g,'+k.'(g,)],,,), (13) 
"%0 

p = (x' + y')''', 

where Ko is Macdonald's function. At z = 0 the potential 
decreases exponentially for p > r 1, where r 1 
= (1/2)(ropiW /2 • In this case the integral (13) is evalua
ted by the method of steepest descents and 

<pep) =_e_exp (_.l'_). 
2%op r.L 

(14) 

2. The screening of a charged filament. Let us con-
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sider a filament coincident with the z axis and having a 
charge density sin kz. Then 

2sinkz , 
<p(p,z) =--Ko(p[k' + k.'(k) ]"). 

%0 
(15) 

If k « PF the potential falls off like exp {-p/ro}. If 

PF «k« r1.1 the potential falls off like exP{-Pks(k)}. 
Finally, screening is not at all important for k ::P r 11 , 

and the potential contains e-pk. 

3. THEORY OF THE MA-TRANSITION. 
QUALITATIVE CONSIDERATIONS 

Now we can investigate which fluctuations of the 
impurity concentration lead to localization of the elec
trons. Let us assume that the electrons are free, but 
the magnetic field grows and the quantity j.J. = li~F /2m 
decreases in accordance with Eq. (2). Localization be
gins when a potential relief arises having a characteris
tic size not smaller than the electron wavelength and an 
amplitude comparable with the Fermi energy. We see 
that since near the transition the wavelength along the 
magnetic field is larger than the transverse size of the 
wave function and the screening radius across the field, 
then fluctuations having the shape of cylinders extended 
along the z-axis are important for localization. 

Let us consider a cylinder of length 1z and radius 11, 
The excess number of impurities in the cylinder is 
(Nli~J)1/2. If lz ::P 11 , then the potential of the cylinder 
is of the order of the charge density per unit length: 

(16) 

In order for an electron to be localized inside a single 
such well, the following condition is sufficient: 

(17) 

The fluctuations with larger values of lz have 
smaller amplitudes since, according to Eq. (16), V de
creases with increaSing lz. As has already been stated, 
localization occurs when the amplitude V of the fluctua
tions becomes comparable with the Fermi energy. It 
follows from Eq. (17) that at the transition point lz = PF' 
According to Eq. (16), V increases with increasing 
values of 11, However, the size 11 of the fluctuations in 
the transverse direction is limited by the screening 
radius. One can easily specify this screening radius by 
recalling the second example of the previous section. If 
the charge density of the filament is homogeneous over a 
length PF' then the potential is screened over a distance 
roo Therefore, to determine the critical field of the 
MA-transition, it is sufficient to substitute I'/, = PF and 
11 = ro in Eq. (17) and use formulas (2) and (:i). As a re
sult we obtain expression (8). One can show that this 
condition is equivalent to stating that the electron damp
ing I1T-1 due to impurity scattering is comparable2 ) to the 
Fermi energy j.J.. 

We note that the shift of the energy obtained from 
perturbation theory in the metallic phase turns out to be 
considerably larger at the transition pOint than the 
Fermi energy. This shift is determined by the spherical 
fluctuations which, according to the results of the previ
ous section, are screened over distances r.L' The poten
tial created by them is of the order of 
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Since r 1 «PF near the transition, the effect of these 
fluctuations averages out, and only a weak modulation of 
the wave function having a period r 1 and relative magni
tude y (r 1)mr~/n2 « 1 is created. As a result of this 
modulation, an energy shift of the order of 

also appears, and exceeds the Fermi energy at the tran
sition point. 

Now let us go on to a description of the nonmetallic 
phase. Our problem is to determine the characteristic 
dimensions Zz and Zl of the fluctuations which localize 
the electrons, and to determine the characteristic en
ergy of localization, which is also the activation energy. 
It is obvious that the arguments leading to condition (17) 
are applicable as before. However, we can no longer 
use the linear theory of screening for the determination 
of Z1' Let us apply the method developed in [6J. In this 
case, however, the fluctuation is characterized by two 
quantities which can be chosen to be Zz and the volume 
ZIZz' It is necessary to find typical fluctuations (not 
having small probabilities) which create a maximal 
lowering of the level, taking into consideration that the 
fluctuations are screened by the electrons. For a fixed 
volume, the optimum value of lz is determined by Eq. 
(17). The larger the volume the larger is V; however, 
fluctuations with a large volume have a small excess 
charge density and are neutralized by the electrons. Let 
us divide up all space into identical cells with dimensions 
II and lz. Roughly speaking, half of a cell has positive 
and half of a cell has negative excess impurity charge, 
with the denSity given by 

tJ.N = e(NI.l'I,) '" / 1.l'I,. 

If this density is large in comparison with the average 
electron charge density en, then such fluctuations can be 
neutralized by the electrons. Therefore, the maximum 
volume of a charged cell is determined from the condi
tion 

(18) 

Simultaneously solving Eqs. (17) and (18) we find 

l.l = N / a'''n'\ I, = an / N. (19) 

The ratio llllz = (n2/n)512 « 1. The values of ro and II 
are equal at the transition point when H = Hc' Substitut
ing expressions (19) into Eq. (16), we obtain an expres
sion for the localization depth, and hence formula (9) 
for the activation energy. 

4. THE STRUCTURE OF THE ELECTRONIC 
STATES 

To obtain a quantitative description of the nonmetallic 
phase, it is necessary to write down an expression for 
the electronic density n(r). Here we use the fact that the 
potential in the transverse direction changes very little 
over a wavelength in this direction (ll » A). First let 
us assume that the potential only depends on z. Then the 
transverse motion is described by the Landau functions, 
and we obtain the following expression for n(r) 

n(r)=_1_~ IFa(Z) I', .SIFo (z)I'dz=1, (20) 
2",} ~ 

where F a and lOa are the wave function and energy 
eigenvalues of the longitudinal motion (as before, we 
assume that only the lowest Landau level is occupied), 
and the summation goes over the region lOa < M. Now 
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let us consider a smooth variation of the potential in the 
transverse direction. For this purpose it is sufficient to 
assume that Fa and lOa depend on x and y through the 
Schrodinger equation: 

Ii' d'Fa ----+ V(x, y,z)Fa = ea(x,y)Fa, 
2m dz' 

where x and y enter as parameters. The potential V 
satisfies the seli-consistent equation 

e' 
tJ. V =4n-[£(r)+ n - n(r)], 

x, 

(21) 

(22) 

where ~ (r) denotes the excess concentration of charged 
impurities, which is determined by the correlation re
lationship 

<s (r) S (r') > = 2Nfj (r - r'). (23) 

when the donor and acceptor concentrations are nearly 
equal. 

Let us introduce the following dimensionless varia
bles and unknown functions: 

(24) 
V eo f,t 
-=x -=1]0' - =1], <!la(r,) = Fal,"" 

B B e 

where 10, ll' and lz are determined by formulas (9) and 
(19). Neglecting terms of order II Il z « 1, we can 
represent Eqs. (20)-(23) in the form 

a'x a'x [ -a ,+-2=4n l(r)-6 ~ l(jJaI 2 +1], 
f1 ar'l .l..J (25) 

d'(jJa 
- dr,' + X<Da = I]a(jJa, (26) 

</(r)/(r'» = 211(r,- rt')Il(r, - r()o(r, - ri), (27) 

S I <1>0 (r,) I'dr, = 1. (28) 

This system depends on the single parameter 
6 = (A 2lznfl, which is of the order of unity at the 
MA -transition point. One can show that the potential in 
Eq. (26) can be regarded as a small perturbation for 
6 « 1, and the functions <I> a are then close to plane 
waves. Substituting the correction to <I> a into (25), we 
obtain the results of the linear screening theory with 
dispersion along the magnetic field (in formula (20) we 
have already neglected dispersion in the transverse 
direction). 

Now let us analyze the derived system of equations 
for the case 0 »1. Let us show that isolated functions 
<I> a' localized along r3 in a unit length, satisfy this sys
tem of equations. Let us assume that this is so. Then, 
in the regions where 1] a < 1], the electron concentration 
is according to (25) of order 6 »1 (in units of n). 
Therefore, these regions should occupy a small fraction 
of the total volume, Le., the electrons must be highly 
unevenly distributed. Let us estimate the transverse 
dimension of these regions. We assume that the energy 
1]O(r1, r2) corresponding to the ground state of Eq. (26) 
is smaller than 1] inside a cylinder having a unit length 
along r3 and a base area of the order of p2. This deepen
ing of the level is created by a positive fluctuation of the 
impurity charge inside the cylinder. According to Eq. 
(27) the typical value of f in such a fluctuatwt1 is of the 
order of p-1. According to Eq. (25) the condition p < 6-1 
is necessary in order that tne eiectrons not overcompen
sate the charge fluctuations. Hence the transverse 
dimensions of tp.e regions fL led with electrons is of 

~ , 
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order 6-1 « 1 (or of order ~ 2 1111!n1h « 1.L in dimensional 
units). The maximum distance 11 - 1'/0 is of the order of 
6 -1 « 1. Thus, wherever the electron density is different 
from zero, the energy of the ground state of Eq. (26) is 
"clamped" to the Fermi level. As will be evident from 
the properties of the potential which are derived below, 
the closest excited state (if one exists) is above the 
ground state by an energy of the order of unity. There
fore, the probability that the excited state would turn out 
to be below the Fermi level is exponentially small (for 
the case 1'/ -1) 0 ~ 6 -lone can investigate the level dis
tribution by using the method of optimal fluctuations [10J 

with the aid of Eqs. (25)-(28)). 

Now let us introduce the electron density ~2(r), aver
aged in the rl, r2 plane over an area that includes many 
electron droplets but is small in comparison with unity. 
In this connection we shall not take the small-scale fluc
tuations into account, and we assume that the equation 
1)0 = 1) is valid in the region where ~2(r) > O. Then, in
stead of Eqs. (25) and (26) we obtain the following result 
in the zero-order approximation in 6 -1: 

(29) 

d'([I 
-d' +x([l=1]([I. 

r, (30) 

These equations can be derived directly from the condi
tion for minimizing the total energy where, in contrast 
to the case considered in [6J , it is necessary to take the 
kinetic energy of the longitudinal motion into considera
tion. The obtained system of equations (29), (30), (27) 
with the neutrality condition (the integral over all space 
of the right hand side of Eq. (29) vanishes) does not con
tain any parameters. In this way it is proved that 1) is of 
the order of unity and that the typical magnitude of the 
potential, which varies over unit distances, is of the 
order of unity. 

In this approximation the transverse dimension of the 
regions where ~2 > 0 is determined by the minimum 
dimension taken into account in the construction of the 
random function f. Taking account of the higher harmon
ics leads to a subdivision of the regions into many small 
ones and to a reduction in the fraction of the total volume 
occupied by them. These regions do not overlap each 
other and therefore in the vicinity of the Fermi level the 
wave functions are actually localized. At high energies, 
of course, the states are not localized. The activation 
energy is determined by the distance from the Fermi 
level to the boundary of the localization region. Since 
the system of equations which we have derived does not 
contain any parameters, the activation energy must be of 
the order of E (see (9)). 

5. RESONANCE LOCALIZATION OF THE 
ELECTRONS 

Let us consider an uncompensated semiconductor 
(see Fig. 2) whose Fermi level occupies the position 
~ «lin above the bottom of one of the Landau sub-bands 
(not the very lowest sub-band). One can easily show that 
formulas (2) and (3) are valid for Il and ro, where n is 
the electron concentration in the indicated sub-band. 
The radius of the screening due to the electrons of the 
lower sub-bands is much larger than ro, and at first we 
shall not take this screening into consideration. Local
ization of the electrons existing in the upper sub-band 
and having a small longitudinal kinetic energy occurs 
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upon reducing the value of Il. These electrons are loca
ted in the field of a large number of charged impurities; 
therefore, the transition is analogous to the transition in 
a compensated semiconductor treated above. During the 
transition the magnetic field varies very little. It is de
termined by the condition for coincidence of the Fermi 
energy with the bottom of the appropriate Landau sub
band. For not too high sub-bands, this field is of the 
order of H3 = ncN213/e. In return the concentration 
changes abruptly upon a change in the mutual position of 
the bottom of the sub-band and the Fermi level. 

Since the electrons existing in the lower Landau sub
bands do not play any role, the problem concerning the 
MA-transition reduces to the one treated in the pre
ceding sections. One can classify the transition with the 
aid of the phase diagram (Fig. 1). Let us draw the 
straight line H = H3 on it and find the concentration 
corresponding to the transition. It is easy to see that 
the transition occurs in the region of quantum screening 
(n > n2) at a concentration 

n, = N / (iVa')'1o, (31) 

which is obtained if we substitute Hc = H3 in (8). The 
localizing fluctuations are characterized by the lengths 
1.L and 1'(. determined by expressions (19). The activation 
energy IS determined by formula (9). As the value of n 
is reduced, the value of 1.L increases and the value of lz 
decreases, and these lengths become equal when n = na. 
With further decrease of n, one can regard the potential 
claSSically, the activation energy is expressed by form
ula (7), and the dimension of the fluctua,J:ions is of the 
order of Rc' Finally, when n = N/(Na3)1 4 the length Rc 
is comparable with the screening radius due to the elec
trons of the lower Landau sub-bands. Beginning with this 
concentration, the potential relief does not depend on n, 
and n decreases exponentially with increasing height of 
the Landau sub-band above the Fermi level. The elec
trons then fill only the Gaussian tail of the Landau sub
band under consideration. 

We note that the Hall-coefficient maxima correspond
ing to resonance localization, must have a large value 
since, according to Eq. (31), the ratio of the number of 
localized electrons to their total number is of the order 
of (Na3fI/6, i.e., it is not very small. The relative mag
nitude of the maxima observed in experiments[8,9J is of 
the order of 10 to 15%. 

I)It should be kept in mind that in this case the states are not strictly 
localized since they are in the continuum corresponding to the lowest 
Landau sub-band. However the interaction between electrons belonging 
to different sub-bands is small as a consequence of the large difference 
in their momenta. Therefore, to a high degree of accuracy one can re
gard the states as localized. 

2)Since 11 ~ lin in the region of interest to us, the condition .117 ~ I is 
certainly satisfied right up to the MA-transition. 
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