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A kinetic equation is derived which describes the drift motion of a collisionless plasma 
in a magnetic field. Its solution for the case of flow of a plasma into vacuum is investi
gated. It is shown that discontinuities are formed in a quasi-neutral flow. The oscilla
tory structure of a weak discontinuity is determined. 

INTRODUCTION 

The purpose of the present paper is to find the exact 
nonlinear nonstationary solutions of the kinetic equation 
for a collisionless plasma in conjunction with Maxwell's 
equation. As is well known, in view of the complexity of 
the kinetic equation, it is quite difficult to find its solu
tion, even a numerical one. In the absence of a magnetic 
field, a decisive simplification can be made if the plasma 
is quasineutral 

N,=Nc • 

This condition corresponds to the limit 

D-O 

(1) 

(2) 

(D is the Debye radius). In this limit the system of equa
tions has no parameter with the dimension of length, 
making it possible in certain problems of physical in
terest to decrease the number of variables and find a 
number of solutions of the self-similar type and of the 
simple-wave type[1,2]. 

We emphasize that the transition to equations that do 
not contain a length parameter is of great fundamental 
Significance. In kinetics such a limit is the analog of the 
transition to the case of an ideal liquid in hydrodynamics. 
The problem of formation of strong and weak discontinui
ties in a flow, and of other singularities, can be formula
ted distinctly only in this limit. In equations where the 
length parameter is preserved, all such singularities 
become smeared out and no longer have an exact mean
ing. Yet the presence or absence of discontinuities is a 
most important qualitative characteristic of motion. 
(For an investigation of the singularity connected with 
the breaking of the front of a simple wave see [3J .) 

It is clear from the foregoing that great interest 
attaches to such Simplifications in the general case of a 
plasma that moves in an arbitrary magnetic field. In a 
magnetic field, however, there are also parameters of 
the dimension of length, namely the Larmor radii PHi 
and P He of the ions and electrons. It is clear that the 
dimensional situation of "an ideal liquid" arises only 
when the magnetic field is sufficiently strong, i.e., when 
all the quantities vary little over the Larmor radius of 
the ions. Then we can expece) 

PHi '"'-" V;il1C / eB -+ 0, PH" -+ O. (3) 

These limits correspond to the so-called drift approxi
mation. The kinetic equations in this ap.woximation 
were obtained by Rudakov and Sagdeev 4 • The system 
of equations, however, turns out to be quite complicated, 
and, so far as we know, not even one nonlinear non
stationary kinetic problem was solved with its aid to 
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date. By suitable joint utilization of conditions (2) and 
(3), we carry out further simplification of the equations 
for the case of one-dimensional nonstationary motion 
and apply these equations to the solution of the particular 
problem of expansion from a plasma-filled half space 
into vacuum. 

2. THE BASIC EQUATIONS 

In the drift approximation, the ion distribution func
tion f depends on the projection VII of the velocity on the 
direction of the magnetic field B, on the absolute value 
of the projection v 1 of the velocity on the plane perpen
dicular to the magnetic field, and on the coordinates r 
of the particle. In place of v 1 we introduce the variable 
J.L = v1l2B. The volume element in velocity space can be 
represented in the form 

d"u = 2rrBdvlld!-l. 

According to Rudakov and Sagdeev [4], the equation 
for f is 

-Tu"eV/+wV/+ e -E--\'H--- -=0; rJt , { (e !-Ie. dOW)} df 
vt M Me dt dV'I 

[EB] dO J B (4)* 
w=e------g;-, 'dt=Tt+(VII"+W) V, "=il' 

The ions flux density is given by the formula2) 

j, = - rot ( J ~e. Ie d'v ) 

{ Me [ e d'e dOW]} +Jf vlI"+- e,--E+u,l-+- d'v. en M dt dt 

Analogous equations with the substitutions e - -e and 
M - m hold also for electrons. 

(5) 

We note that here, as before [1-3J, we shall consider 
only motions of a plasma with hydrodynamic velocities 
v « (Te /m)ll2. In this case the electron distribution 
function differs little from the equilibrium distribution, 
which is naturally assumed to be of the Maxwell
Boltzmann type. As a result of this, in the calculation 
of the electron current, the even powers of v that enter 
in (5), namely vrl and vi, can be averaged over the 
Maxwell-Boltzmann distribution. On the other hand, the 
integral (fevlld3v, which is determined by the correc
tions to the equilibrium function, can be obtained from 
general considerations. Indeed, by virtue of the quasi
neutrality condition (1), we can assume that 

J 
divj=ediv(j,-j,)=-e-.-(N,-N,.). (6) 

at 
The integral JfeVlld3v can be determined from this con
dition without accurately calculating the correction to 
the electron distribution function. 
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Thus, Eqs. (4) together with relations (5) and (6), 
supplemented with Maxwell's equations, constitute a 
complete system describing the quasineutral drift mo
tion of a magnetized plasma. We note that in Maxwell's 
equations it is necessary, in addition, to neglect the dis
placement current, since v « c, and to omit div E (by 
virtue of the quasineutrality condition (1)). 

3. ONE·DIMENSIONAL MOTION 

In this paper we confine ourselves to the case of 
one-dimensional motion of a plasma, when all the quan
tities depend only on one spatial coordinate x and the 
time t. The equation div B = 0 yields in this case 

B. ~ const. (7) 

On the other hand, Eq. (6) reduces to ajx lox = 0 or, as
suming that there is no current at infinity, we have 

ix ~ 0, (8) 

i.e., the current is perpendicular to the x axis. 

We consider only planar motion in the sense that the 
magnetic field always lies in one plane, which we as
sume to be the (x, y) plane. In this case the current is 
directed along the z axis. It then follows from (8) that 

J l,v lI d'v = J IVII d'v. (9) 

In other words, the longitudinal currents of the electrons 
and ions fully cancel each other. 

The electric field E has two components-potential, 
directed along x, and solenoidal, directed along z. 

E ~ E, - Vcp. 

Since Ez is perpendicular to the magnetic field, its 
influence on the distribution of the particles reduces 
primarily to the production of drifts. It is easy to show 
that in order of magnitude 

E,-B(2T,/M)'!'lc 

(see (14) below), so that the velocity of the produced 
drift is of the order of (2Te/M)1/z, i.e., much less than 
the thermal velocity of the electrons (2Te/m)11z. There
fore the influence of Ez on the distribution of the elec
trons can be neglected, assuming a Maxwell-Boltzmann 
electron distribution in the potential field cpo Taking the 
quasineutrality condition (1) into account, this yields 

cp~~ln~. (10) 
e N, 

Omitting straightforward but cumbersome calcula
tions, we write down the complete system of equations. 
The kinetic equation is 

!l.+!i (!!.:..VII _ C E,Bv) +.!..!.. Bx {-~.!.-ln~ 
r)t rix B B' iJVII B M iJx No 

( B, cE,Bx C'E,'B,) iJBv cE, iJBv}. 0 + - Il B + VII -----s' - ----s< a; + Ii' iit = ; 

N = 21lB J Idv, df.l, B' = B! + Bu'. 

To this equation we add Maxwell's equation 
iJE. 1 {)B, 
a;-=7-at· 

On the other hand, the equation 
{)B, 4n. 
a;=S7]z 

(11) 

(12) 

must be transformed, since expression (5) itself con
tains derivatives of the fields. As a result we obtain 

1072 SOy. Phys.·JETP. Vol. 37, No.6. December 1973 

(13) 

= _ 41lNMB, [~+ (i1+~)~ln!..]. 
B iJx MB ox N, 

The superior bars over v, f.,L, etc. denote averaging 

2nB J 2nB J i1 = N III dVIl dll, VII = N VIII dVIl dll etc. 

In expressicn (13) we have neglected the terms 
~(m/M)llz and higher, and also the terms with the extra 
power of the Larmor radius. We note that those terms 
in the current, which contain the electric field itself and 
not its derivatives, would cancel out when the electron 
and ion currents were added. 

Equations (11)-(13) constitute a complete system of 
equations for f, By, and Ez . (We recall that Bx is a con
stant.) These equations are not altered by the simul
taneous substitutions x - Ax and t - At, meaning that 
there is no parameter with the dimension of length in 
these equations. 

4. EQUATIONS OF SELF·SIMILAR MOTION 

The dimensional properties of the system (11)-(13) 
are the reason why, in the case when the initial or the 
boundary conditions of the problem do not contain a 
characteristic dimension, the sought functions f, Ez' and 
By depend on x and t only in the combination x/t. In 
other words, the motion is self-similar in this case. 
Self-similar motion is obtained in problems involving 
the decay of an arbitrary initial discontinuity. 

Let us transform the system (11)-(13) under the as
sumption that the motion is self-similar. Let the un
perturbed density and temperature of the ions as x - 00 

be No and T·, and let the unperturbed magnetic field be 
Bo. We proauce new dimensionless variables: 

( 2T. ) 'I, 
VII= M U, B=B,b, 

B, (2T. ),/, 
E,~~ M u, 

2T. 
Il=-· -x, 

MB, 

(14) 
N = nN" ~ = T,IT,. 

The dimensionless concentration of the particles and 
other mean values are expressed in terms of g by the 
formula 

n = 21l-"'b~'/, J g du dx, u = 2n-"·b~'/. J u: du dx,... . (14a) 

Assuming that g = g(T, U, K), we obtain from (11) 
og og 

x o-r +F ou =0, b=(b,'+cos'a)"', 

u b,u 
x=Tcosa--r-b'"' (15) 

F=cosa [_~ dlnn + (x~-x~) db,]. 
2 d't b' b d-r 

Here a is the angle between the direction of the x axis 
and the direction of the magnetic field Bo at -00, and 
cos a = bx as the component of the magnetic field along 
the x axis (it is constant, as given by (7)). 

Equations (12) and (13) reduce to the form 
da db, 
-=-'t-
d't d't ' 

(16) 
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P_1_n[ -b+,cos'a 2uCOSa( +aby )+( aby )'] - "([;2 -x u -b-'----b- T Ii' T+T . 

(17) 

The parameter y determines the ratio of the electron 
pressure to the magnetic pressure in the unperturbed 
plasma. 

The boundary conditions for g are specified at 
'7--ooandat 7 ~+oo (see[lJ) 

g - g, = exp[ _~(U2 + 2x)], as T -+ -00, 
g -+ g,(u, x), as T -+ +00. 

The function g1 is assumed here, for concreteness, to 
be Maxwellian. The boundary conditions for b and a are 

b -+ 1, by - sin a, a -+ ° as T -+ -00. 

As 7 ~ + 00, the magnetic and electric fields are con
nected with their values at -00 and with the initial cur
rent distribution (i.e., with the initial ion distribution 
function) by Maxwell's equations. It can be assumed, 
however, that the fields are also specified at T - 00 

by -+ bo, b -+ (bo' + cos' a) "', a -+ ao as T -+ +00. (18) 

In this case, definite conditions are imposed on the ini
tial distribution of the ions. These conditions are speci
fied on the discontinuities which, as will be shown subse
quently, always occur in the case of self-similar motion 
of a plasma in a magnetic field. 

An important role in the investigation of a self-sim
ilar equation in the absence of a magnetic field is played 
by an identity of the type [1,:lJ 

(19) 

which is imposed on the solution. A similar but more 
complicated identity is obtained also in the case of a 
magnetized plasma. Indeed, dividing (15) by X and multi
plying by b, we integrate with respect to dudK. We ob
tain an equation connecting 

dn 

d.""' 
den;;) 'and db,. 

dT dT 

Another equation is obtained by using the same proce
dure, but first multiplying (15) by K. The obtained two 
equations together with (17) form a system of three 
nuclear homogeneous algebraic equations for the indi
cated three quantities. The determinant of this system 
should be equal to zero, and this yields the sought iden
tity: 

Qo "(b} [( ;;) ( Qo ) 1 ( n ) '] 1--+-, Q,+- 1-- +- Q,+- =0, 
2n Pb b 2n 2n b (20) 

Q. = 2 c~ a S x' -.!1 du dx. ' 
l'n X au 

Here p is the denominator in the right-hand side of (17). 
In the limit as by - 0, Eq. (20) goes over, as it should, 
into the identity (19). We note that relation (20), like (19), 
is in the absence of a magnetic field the dispersion equa
tion for small plasma oscillations (see [3J ). 

5. ESCAPE OF PLASMA INTO A VACUUM. 
WEAK DISCONTINUITY 

By way of example, we consider the problem of es
cape of a plasma into a vacuum. A plasma situated in a 
magnetic field Bo occupies a half-space x < O. Its free 
expansion begins at the instant t = O. The problem is 
self-similar. The problem of flow of rapid stream of a 
magnetized plasma around a half-plane also reduces to 
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the same problem (in the latter case, t takes the role of 
the coordinate along the direction of motion). 

When solving (13)-(17), it is natural to use the me
thod of characteristics (for details see [1)). The function 
g is constant on the characteristics U(T): 

du F 
-=-- x=const, 
dT X 

where the functions F and X are defined in accordance 
with (15). The results of the numerical integration of the 
equations of the characteristics, together with Eqs. (16) 
and (17) for by and a, are shown by way of example in 
Fig. 1, which shows the course of the average quantity3) 
(for y = 4, (3 = 1, cos Ci = 2-1/2). We see that the ion con
centration and the magnetic field decrease monotonically 
with increasing T. As T - To = 0.82, the magnetic-field 
component by vanishes. 

It is easy to verify that To is a singular point. Indeed, 
we rewrite (17) in the form 

1 db, A 
b;d;"'=-p' 

We see that at the point To, where by vanishes, the de
nominator P should also vanish. The singular point To 

exists at any value of the perimeters y and cos Ci. The 
dependence of To on y at cos Ci = 2-1/2 is shown in Fig. 2. 

Let us investigate the behavior of by near the Singu
larity T R:< To. At small 7 I = 7 - 70 and b it is necessary 
to expand the right-hand side of (17) in pbwers of T I and 
by' The dependence of g on these quantities is deter
mined from Eq. (15). In particular, in first order in by 
we get from (15) 

ag(To) 
g""g(To)---b,. au 

From this we readily obtain that there are no terms 
~by in n or K, and that these terms also cancel out in 

n, b 

BIZ 

ii 

n 

8/2 
by 

- J,O - Z.O -1.0 0 1.0 r 

FIG. 1. Average quantities as functions of T = x/t(2Te/M)1/2 when 
plasma escapes into vacuum at Te = T i({1 = I, 'Y = 4, cos c; = 2'%). 
Dashed-the same for cold ions (Ti -> 0). 

TO 

-I.U 

FIG. 2. Positions of the singular point as a function of'Y = 81TNoTe/Bo'. 
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the expression for P, i.e., the by corrections in the 
right-hand side of (17) are of the order of b~. Under the 
condition that by vanishes more rapidly than by ~ IT'lll2, 
we can neglect the corrections ~b~. We then have from 
(17) 

so that 

iX!=-l[ d(nx)ld,;+'/2 dnld,; 1 
b dPld,; ,~'" 

,;'<0, 
,;'>0. 

The formulas are valid if O!l > 1/2. 

(21) 

(22) 

Thus, if O!l > 1/2, then Ib I at the singular point 
vanishes in accordance with {he power law, and then in
creases again in accordance with the same law. The 
constant C- is determined by the course of the solution 
at T < To. On the other hand, the constant C+ is in this 
sense arbitrary and by choosing it it is possible to 
satisfy the boundary condition (18) on by as T - + 00. 

Let now (]II > 1/2. We then can no longer neglect the 
terms ~b~, and Eq. (17) assumes at smail IT'I and by 
the form 

db, ( db: ) /' , d,;,=iX,b, 1+6d7 (,; +vb,), 

where (]II has the same meaning as before, and 15 and v 
are the coefficients of the expansion with respect to b~, 
which can be determined from (15). This equation can 
be rewritten in the form 

whence 

d't' 't" 
----=-(2iX,6-v), 
db: 2iX,b: 

(23) 

At (]II > 1/2, relation (23) is equivalent to (22), as it 
should, and at (]II < 1/2 the principal term in by is given 
by4) 

_[ ,1-2a. ]',. 
b,- -,; --- . 

v-2a,6 
(24) 

It follows therefore that at O!l < 1/2 the component by, 
regardless of the value of (]II, vanishes like 
~ (To - T)ll2, beyond which it is impossible to continue 
the solution. A unique solution in this case, at T > To, is 
the solution with by == 0, ag faT == O. 

Let us now transform expression (21) for (]Il' We 
have 

dP I =.l[bd(n;;) _ d(nZi') +2,;,d(nu) 
dT: b!l=O, T=TO b2 d-r dT: d-r 

-,;,'~+2n(u-T')] . 
d,; 

Equation (15) takes at by = 0 the form 

{)g 1 {)g dlnn 
-(u-,;)-----=o. 
(),; 2 ()u d,; 

Integrating it once with respect to 21TbdKdu, and then 
again with respect to u21TbdKdu, we get5 ) 

Substituting in expression (21) for (]II, we obtain ulti
mately 

[ _ /( d(nx) 1 dn)]-' iX,=- 1+2n(u-,;o) cosad:;-+2~ 

1074 Sov. Phys.·JETP, Vol. 37, No.6, December 1973 

(25) 

(27) 

We note that at small y the discontinuity occurs in a 
region of remote negative values of T (see Fig. 2)0 In 
this case dn /d T and d(n K)/dT are small and, in accord
ance with (27), O!l is also small, so that the discontinuity 
has a "non-continuable" form (24). The "continuable" 
discontinuity of the type (22) takes place at large values 
of yo The quasineutral solution can in this case be con
tinued into the region behind the singularity, in accord
ance with formula (22). At the point T = To, it has a weak 
discontinuity, the structure of which will be investigated 
in the next section. 

The very occurrence of a "non-continuable" discon
tinuity is of considerable interest. In this case the quasi
neutral drift equations (15)-(17) have no solutions satis
fying the boundary solutions of the problem, even though 
the thermal motion of the ions has been fully taken into 
account. The situation here is qualitatively different 
from the situation in a plasma without a magnetic field, 
where the quasineutral equation always has a solution at 
{3 ~ 1. 

6. STRUCTURE OF WEIGHT DISCONTINUITY 

So far, the discontinuity was investigated within the 
framework of the system (15)-(17) corresponding to the 
first nonvanishing approximation in the parameters D 
and PHi' Allowance for the finite character of D and PHi 
leads to a smearing of the discontinuity, and to the ap
pearance of an oscillatory structure of the discontinuity. 
To be able to investigate this structure, it is necessary 
to write down in place of Eq. (17) for by a more accurate 
equation that takes into account the terms ~ D2 or ~ PfIi' 
In actual fact, we usually have PHi» D. We shall there
fore take into account just the corrections ~Plfi' We as
sume that (]II > 1/2 and we therefore disregard the terms 
~b2 

y' 

Calculation of the current density in the next higher 
order in pili' i.e., in the approximation that follows the 
drift approximation, is given in the Appendix. Substitut
ing formula (A.9) in Maxwell's equation (A.2), we obtain 
an equation for by, which is valid in the limit of small by 
and T' = T - To: 

e {)'b, , {)b, 1 +a. {)b. 
t'~-'; {),;,+a,b·+-2-ta;-=0. (28) 

In (28), O!l has the same meaning as before, and 

1 --
e= (b

Ul
n),n[3b2x(u-,;,)'-(u-,;,)'1 

(29) 

[ d(n;;) 1 dn ] -. 1 
x b--+~-+2n(u-,;o) --. 

d,; 2 dT UlH' 

The term with the third derivative takes into account 
effects of order Pm' Naturally, the coefficient in this 
term is small: dt2 ~ (wHtr2 « 1, since the entire 
theory is valid only at times t » 1/wH when the self
similar motion has already become established. 

The boundary conditions of (28) are determined by 
the requirement that the sought function by assume the 
form of the self-similar motion has already become 
established. 

The boundary conditions of (28) are determined by the 
requirement that the sought function by assume the form 
of the self-similar solution (22) outside the discontinuity, 
Le., at T' - ± 00. A function satisfying these conditions 
can be constructed by putting 
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'I ' (2 - a:,) 'I. 
I') = t ·'t(3e)'" . (30) 

Equation (28) assumes, in terms of the variables (30), 
the form 

d'Z dZ 
--I')-+a:,Z=O. (31) 
dl')' dl') 

The solution (31) can be obtained by the Laplace method 
(see, e.g., [7J, p. 681). Two linearly-independent solu
tions of Eq. (31), which vanish at infinity, can be repre
sented in the form of contour integrals: 

( P') dp Z", = f(1 +a:,) S exp PI') -3 ~. 
I,ll P 

(32) 

The integration contours are shown in Fig. 3: contour I 
bypasses the point p = 0 from the left, and contour II 
from the right. As 'T] - +00, we have Z2 _T/O'\ and Z1 
decreases exponentially. As 'T] - - 00 we have 

(33) 

The calculations are analogous here to those carried out 
in the determination of the asymptotic forms of Airy 
functions (see [7J , pp. 684 and 685). 

A solution of (28), satisfying the boundary conditions 
(22), can be finally written in the form 

b. = [ 38 ] 'I, { c_z, [ 't' (t' 2 -:- a:, ) 'I. ] 
(2 - a:,) t' 38 

+c+z,[ 't' (t' 2;e a:,) "']} . 

(34) 

Thus, a region of fast oscillations of the magnetic field 
is established behind a weak discontinuity6). They at
tenuate more slowly the smaller Eo 

7. EXPANSION OF A STRONGLY NON· 
ISOTHERMIC PLASMA INTO VACUUM 

We consider now the motion of a strongly non-iso
thermal plasma (3 = Te /Ti - 00. In this case the thermal 
scatter of the ion velocities is immaterial, so that the 
ion distribution function g(T, u, K) can be written in the 
form 

(35) 

Substituting the distribution function (35) in (15) and inte
grating it with respect to the velocities, we arrive at the 
following equations for the concentration n and the aver
age velocity u: 

- dn n dil an • db. - b.n db. 
X-+--C08a:---C08'a:--X--=0 (36) 
. d't b d't b' d't b' d't ' 

- dil '+ cos a: dn a C08 a: - db. 0 
Xd-;'2bn "d."'--b-'-X'd;'= , 

il cos a: ab. 
X=-b--'t-b'" (37) 

Maxwell's equations (16) and (17), with allowance for the 
fact that K = 0 and u2 = le, are rewritten in the form 

'(b. dn. (38) 
2[b' -'(nx'] d't 

It is possible to arrive at Eqs. (36)-(38) also by 
starting directly from the equations of magnetohydro
dynamics with addition of P = NTe (it must be born in 
mind that the presence of a field E perpendicular to B 
is equivalent in hydrodynamics to the presence of a 
velocity v = cE x B/B2). This is perfectly natural, since 
the magnetohydrodynamic equations at P = NTe, as 
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p 

FIG. 3 

shown by Klimontovich and Silin [8J , describe quasineu
tral motion of a collisionless plasma with cold ions 7) • 

Equating to zero the determinant of the system 
(36)-(13), we obtain its first integral in the form 

-,[ 1 + 1nb.' ] = costa: 
X 2b' (b' _ '(nx') 2b" 

(39) 

This relation coincides with (20), if we assume the func
tion g in the form (35). On the other hand, we note that 
Eq. (39) with X = w/k(2Te /M)1/2 coincides with the dis
persion equation for the fast and slow magneto sonic 
waves in magnetohydrodynamics ([9J , p. 250). 

We consider now the problem of plasma escaping into 
a vacuum. In this case the boundary conditions for Eqs. 
(36)-(38) as T - -00, i.e., in the region of the amplitude 
plasma, take the form 

n = 1, b. = sin ct, a = Q, il = 0, b = 1. (40) 

Relation (39) is not satisfied as T - - 00. Therefore in 
the region of large negative values of T there is only a 

: trivial solution of Eqs. (36)-(38), namely, all the quanti
ties are constants independent of T and determined by 
the boundary conditions (40). Substituting the values of 
(40) in (39) we obtain the singular point T1, at which the 
relation (39) is satisfied for the first time: 

_ _ 1 {1 1 [( 1 1 )' 2 cos' a: ] 'I, } 'I. 't,- --=- -+-+ -+- --- . 
1'2 2 '( 2 '( '( 

(41) 

At T > T1 there exists already a nontrivial solution of 
Eqs. (36)-(38). At the point T1, the solution has a weak 
discontinuity. At this point, the velocity x/t is equal to 
the velocity of the fast magneto sonic wave moving away 
in the direction of the unperturbed plasma. 

The result of the numerical solution of equations 
(36)-(38) at y = 4 and cos 0' = 2-1/2 is shown dashed in 
Fig. 1. We see that in magnetohydrodynamiCs the plots 
of the plasma concentration and of the field by differ 
noticeably from the results of the exact kinetic solution 
at Ti = Te' 

The component b vanishes at T = To ~ 0.48. The 
point To is singular, Ysince the denominator of Eq. (38) 
and of relation (39) vanishes at this point. Thus, in mag
netohydrodynamics we obtain the same type of singular
ity as in the kinetic solution. An investigation of the be
havior of the solution near the singularity leads to an 
analogous result, namely, the component by at T ~ To 
and 0'1 > 1/2 is described by formula (12), where the 
parameter 0'1 is equal toB) 

a:,=-[ 1+41'2cOS'a:/'(( ~:) J -'. (42) 

The singularity has a "continuable" character if 
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(]Il > 1/2, and "non-continuable" if (]Il < 1/2. It is inter
esting that for the "continuable" singularity at the singu
lar point To, the velocities of the fast and slow magneto
sonic waves coincide, i.e., the singularity is connected 
with the crossing of these branches. The concentration 
of the plasma at the singular point is n(To) = 2 cos2 (]I/Y. 
Taking this relation into account, formula (42) coincides 
with (27) at the required accuracy. When the solution is 
continued beyond the singular point, it is necessary to go 
over from the root X in (39), corresponding to a fast 
magneto sonic wave, to a. root corresponding to a slow 
wave. The results of the corresponding calculation are 
shown in Fig. 4 (cos (]I = 0.5; Y = 4) for different values 
of the ratio of the constants cjc- (22) indicated in this 
figure. 

APPENDIX 

Current density in second approximation 

We present here a derivation of formula (28), which 
describes the change of the magnetic field b in the sec
ond approximation, i.e., the approximation tha:t follows 
the drift approximation. We assume that we are near the 
point T = To of a weak discontinuity, where by is small, 
and obtain equations linearized in by' The results are 
suitable also for discontinuities when (]Il > 1/2, in which 
the terms ~b; can be neglected. 

The ion-current density is 

j, = eN(2T,IM)'!'I, 1= S w:gd'w' = S wJ.'gsin rp d'w', (A.1) 

where we have introduced the dimensionless vector 
w' = V(M/2Te)ll2, wl. is the production of w on the xy 
plane, and qJ is the angle between w 1 and the y axis. 
Maxwell's equation for the magnetic field can be ex
pressed in the form 

(A.2) 

We write out the kinetic equation for g in the ordinary 
rather than the drift variables: 

{Jg {Jg {Jg 1 un {Jg {Jg 
-+w:-+aOln-------+Oln--[w'bj=O 
at {J~ ow;' 2 {J~ {Jw: ow' , (A.3) 

x = (21'JM)'/''E.. 

According to (13), the electric field a can be represented 
in the form 

8=80+ 8 1, 

where ao is a constant vector and a l ~ b~( Separating 
from w the drift velocity in the constant fields ao and bx : 

w' = w + [aob.j I b.', 

we obtain 
og ag ag 1 an ag {Jg -+ w.-+ Olna'-------+ OlIl-[wbj=O. (A.4) 
at a~ {Jw, 2 a~ ow. ow 

We now represent g in the form 

g=go(" w., JWJ.IJ +g" (A.5) 

where gl ~ by, and go satisfies the equation 

a go 1 ago d ( S ) (w.-,)-=-----ln god'w a, 2 iiwx d, 

i.e., the equation (16) with by = O. We substitute (A.5) in 
(A.4) and neglect the terms ~b;. In the linear equation 
for gl, we can also neglect the longitudinal electric field 
(along the x axis). It leads only to motion in x direction, 
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FIG. 4. Plots of by, n, and a as functions of T when the solution is 
continued beyond the singularity (Ti = 0, 'Y = 4, cos ex = 0.5); different 
curves correspond to different values of the ratio of the constants C+/C, 
indicated in the figure. 

and makes to contribution to the current along the z axis. 
Ultimately we have 

ag, ~ . 
_-Dg,=Asmrp, 
urp 

(A.6) 

where we have introduced the differential operator 

D=_1_(~+w ~) 
bQ ll {Jt • D~ , 

and the right-hand side is given by 
1 {Jgo 1 ago 

A =b awJ. (w.b,+a')-T {Jwx wJ.b,. 

(We have put, with the required accuracy, bx = b.) 

The formal solution of (A.6) can be written in the 
form 9 ) 

Sw ~ sin'f!D 
g, = - exp(-zD)sin(z+ rp)A = ---~-A. 

° 1+D' 
(A.7) 

Expanding this expression in powers of 6, we can write 
out the equation for gl with allowance for derivatives of 
any order. The corresponding expression for the cur
rent, accurate to derivatives of third order, is 

I"" ---.!.. S wJ.[ (D -D')Ajd'w =~ S [2(D-D') (w.b,+a,)go 
2 ,2b (A.8) 

WJ. ~ {J ] 
- bQn (1- 3D')&r(b,go) d'w. 

We now change over from the variables ~, t £0 the 
variables T = ~/t, t. Then 

:~ 1,=+ :, I: {J~ 1,= ~ 1,-+ :, I, 
In the drift approximation, by is a function of T only. 

Now by' is a function of T and t, but the derivatives with 
respect to t will be small. The terms with third-order 
derivatives contain an extra small coefficient 1"niI. We 
can therefore neglect in them the derivative with respect 
to t and differentiate only the function by, which varies 
more readily. The derivatives of first order with respect 
to t, on the other hand, must be retained, and we must 
put in these terms T = To and al = --byTo. As a result we 
obtain ultimately 

1 { -- - {Jb. (1 dn d(n'X) ) 
1= bQ~t n[(u-')'-xbj~- 2~+-a:;- b, (A.9) 

{Jb, n --- {J'b.}' 
+n(u-,o)t-+---[3x(u-'o)'b-(u-'o)'j-- . 

at (bQnt) 2 a,' 
(We have made here, with required accuracy, the substi
tution Wx - bw/b == u.) The terms ~by and ab /aT, 
when substituted in (A.2), yield Eq. (17) in the limit as 
by - 0 (in these terms, of course, it is necessary to 
take into account the electron contribution which is of 
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no significance in other places). Substituting (A.9) in 
(A.2) and expanding the coefficient oby/oT in powers of 
T' = T - To with allowance for formulas (25) and (26), we 
obtain Eq. (28). 

*[EBJ =E X B. 

i)We note that formally the limits in (2) and (3) correspond to the elec
tron charge e tending to infinity. 

2)Rudakov and Sagdeev's formula in [4J contains errors, which have 
been corrected here. 

3)Thr ion distribution function with respect to the longitudinal velocity 
u is analogous qualitatively to that obtained earlier [1, J] . 

4)It is assumed that a solution exists at T '< O. Then v> 201 10. 
s)We do not write out the terms - by. As already mentiuned, they ca/l

celout. 
6)For concreteness we assume that E > O. At negative E the solution 

oscillates at x > O. 
7)Ccrtain self-similar solutions of uniqlle type were obtained by Koro

beinikov[ S) for the equations of magnetohydrodynamics, in which 
v = veri!) and B = b(r/t)/r, and were investigated by Gintsburg[6]. 
The presence of these solutions is not connected with the drift ap
proximation, and they admit of generalization also to the case of 
kinetics. The physical meaning of these solutions, however, is not 
perfectly clear. 

")This investigation was carried out by V. M. Atrazhev[ 10). 
9)We have left out from (A.7) terms proportional to cos 'P, since they 

make no contribution to the current density (A. I). 
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