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A set of transport equations for a hot relativistic plasma whose particles may, in par­
ticular, possess a thermal energy exceeding the rest energy, is obtained in the presence 
of electric and magnetic fields. In the limit when the aforementioned condition is satis­
fied for electrons but the ions remain cold, the transport coefficients are found for a 
plasma consisting of electrons and one type of positive ions. It is shown that in this case 
the temperature dependence of the transport coefficients changes strongly, as does the 
hydrodynamic equation system itself. 

In the study of certain phenomena that occur in celes­
tial objects [lJ , and also in the investigation of strong­
current relativistic electron beams [2 ,3J , it is necessary 
to deal with a plasma whose particles can have relativis­
tic thermal energy, i.e., the condition Ta ;<: mac2 is 
satisfied, where ma and Ta are respectively the rest 
mass and the temperature of the electrons or ions, 
measured in energy units (a stands for an electron or 
an ion). Obviously, such a plasma exhibits new proper­
ties, which are due precisely to the relativistic charac­
ter of the temperature. For example the spectra of the 
natural oscillations are altered [4,5,6] and it becomes 
necessary to investigate anew tb.e questions of stabil­
ity[7 ,8J, the thermodynamics of the plasma [9J, proces­
ses connected with transfer phenomena, etc. 

This raises the question of'obtaining a closed system 
of hydrodynamic equations for a hot plasma, where the 
temperatures of the charged particles are arbitrary, 
and in particular relativistic. 

1. The state of an electron-ion plasma can be des­
cribed with the aid of the particle distribution functions 
fa(t, r, Pa), which in the presence of electric and mag­
netic fields E and H satisfy the system of kinetic equa­
tions [1oJ 

af. c' af. { c } af. ~ ) _+_p._+e. E+-[p.Hl a-= l...lC.b(f.,fb, 
at e. ar e. p. b 

(1.1) 

where fa = c(p~ + m~c2)112, and Cab is a collision term, 
the explicit form of which will be given below. The 
function fa is a relativistic invariant [10J, and then the 
quantity CabdPa is also invariant with respect to the 
Lorentz transformations. 

If we confine ourselves to consideration of only elas­
tic collisions, i.e., if we disregard ionization, recom­
bination' and similar processes, then we can point to 
several general properties of the collision term, even 
without knowing its explicit form. It is clear that the 
laws for the conservation of the number of particles, 
momentum, and energy make it possible to write down 
the following relations: 

SC.b dp. = 0, S p.C •• dp.=O, S (e.-m.c')C •• dpa=O, 

S P.c.b dp. + S PbCb. dpb = 0, (1.2) 

f (e.-m.c')C.bdp.+ J (eb-mbc')Cb.dpb=O. 

As is well known[llJ, starting from the kinetic equa­
tions, we can obtain a system of transport equations for 
the macroscopic parameters of the plasma (the particle 
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density Ua and the temperature Ta in the rest system of 
the given plasma component, and also the average veloc­
ity ua ). In the relativistic 'case, however, the question of 
determining the temperature becomes more complica­
ted. In fact, if we obtain, with the aid of Maxwell's rela­
tivistic equilibrium distribution function, the mean value 
of the kinetic energy of the particles in their proper 
reference frame, then we obtain a certain complicated 
function of the temperature[12J. In analogy with the non­
relativistic limit, it is possible to retain this definition 
in force also in the case when there is no thermal equili­
brium and the distribution function is not Maxwellian. 

Thus, in the rest system of the given plasma compon­
ent, we introduce the principal definitions 

Sf. dp. = n., c'S ~: f. dp. ~ 0, 

1 S " K,(z.) ---c- (e.-mac )f.dp.=m.c (G.-i)-T., G(z.)=--, 
n. K,(z.) 

(1.3) 

where K2(za) and &(za) are respectively the Macdonald 
functions of second and third orders (za = mac2/Ta)' In 
the nonrelativistic case (za » 1) we have Ga ~ 1 + 5/2za 
and the third integral in (1.3) yields the well-known re­
sult 3Ta/2, while in the ultrarelativistic limit (za « 1) 
we have Ga ~ 4/za and the integral is equal to 3Ta' 

The transition to the laboratory reference frame can 
be realized with the aid of a Lorentz transformation for 
the energy and momentum of the particles fa and Pa [13J : 

pai = Saili.pa/ + C-zYaUaiea', en = "(a(ea' + uaPa'); 

5.",=6;.+ (y.-i)u.;u •• lu,', y.= (1-u.'lc')-'" 
(1.4) 

(the prime denotes the rest system of the chosen plasma 
component). 

If we now multiply (1.1) by 1, Pa, and fa - mac2 and 
integrate with respect to the momenta, then, using form­
ulas (1.2)-(1.4), we can obtain the equations of contin­
uity, motion, and thermal balance for the macroscopic 
parameters na, Ua, and Ta: 

a Tt( y.n.) + div (y.n.u.) = 0, 

d. ap. a 
y.n. -:;--( Ya m•G•u.;) = - -a- - -:;--(sa;ms ••• n.m.) 

ut Xi VIA 

{ 1} 1 far +Yanaea E+-IuaHl +saikR •• +---:-YaUa;Qa--- ,YaS.ikUamna.m 
C i c2 c2 at 

f 1 a (1.5)* 
+ y. (s.", +---:-YaUa;U .. ) q •• ] ---[y.(sa;mU .. + s"mu.;)q.m], 

c'l. CZ aXk 

da dan. a 
n,,-(m.c'Ga- Ta)- Ta-= --(Yasa'mqam) 

& & a~ 
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where Pa = Ila. Ta is the partial pressure of the particles 
of type a, 1Taik is the tensor of the viscous stresses, CIa 
is the heat flux density, Ra and ~ are respectively the 
friction force and the heat release connected with the 
colliSions, da /dt == a/at + Ua'V is the hydrodynamic 
derivative 

Pa ,= c; S ~: fadpa, na .. = c· S e1a (Pa'P"" - P;' ) la dpa, 

(1.6) 
qa = c'S Pala dp" Ra = S PaCab dp" Qa = S (e, - m"c') Cab dpa 

(all the integrals in (1.6) are taken in the rest system 
of the given plasma component). 

In the limit of small average velocities (Ua, «c) and 
low temperatures (Ta «mac2), Eqs. (1.5) coincide with 
the transport equations used in[14J (this transition 
corresponds formally to c - 00). From the second equa­
tion of (1.5) we can see that high temperatures 
(Ta ~ mac2) denote the dependence of the inertial mass 
of the particle on T . The role of the mass is now 
played by the quantdy maG(za). In the case za « 1, the 
"mass" of the particle is m: = ma • 4Ta/mac2 ~ ma, 
i.e., the gas seems to become heavier. 

The third equation of (1.5) is in fact the equation for 
the entropy. If we discard all the dissipative terms, 
then we obtain the adiabatic equation 

naL(za)=const, L(za)=_Z_a -exp[-zaG(za)]. (1.7) 
K,(za) 

In the nonrelativistic limit, (1.7) yields the usual result 
for a monatomic ideal gas (na/T~12 = const), and in the 
ultrarelativistic limit one obtains the adiabat for the 
photon gas (Ila./T~ = const). 

In order for the system (1.5) to become closed, it is 
necessary to connect 1Taik' qa' Ra, and Qa with the 
macroscopic parameters Da, Ua, Ta, and their deriva­
tives. This can be done when a11 the quantities vary 
little over distances on the order of the mean free path 
and over times on the order of the time of collisions be­
tween particles. The solution of the kinetic equation 
(1.1) can then be sought in the form fa = f~O)(l + <pa), 

where <Pa is a small correction, and f~O) is the relativis­
tic local Maxwellian distribution functlon[12J: 

(0) na Za [Ya ] 
fa =4n(mac)' K,(za) exp -r:(ea-p.ua) , (1.8) 

In (1.8), the quantities Ua, Ua, and Ta are functions of the 
coordinates and of the time. 

The correction <Pa is proportional to those factors 
which oause deviations from the Maxwellian function (the 
gradients, the electric fields, etc.), so that <Pa is ex­
pressed in terms of the macroscopic parameters and 
their derivatives, and in final analysis 1Ta ik' qa' Ra, and 
Q are all expressed in terms of the same quantities, 
;tter which the system (1.5) becomes closed and can be 
used to solve concrete problems. This program has been 
carried through to conclusion in [14J for a fully polarized 
nonrelativistic plasma. We shall show below that the 
problem posed can also be solved for the system (1.5), 
if one considers a fully ionized plasma with one sort of 
ions, where ua « c, the electrons are assumed to be 
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ultra relativistic (Te ~ mec2), and the ions remain cold 
(Ti « mic2). 

2. The collision term in (1.1) is taken in the form 
(see [10J ) 

a J ( iJ Ib' , ala) v.. , 
Cab = -2nLe,'eo';;- fa-a' -,fu -a -, dp; 

up, p. p. 'Y'Y 

v 1'1"(1-lW)' {[ 2 "(i-W)'-i]<'l. 
,,= c[y'y"(i-lW)' -i]'/' n ' 

(2.1) 

- Y'~'Pk - Y"~"P: + y'y"(1- ~~') (P,~: + ~"~k) I; 

where c{3 is the particle velOCity expressed in terms of 
the momentum and y = (1 - {32rll2. 

In the nonrelativistic case (Pa « mac), Uik becomes 
a function of only the difference between the velocities 
of the colliding particles, and (2.1) coincides with the 
expression obtained by Landau [15J • It is easy to verify 
that substitution of the relativistic Maxwellian distribu­
tion function (1.8) in (2.1) causes the collision terms 
Cee and Cii to vanish. This follows directly from the 
fact that Uik possesses the property 

(~, - ~,') v" = (~k - ~.') v .. "" O. 

The Coulomb logarithm L is equal to the logarithm 
of the ratio of the characteristic maximal and minimal 
collision parameters, L = In(bmaxlbmin). The maxi­
mum impact parameter should be taken to be the Debye 
screening radius bmax = D = (TI 41Te2n)112. However, at 
high thermal velocities v (e2/hv < 1, i.e., vic> 1/137, 
where h is Planck's constant), it is necessary to choose 
for the maximum impact parameter the value at which 
the scattering angle becomes of the same order as its 
quantum uncertainty. For example, when the plasma 
electrons are ultra relativistic (ve ~ c) we choose bmax 
= De2/hv. As the lower impact parameter we substitute 
the value at which a deviation by an angle ~ 1T12 takes 
place, i.e., bmin = e2/(pv) [13J (the angle brackets de­
note averaging in momentum space). In the nonrelativis­
tic case b;min = e2/3T, and in the ultra relativistic limit 
bmin = e2/2T. 

When writing out the collision term in the form (2.1), 
it was assumed that the radius of curvature of the par­
ticle trajectory is much larger than the Debye length, so 
that the magnetic field does not influence the collision 
act. Of course, this statement is valid for magnetic 
fields that are not too strong. 

The subsequent analysis is based on the fact that the 
crossing terms Cei and Cie can be greatly simplified by 
taking into account the large difference between the 
masses of the electrons and ions. For ultra relativistic 
electrons, however, the role of the mass is played by 
the quantity m~ (the subsequent calculations confirm this 
conclusion), and the small parameter of the theory is 
actually the quantity m * 1m.. Obviously, the electron 
temperature should be l,ourlded from above by the con­
dition Te «mic2 , for otherwise the electrons will be 
just as "heavy" as the ions. It is easy to show that if the 
energies of the light and heavy particles are of the same 
order, then the energy exchange times between identical 
particles (T~e and Tf,:.) are smaller than the time of en­
ergy exchange betwJ~n the electrons and ions (T~i): 

'r,,' : 'r,,' : 'r,;' = i : (m, / m:)'/': m, / m:. 

It is now clear that the equilibrium within each of the 
plasma components sets in earlier than the equilibrium 
between them, and this makes it possible for us to con-
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sider henceforth a two-temperature plasma. Expanding 
the tensor Uik in powers of the ion velocity in the elec­
tron-ion collision term, neglecting the tensor of the vis­
cous stresses of the ions, and integrating with respect to 
dPi' we can obtain the following expression for Cei in 
the ion rest system: 

p 

(2.2) 

In (2.2), the first term does not depend at all on the de­
tailed form of the distribution function of the ions (it can 
be designated by C~i)' while the second and third terms 
(C~i) are small quantities ~m~/mi' 

With the aid of (2.2) it is easy to find the friction 
force exerted on the electrons by the ions, assuming 
that the electrons have a distribution (1.8) (where, how­
ever, ue should be replaced by the relative velocity 
V = ue - ui)' If we assume that V is small in compar­
ison with the thermal velocities of the electrons, and 
also neglect the terms ~m~ /mi and higher, then we ob­
tain for the friction force 

(2.3) 

where T e is the time of scattering of the electrons by 
the ions: 

3m.G.T.cK,(z.) exp (z.) 
T. = 4ne.'e.'Lni(1 + 2Iz. +,2Iz.') . (2.4) 

In the derivation of (2.3) we used the following proper­
ties of the tensor UOa{3: 

UO.,P. = Uo.,P, "" O. 

For nonrelativistic temperatures, (2.4) yields a well­
known result (see [14J), and in the ultrarelativistic limit 
we obtain 

T. = 3T.' I ne,,'e.'Lnic. (2.5) 

In complete analogy with the expression for Cei we 
can simplify the ion-electron collision term by assuming 
that the electron distribution function differs little from 
Maxwellian, and that the electron thermal velocities 
greatly exceed the ion velocities as well as the relative 
velocity V: 

(0) 

Ci.= m.G.n. _O_('!!::"'li+ T.!..!:..) + R.~!!:.. (2.6) 
niT. Op. mi op. ni ap 

(in (2.6), the calculation is carried out in the rest sys­
tem of the ions). The heat release Qi can be obtained 
with the aid of (2.6) by assuming the deviation of fi from 
the Maxwellian function to be small: 

(2.7) 

Using the conservation laws (1.2), we can obtain in the 
limit ue' ui « c the relation 

Q. = -R,V ~ Qi. (2.8) 

3. The simplification of the crOSSing collision terms 
greatly facilitates the problem of finding equations for 
the small corrections <Pa to the Maxwellian distribution 
function. It is convenient to go over first in the kinetic 
equation (1.1) to a new variable, namely the random mo­
mentum p~. This transition can be effected in general 
form by turning to formulas (1.4). For our problem, 
however, there is no need for such a general approach; 
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it suffices to use formulas (1.4) in an approximation 
linear in ua ' and also to discard from the kinetic equa­
tion those terms that are products of two or more per­
turbing factors, such as the derivatives with respect to 
t and r of the macroscopic parameters, the electric 
field E, and the relative velocity V. 

For electrons in the ultra relativistic limit 
(Te »mec2, Pe »mec), Eq. (1.1) takes the form 

C ( ) C. • m;c - al • .. 1,,1. + "(f,,I, )~--[pro.]-
p ap 

= d.l. +~p al. + (e.Eo _.!!.- d.u.) !J.,--~ ou., p,~ 
dt p ar c dt ap ax, ap, (3.1) 

- c • .' (f" I, - I;') - c.," (t" I,); 
ro, = e,H I m:c, E' = E + c-'[u.H], 

where we is the cyclotron frequency of the electrons, 
and ee = -e. We have left out the primes from (3.1), and' 
also added and subtracted the term C~i (fe' fi>, where ff 
is the ion distribution function shifted in such a way that 
the average ion velocity coincides with the average 
electron velocity. Obviously, the term C~i (fe' fi - fi) is 
small in comparison with C~i (fe' ft> in the case when the 
thermal velocities of the electrons exceed the relative 
velocity V. Of course, the terms in the right-hand side 
of (3.1) are small, since we are considering the case of 
small gradients, electric fields, etc. 

If we discard the entire right-hand side of the last 
equation, then the solution is an arbitrary ultrarelativis­
tic Maxwellian distribution: 

(0) n. ( C)' ( PC) I. =.- - exp -- . 
8n T. T. (3.2) 

Since the zeroth approximation (3.2) already gives the 
correct value of the parameters ne, ue' and Te, it is 
necessary to impose on the correction <Pe the additional 
conditions: 

J I.'O)IlJ.dp=O, c'S ~/,(O)IlJ,dp=O, S (e-m,c')/.(O)IlJ,dp=O. (3.3) 

In the next approximation, when finding the small correc­
tions, it suffices to substitute (3.2) in the right-hand 
side. This gives rise to derivatives of ne, ue' and Te 
with respect to time; these derivatives shOUld be re­
placed by their zeroth approximations. Multiplying (3.1) 
by 1, p, and (E - mec2) and integrating with respect to 
the momenta of the electron, we can obtain expressions 
for the zeroth approximation of the derivative if we also 
take (3.3) into account. We now obtain for the first­
approximation correction <Pe the equation 

. m;c (0) ollJ. {m;c ( pc ) 
r,,«(D,)+I,,(!l)')--p-l, [pro']ap= -p- 4T. -1 P'i'. 

3m;' ( p'c' \ 1 (t) 2 } 1.(0) 
+-,- 1--,/pV+--pR. +-P.,W .• , -. ; 

pT. 12T, n.T, pc m. (3.4) 

1,,(IlJ,) = C,,(f:O) ,1:°) 1lJ.) + C .. (f,(O)IlJ" 1.'°\ 1.,(IlJ.) = c ... (f:) 1lJ" In, 
(t) S 1.' ,e. 0 p' 

R. = p/.i(Ill.)dp, 'i'. = V In-+'-T E, P., = P.P, - -3 /l.,. 
n. • 

We have introduced here the symmetrical tensor Wea{3' 
with a zero trace (the tensor of the shear velocity): 

au.. au., 2 
W •• , = -0-+ -0- - -3 /l., div u •. 

ux~ vxa. 

In the right-hand side of (3.4) we have discarded the 
terms ~m~/mi (for example, C~i), and we have expanded 
the integral C~i (f~O), fi - fi> in a series, retaining only 
the term linear in V. As to the equation for the correc-
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tion <f?i' it takes the same form as given by 
Braginskil [14], since the ions were assumed to be cold 
from the very outset (Ti ~ mic2). 

4. The equation for the correction (3.4) is linear, so 
that we can seek a solution in the form of a sum of 
terms, each of which is connected with one perturbing 
factor, namely the temperature gradient VTe or the 
density gradient vne, the shift of the velocity V, the in­
homogeneity of the velocity Weet{3' or the electric field 
E. 

A. From the form of Eq. (3.4) it is clear that the per­
turbing factors VTe, Vlle, and E* can be considered 
together (by introducing the vector 1/Je ). The solution of 
the equation for the correction, which is connected with 
the vector !fie' is sought in the form 

«lJ.(p) = AOP'l>'n + A'p'l> • .L + A"p[Ol.'I>.I. (4.1) 

where A 0 , A', and A" are functions of only the absolute 
magnitude of the momentum, and the symbols II and 1 
denote the components of the given vector respectively 
along and across the magnetic field. It suffices to find 
A' and A" , since AO can easily be obtained from the ex­
pression for A' by putting We = O. The friction force R¢1) 
can be sought in the form 

R~) ~ n.T,(Ko1\l'1I + K'1\l,.L + K" [0l.'I>.]). (4.2) 

where KO, K.', and K" are numbers still to be determined. 

Introducing the complex quantities 

A =A' + iOl,hA". K =K' + iOl.hK". 

we can obtain an equation for A: 

m;c (0) /,(0) { m;c ( pc ) } 
I .. (Ap)+I.,(Ap)---iOl,hj. Ap=-. -- ---1 +K P 

P m, P 4T. 

(4.3) 
(h is the unit vector in the direction of the magnetic 
field). Following [11,14], we seek the function A in the 
form of a series in Sonine polynomials [16] (in this case 
it is convenient to use third-order polynomials): 

A 'to l:w L(') (t ) t pc , +. h " =-. -. am m • T .=-, am=am £0>. am 
me Te 

(4.4) 
m_' 

In (4.4), the expansion begins with m = 1, so as not to 
violate the condition (3.3). 

In the derivation of (4.5) and (4.7) we used the ortho­
gonality property of the Sonine polynomials [16J 

W ( + k)' J t'e-tL~') (t)L~') (t)dt = m m! ·I)m.. (4.8) 

In the Appendix we show how to calculate the matrix 
elements etmn and et~n' 

B. In complete analogy with the foregoing, we can in­
vestigate the term proportional toV in (3.4). In this 
case it is necessary to solve the equation 

~ '). h (n+3)! '+, (1 ~ ') ""- (a nm + anm am + tIDe 're 6n! an = ao" Utn - "'-' amCXOm , 
m._t 1n=1 

(4.9) 

n = 1, 2, 3, ... The friction force and the heat flux, which 
are connected with V, are obtained from the formulas 

. . 
R (l) m. n'l: '( °v + 'V + "[ VI) v =,-- ctom am II ,am .L am (I), , 

'to m_' (4.10) 
qv = 4n.T,(a.oV" + a/V.L + a/'[Ol,V]). 

The matrix elements etptn and et~n are the same here 
as in (4.5). 

C. Finally, in (3.4) it is necessary to investigate the 
term proportional to a shear-velocity tensor W eet 8' It 
is interesting to note that when arbitrary temperatures 
are considered, there appears in the right-hand side of 
(3.4), besides the perturbing factor ~W eet{3' also an 
additional term ~o et{3 div ue' which corresponds to the 
presence of two viscosities in the dissipative liquid [17] • 

However, the second viscosity vanishes for both rela­
tivistic and ultrarelativistic temperatures. In the sec­
ond case, the problem reduces to solution of the equation 

m;c (0) acD. 2 (0) 
I .. (cD,)+I,,(cD.)---/, [pOl,I-a-=--. p~~w,a~/,. (4.11) 

p p pm,c 

If the magnetic field is directed along the z axis, then 
it is convenient to represent W eet {3 as a sum of three 
tensors: 

In the chosen coordinate system, the tensor W(O)et{3 is 
diagonal, and its components are 

W(O)lI = W(0)22 = '/2 (W,= + W'1/II). W(OIU = W"'. 

The tensors W (l)et{3 and W (2)et{3 have the following non­
zero elements: 

Multiplying (4.3) by L(3)p and integrating with respect 
to the momenta, we can obtain an infinite system of W(.)lI = - W(t)22 = '/2 (W,= - W,w). W(t)t2 = W(t)2' = w ... 
algebraic equations for the coefficients am: and 

~ ,. (n + 3)! . (~ ') ,i..,J (a.m + a.m )am + 100,h't, 6n! an = I).. 1-,i..,J amaOm • (4.5) 
m_t m=-I 

n = 1, 2, 3, ••• , where we have introduced the following 
notation: 

't, J (3) (3) 
am. = - -3 T . p.Lm lee (p.L. ) dp. 

ne em. 
(4.6) 

m, n = 0, 1, 2, ... Now R<t) and ql/! are obtained from 
the formulas 

"" 
R~) = - n,T, ~ ~(a'::'I'," + am''I' • .L + am" [Ol,'I',]). 

m=l 

_ 4n, 't ,T. 2 ( 0 , " ) 
q,., - - ----;n;:- al '1"11 + al'l'd + al [Ol,"',1 . 

(4.7) 
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It is necessary to introduce also the two tensors W (3)et{3 
and W (4)et{3 with the following nontrivial components: 

and 

These tensors have the property that the action of the 
operator p x h v p causes the term W (O)et[3P et{3 to vanish, 
and transforms the expressions for W (l)et{3Pet{3 and 

W (2)et{3Pet{3 into terms of the form W (3)et{3Pet{3 and 
W (4)a{3Pet{3' and vice versa. • 

We can now seek the solution of (4.11) in the form 
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c' • L\ = x/· + 61XC2 + ()o, Xe = (i)eTe, 
«lJ w =--~ B(m)W p 

a~ T z 4.J (m)ill ik. (4.12) and the numerical coefficients are 
m=O 

By introducing the complex quantities 

we can obtain separately equations for the functions 
B(O), B/, and B", and it suffices to solve only the equa­
tion for B", since then, we can find the solution for B (0) 

by putting we = 0, whereas the solution for the function 
B' can also be obtained by making the substitution 
we - 2we: 

m:c (0)" 1 T, 1(0) 
l .. (-B"p.~)+l'i(-B"p.~)+--i()),h/, B P'~=2PcP.~' . 

p (4.13) 

We seek again the solution of (4.13) in the form of a 
series in Sonine polynomials (in this case it is conven­
ient to choose fifth-order polynomials): 

B" = ~ b "L(') 
Te £....J m m. 

(4.14) 
m=O 

The infinite system of algebraic equations for the de­
termination of the coefficients B~ is 

~ ,,,. 8 ·(n+5)! b "-' 01 2 k..i (~nm + ~nm ibm + I()),h't, 5! n! n - UnO, n = , , , ... 

(4.15) 

where 
To C" S (5) ($) 

~mn = - -20 -T' p.~Lm. I .. (Ln p.~) dp, 
ne e 'to 

(4.16) 

and {3~m is obtained from the analogous formula by re­
placing ~e by the electron-ion collision term (the 
matrices {3mn and (3~n are cal,culated in the Appendix). 
The viscous-stress tensor 1TeO'{3 is now given by 

m~o 

5. If we confine ourselves in the series (4.4) and 
(4.14) to the first few terms of the expansions, then we 
terminate in suitable fashion the infinite systems of 
algebraic equations (4.5), (4.9), and (4.15), which can 
now be solved in practice. Retaining the first two poly­
nomials in (4.4) and (4.14), we can ultimately obtain ex­
pressions for the momentum Re transferred in the colli­
sions from the ions to the electrons, for the electron 
heat flux qe' and for the viscous-stress tensor 1TeO'{3: 

B, = - all VII - a.L V.L + aA[hVl- ~IIVrrT, -~.L V.LT, - ~A[hVT,l 

T, T, T, [ l' , +-, -~IIVlln'+-~.LV.Ln'+-~A hVn, - /,e'~rrEII- /.e'~.LE.L 
3n, 3n, 3n, 

- 'I, e'~A[hEl- '/, w,m:~AU,.L + '/, w,m:~.L[hu,], (5.1) 
q, = ArrVIl +A.L V.L + AA[hVl- xIiVIIT, - X.L V .LT, - xA[hVT;l 

+ T, T, + T, [ 1 '/ E' E -, -xIlVUnt'+-X.LV..Lne -x}.. hVne - 3 ee'Xll 11- 13 eeX..L ..L 
3n, > 3n, 3n, 

- '/, e,xA[hEl- '/, w,m:xAu,.L + 'I, w,m:x.L[hu,], (5.2) 

where 

670 Sov. Phys.-JETP, Vol. 37, No.4, October 1973 

a" = 0,S754, ao' = 65,19, ao" = 14,06, a,' = 3,000, at = 0,600, 

~o = 0,1672, ~o' = 87,50, ~o" = 20,14, ~,' = 3,487, ~," = 0,750, 

(5.4) 

,,("=0,7213, "(0'=377,3, ,,(0"=92,25, ,,(,'=12,75, ,,(/'=3,000, 

A" = 0,4590, Ao' = 240,2, Ao" = 56,62, A,' = 9,000, A," = 2,000, 

1'>, = 49,31, 1'>0 = 523,3; (5.5) 

n"" = -11"'WIO)'~ -11"W(!).~ -11"W(,).~ + 11,(2w,) -'W(3),~ 

+ 'Yl.e(i)e-iW(~)ae.; 
TIn' = 0,212n,T,'t" 11,' = n,T,'t, (4,80x,' + 187) / d" TI" = Tlz'(2x,) 

1'): = n,T,'t,x,(x,' + 40,2) / d" 11,' = 11: (2x,) , d, = x.' + 63,8x.' + 882. 

(5.6) 

All the formulas presented above were obtained for the 
case of singly charged ions Zi = 1 (Zi is the charge num­
ber). Of course, it is easy to consider the case Zi > 1. 
Thus, it is seen from the formulas presented above that 
the dependence of the transport coefficients on the tem­
perature becomes strongly altered in the case of ultra­
relativistic plasma electrons. Finally, it is necessary 
to note that an essential change takes place in the sys­
tem of hydrodynamic equations itself. In fact, by con­
sidering small average velocities of the plasma compon­
ents (ue, ui « c), we can simplify the system (1.5), but 
we are still left with new terms, which are completely 
miSSing from the nonrelativistic theorl 14J • Using 
Braginskil's results [14J, we can easily show that in the 
case of low temperatures these terms are indeed small 
(of the order of c-2) and can be discarded. In the ultra­
relativistic limit, however, they have the same order 
of magnitude as the remaining terms of the system of 

• transport equations and must be retained (in this case 
the transport coefficients are estimated from formulas 
(5.3) and (5.6)). 

In conclusion, the authors are deeply grateful to 
B. B. Kadomtsev, E. M. Lifshitz and A. A. Rukhadze for 
their interest in the work and for valuable remarks. 

APPENDIX' 

It was necessary in the foregoing to calculate the 
integrals (4.6) and (4.16). O'~n and (3~n are calculated 
in elementary fashion, since they easily reduce to the 
form 

, = ~ S~t' -'L (3) L (') dt a mn 2 e m 11. , 

" 

3 ~ 
" '= -S-t' -'L(') L(') dt 
t"mn. 5 e m 11. • 

o 

(A.l) 

The calculation of the matrices 0' nand {3m is some­
what more complicated. From (4.W) and (4.1~) we can 
easily see that in the ultra relativistic limit 
(p, p' »mec) the integrands tend to zero if the angle 
between the directions of the vectors p and pi is very 
small. Then, conSidering nonzero angles, the tensor 
Uik can be greatly simplified by discarding terms of 
order (m~c;p)2 and above: 

U,. 1 (pp' - pp')Il,. + PiP: + P:P. «"" c PP' 
(A.2) 

Now the matrices O'mn and {3mn take the diagonal form 

1 (m+ 1) (m+,3)! 
aoo=O, CX mn = 4 mt 6mn, 

1 (m+2) (m+5)! 
~oo = 24, ~mn = 10 m! Ilmno (A.3) 

m, n = 1, 2,3, . . . (al! = 12, IX" = 45, IX" = 120, ... , ~tt = 216, . , ,), 
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Finally, we can write out the matrices QI~n and {3~n: 

u' = mn 

1 1 1 1 .. . 
1 4 4 4 .. . 
1 4 10 10 ... , 
1 4 10 20 .. . 

, 114,4 14,4 .. '1 
~mn = 14,4 86,4. .. . 

. ....... . 
(A.4) 
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