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It is demonstrated that even at sufficiently low densities, when the formally calculated 
gas parameter nf3 is small, the medium may affect pair resonance collisions aPprec­
iably. The effect of the medium is considered in detail for the case of resonance charge 
exchange. 

1. INTRODUCTION 

As is well known, a gas can be regarded as rarefied 
with respect to some process if {3 = nf3 « 1, where f is 
the amplitude of this process. In connection with various 
applications, researchers recently have become interes­
ted in relatively dense gases, where {3 is not too small 
or is of the order of unity. An important role is then as­
sumed by collective effects in the gas, particularly 
ternary collisions. 

We wish to call attention to the fact that multiparticle 
effects can appear in a gas at much lower densities 
({3 « 1), if the processes under consideration have a 
resonant character. We illustrate such an effect in this 
paper, using the influence of the medium on resonant 
charge exchange in a gas as an example. 

2. QUALITATIVE CONSIDERATION 

Our remark reduces qualitatively to the following. In 
order for the charge-exchange process to be resonant, 
it is necessary that the electronic levels of both atomic 
particles participating in the collision process coincide. 
A third particle, even if its distance n -1/3 from the two 
colliding particles greatly exceeds the charge-exchange 
amplitude, can upset the resonance condition and by the 
same token alter significantly the charge-exchange cross 
section in pC!ir collision. The cross section is effectively 
dependent on the density of the scatterers, and although 
the gas is rarefied ({3 « 1), the inverse proportionality 
of the mean free path to the gas denSity gives way to 
another more complicated dependence. 

We calculate the charge-exchange cross section in 
two stages. We first calculate the charge-exchange 
probability in the presence of a given deviation from 
resonance. The cross section obtained in this manner is 
then averaged, for which purpose it is necessary to cal­
culate the distribution function of the deviations from 
resonance. 

3. CHARGE-EXCHANGE PROBABILITY IN THE 
PRESENCE OF WEAK DEVIATION FROM 
RESONANCE 

In the case of resonance charge exchange, as shown 
by Firsov [1], there exists a characteristic impact dis­
tance Po ~ aln (e2/tlv) (a is the atomic dimension and v 
is the relative collision velocity), such that the charge­
exchange probability is 

W = 'f, if p':;; P" W ~ 1 if p >p,. 

The influence of the deviation from resonance on the 
probability of the resonance charge exchange was inves­
tigated by Demkov[2]. It was shown that the transition 
occurs effectively in relatively small vicinities of two 
critical points, one of which occurs as the colliding par-
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ticles come closer together, and the other as they move 
apart. The deviation (according to Demkov) leads to the 
appearance of an additional factor (smaller than unity) 
in the expression for the charge-exchange probability, 
cosh-2 (1Tt./2yvcr)' where y2/2 == E is the energy of the 
electronic level, vcr is the radial component of the rela­
tive velocity at the critical point, and t. is the detuning. 

In the case of interest to us, however, the situation is 
somewhat different from that considered by Demkov[2]. 
Since the deviation from resonance is now produced by 
factors that are external with respect to the colliding 
particles, it can be different at the two critical points 
r C£l and rcr2' A simple generalization of Demkov's 
ca culations to this case leads to the result 

(' nlL\,1 nlL\'I) do = 2np dpW = np dp 1- th --th--
2yv.pt 2yv.p, 

(1) 

at P ~ O. 

4. ESTIMATE OF THE EFFECT 

The concrete mechanism responsible for the devia­
tion from resonance can vary from system to system. 
We estimate the magnitude of the effects using as an ex­
ample the charge exchange of an ion A + in a neutral gas 
A. In this case, the polarization mechanism of deviation 
from resonance is effective. The charge-exchange sys­
tem (ion + the atom with which the charge exchange takes 
place) polarize the medium, and the polarized medium 
produces an electric field in the region where the charge­
charge-exchange system is located. The magnitude of 
this field depends on the charge-exchanging atomic par­
ticle in which the electron is located. 

The deviation from resonance produced in this man­
ner is equal to 

ae' ~ ( 1 1) 
4 ~ Rut" -Rz/' ' 

where ct is the polarizability of the atom, Rli and R2i 
are the distances from the i -th particle of the medium 
to the first and second-charge-exchange particles, 
respectively. This deviation is of the order of 
-;;; ~ cte2po/R5, where po is the resonant-scattering 
amplitude and R ~ n-1/3 is the average distance between 
the particles of the medium. 

As seen from the results given in Sec. 3, the charge­
exchange cross section decreases exponentially when the 
deviation from resonance exceeds values of the order of 
t.o = yv. Let -;;; »t.o (for example, E = -;;;!t.o ~ 10); then 
the charge-exchange cross section is as a rule exponen­
tially small (of the order of the non-resonant value). It 
is of the order of the resonant value in those infrequent 
cases when the surrounding medium leads accidentally 
to a small deviation between the level energies of the 
colliding particles. 
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An estimate for the effective charge-exchange cross 
section can be obtained by multiplying the resonance 
charge-exchange cross section 1TPV2 by the probability 
of the collision occurring in the case of small deviations 
(A ;:.; Ao). The latter probability is of the order of Ao/b.. 
We thus obtain for the charge-exchange cross section 
the formula 

(2) 

where A is a number on the order of unity. 

5. RESULTS 

To obtain quantitative data on the charge-exchange 
cross section it is necessary to calculate the distribu­
tion function of the detuning. Indeed, as seen from (1), 
it is necessary to know the joint distribution of the de­
tunings at two critical points: 

1(11" 11,) =( 6 ( 11, -l: [U(Ri + r HP ') - U(Ri)]) 
, 

XIl (11,-l:[U(R i +l\p,)- U(R)]). 
(3) 

• 
U is the interaction potential of the i -th particle of the 
medium with the charge-exchange system. One of the 
charge-exchange particles is at the origin. This mean 
value is calculated in standard fashion (see, for exam­
pIe, [3J ). A detailed calculation of the distribution func­
tion is given in the Appendix. 

With logarithmic accuracy, the charge-exchange 
cross section is equal to 

~ - ... 
a = 8n I dl1, I dl1, I 1(11"11,, p) W(I1" 11" p)p dp. (4) 

• • 0 

The asymptotic form of the cross section at E = b./Ao 
« 1 is given by 

a = n~o' [ 1 _ C ( a~~o ) '\ ]. (5) 

The second term is a small density-dependent correc­
tion to the cross section. 

A large change in the cross section takes place at 
E = b./Ao » 1. In this case we have 

a = O.03po'yv/oe'n'/'. (6) 

As seen from (6), the influence of the medium be­
comes stronger if the atoms of the medium have high 
polarizability. Thus, a noticeable effect is obtained for 
Cs (a = 360) at a relative colliding-particle veloCity 
v ~ 1O-4e2/n and n ~ 1018 cm -3. 

6. DISCUSSION 

We can indicate a number of physical causes for 
which the influence of the medium on resonance charge 
exchange may be stronger than in the simplest case con­
sidered above. 

A. The magnitude of the described effect can depend 
strongly on whether the atoms of the medium are in the 
ground state or in an excited one. Thus, for hydrogen­
like states the parameter E ~ ae2pcJl5/3/yv, which char­
acterizes the influence of the medium, is proportional 
to the eighth power of the principal quantum number n 
(the polarizability is proportional to n6, I' «> l/n, and 
Po «> 1/1' «> n); for example, for n = 2 the influence sets 
in at densities one-tenth as large as for n = 1. 

B. If charged particles are present in the system, 
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then the Coulomb deviation from resonance can greatly 
exceed the polarization deviation, even if the degree of 
ionization is small. In complete analogy with the pro­
cedure in Sec. 2, we find that in such systems E = b.ko 
~ e2pon2/3/yv. At the same value v ~ 1O-4e2/n, a notice­
able effect sets in at lower densities, n ~ 1016 cm -3. 

We note that the presence of charged particles can 
affect the resonant transfer of excitation between 
s-states. In this case the characteristic defect is of 
the order of ae2pon513 , where a is the larger of the 
polarizabilities of the two states. 

C. Let us consider the charge exchange of ions A+ in 
a mixture of gases A and B, with nA «nB' The ions 
exchange charge resonantly with the atoms A (nAPA, « 1) 
and nonresonantly with atoms B (with cross section 
a ~ a2 « p2). In this case the influence of the medium 
comes into ~ay in purest form. In fact, the mean free 
path with respect to charge exchange depends on the 
partial pressure of the gas B (in accordance with form­
ula (2)), in spite of the fact that the direct charge ex­
change with the atoms B can be neglected (if nAPA 
» nBa2). 

APPENDIX 

Calculation of the probability distribution of the 
deviations from resonance 

The defect produced by the particles of the medium 
in the resonant system A + A +, at n p~ « 1 and R ~ n -113, 
is equal to 

11 = 2ae'[ p ~ sin 8~::n<pi . x '\1 sin6 i Cos<P<] 
.t... R! ' 
• 

where r is the distance between the charge-exChan~e 
particles, p is the impact parameter, x = (r2 - p2)1 when 
the particles approach each other and x = - (r2 _ p2)lh 
when they move apart; Ri' 8i, and <Pi are the coordin­
ates of the i-th particle of the medium, and a is the 
polarizability of the atoms of the medium. 

The critical points of charge exchange with deviation 
from resonance as is well known, are the solutions of 
the equation H12 (r) = IA(r)l, where H12 is the overlap in­
tegral of the wave functions (H12 ~ Eoe-Y r). Let Al and 
A2 be the deviations at the critical points. We can as­
sume with logarithmic accuracy that r 1cr = r2cr = Po, 
and that the critical points lie on both sides of the 
closest-approach point (r = p). Then 

, '\1 sin ai . 
(\, (r,c,.) = 2ae "-..--, (p sm <Pi - Xo cos <Pi), 

R, 

'l: sinai . ~i Cr,c,) = 20e --. -(p sm <P, + Xo cos <P,) ; 
R,' 

< ( ,'\1 sin ai. ) 
f(I1" 11,) "" {, \11, - 2ae ..:... R/(p Sill <Pi - X, cos <P.) 

( . '\1 sin 6i ) ) X {, 11, - 2ae' "-.. ~(p sin <Pi + Xo cos <p.) 

1 SI ({ , '\1 sin 6. = 4n' exp (i(I1,t, + l1,t,)} dt, dt, exp - 2iae t,"-.. -w 
, 

'\1 sin 6, }) X (p sin <Pi - Xo cos <Pi) - 2iae't, .L..I Rr(p sin <Pi + X, cos <P,) ; 
i 
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The expression for the mean value can be rewritten 
as follows: 

< { ~ sine. } exp - 2iae't, ~ ""F(p sin qJ, - x, cos qJ.) 

{ ~ sine, }) Xexp -2iae't'~-W(pSinqJ,+x.COII1P<). 

{ sinS })N X exp .-:- 2iae't. ~(p sin qJ + X, cos qJ) 

{ SSS [ { .. sin e 
= exp- n 1- exp - 2.ae't, (p sm qJ - Xo cos qJ)'"R' 

sinS }] } -2iae'I'R'"(psin<jl+xocosqJ) dV. 

The calculation of the integral in the exponential 
leads to the result 

/ = A (ae')'I'[p'(I, + t,)' + xo'(I, - t,) '],/ .. , 

4n , SW dz ( SinZ) A=-2/, - 1--- ""7,91. 
5 0 zits Z 
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Thus, 

j(t'!"t'!.)= 4~,l! exp{i(M, + t'!,t,) I 

xexp {- nA (aeZ)'/'[p'(t, + t,)' + xo'(t,- t,)'],/,.} dt l dt, .. 

We present some asymptotic values of f(A1' A2): 

1) in the case A1 ~ A2 «;; 
I(t'! t'! ) __ t_(1+C t'!1t'!.) C-1', 

t, 2 A2 ~2' 

2) in the case A 1 ~ A2 ~ A 
~'/5 

I(t'!" t'!,) - .:l"I"~"I,,· , , 
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