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A hypothesis is proposed which assumes that at the instant of the cosmological singular­
ity the Universe was filled with cold baryons. The averaged evolution is described by an 
isotropic homogeneous expansion according to the Friedmann solution and the equation 
of state of cold baryons. On this evolution are superimposed scale-independent pertur­
bations of the metric of the order of 10-4 • The short-wave part of the perturbations ex­
plains the entropy of the hot (big bang) Universe and the long-wave part describes the 
formation of galaxy clusters and the approximate homogeneity of the Universe as a 
whole. 

1. INTRODUCTION AND BRIEF SUMMARY OF 
RESULTS 

A hypothesis is proposed which assumes that at the 
initial instant of the cosmological singularity the 
Universe was filled with cold baryons. The averaged 
evolution is described by an isotropic homogeneous ex­
pansion according to the Friedmann solution and the 
equation of state of the cold baryonic matter[lJ. On this 
averaged picture are superimposed initial fluctuations of 
the baryon denSity and related fluctuations of the metric. 
It turns out that a single value (of the order 10-4) of the 
dimenSionless fluctuation amplitude of the metric, prac­
tically not depending on the scale, describes two types of 
phenomena which are of completely different nature and 
were never before related to each other, viz. the struc­
ture and entropy of the Universe. 

To the indicated fluctuations of the metric correspond 
density fluctuations with an amplitude which is inversely 
proportional to the square of the size at a given (initial) 
instant. DenSity fluctuations of the order of the average 
distance between the baryons first increase and are then 
transformed into acoustic waves, i.e., into phonons. The 
damping of short-acoustic waves means a transformation 
of their energy into all different forms of excitations. A 
relaxation to a thermodynamic equilibrium state occurs, 
where the specific entropy per baryon is large. In the 
final count this line of reasoning leads (by appropriate 
choice of the perturbation parameter) to a ratio of the 
photon and baryon numbers which is characteristic for 
the theory of the hot Universe ("big bang"). The ap­
proach to thermodynamic equilibrium takes place at a 
very early stage (for t «n/mc2). Therefore all the usual 
consequences relating to the evolution of hot matter are 
preserved, including a hadronic stage with an abundance 
of baryon-antibaryon pairs,t) the stage of nucleogenesis 
with the formation of 25-30% He4 and the radiation­
dominated stage, ending with the formation of neutral H 
at T ~ 4000° K. 

The second line of reasoning deals with the long-wave 
perturbations of the metric. For these perturbations the 
wavelength is comparable to the horizon A = ct at the 
late stage of radiation-dominated plasma or (for the 
longest wavelengths) the stage of a neutral gas. The 
theory of such perturbations was developed in detail in 
recent years. 

The amplitude of the perturbations of the metric is of 
the order of 10-4_10-5 for long waves (Le., is practically 
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the same as the one assumed above for the short waves) 
and leads to the formation of galaxy clusters of charac­
teristic size 1013 M 2) in the recent past (fora redshift 

z ~ 2-20). On a large scale the density fluctuations are 
at present smaller than one, i.e., are insufficient for the 
separation (individualization) of appropriately large 
masses. The hypothesis agrees with the smallness of 
the fluctuations of the background microwave radiation. 

It seems a remarkable fact that a unique flat spectrum 
of perturbations of the metric with a single constant (not 
calculated theoretically at the present time), unifies the 
description of the "contents" (entropy, photon/baryon 
ratio, chemical composition) and the "structure" (char­
acteristic size of clusters, their density, depending on 
the instant of individualization) of the Universe. 

The natural question arises; can one not develop the 
theory further, can one not derive from first principles 
that spectrum of perturbations on the "initial" Planckian 
instant which is "necessary" in the above indicated 
sense? Two approaches to the solution of this problem 
are known. The first consists in considering quantum 
fluctuations of the metric, taking into account their re­
normalization. These fluctuations of the metric should 
be accompanied by a nonuniformity in the distribution of 
baryons. In the course of evolution the fluctuations of 
the metric do not increase and give no observable effects 
(if renormalization is taken into account), but the non­
uniformity of the baryons increases. However, this ap­
proach yields too Iowan entropy (by 3-4 orders of mag­
nitude) and incredibly small (a factor of 1026 is missing!) 
long-wave perturbations. Another approach is construc­
ted by analogy with the theory of equilibrium fluctuations. 
The calculations, which yield l>N = Nl/2 for the ideal gas 
and similar expressions for the zero-point oscillations 
of a liquid, correspond to a Fourier expansion of the 
perturbations with the assumption that the energy of 
individual oscillations is kT or nw/2. But the cosmo­
logical problem is nonstationary; as a consequence of 
the gravitational interaction in place of the oscillations 
there appears an instability and growth of the ampli­
tudes; one cannot define an "energy" of the perturbation. 
Therefore this approach is not convincing. In addition, a 
naive calculation, without taking into account these ob­
jections, yields too large fluctuations (104 times larger 
in the quantum case, 1015 times in the thermal case) not 
in agreement with the observations. Thus, no consistent 
theoretical solution has been found to this time. 
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2. AN ESTIMATE OF THE ENTROPY 

We give here some order-of-magnitude estimates. 
We shall use a system of units with 11 = c = 1; let m de­
note the proton mass, G the newtonian gravitational con­
stant, g = Gm2 (= Gm2/l1c = 10-38) is a dimensionless 
number characterizing the smallness of the gravitational 
interaction. In this system of units m has the dimension 
cm-1, and G has the dimension cm2. 

The subscript zero denotes quantities referring to 
the planckian instant of time 

(1) 

The amplitude of the perturbations of the metric will be 
denoted by b. We systematically omit dimensionless 
factors of the order of one. 

For cold baryonic matter we make use of the 
"extremely rigid" equation of state[l] 

(2) 

where n is baryon density (cm -3); the second and third 
terms will be omitted in the sequel. The averaged solu­
tion has the form 

(3) 

whence 

(4) 

The shortest waves have a wavelength of the order of 
the mean distance between the baryons: 

(5) 

At the instant to we find 
(6) 

For these waves the condition ,\ = t is attained at the in­
stant 

t, = G'I'm-'I. = tog-'I, ~ to. (7) 

Let us find the fluctuations of the density op = l/! and 
the corresponding acoustic energy Eac ' by specifying the 
fluctuation b of the metric3), which remained unchanged 
for t < t1. We have the order of magnitude (M is the 
mass in the volume ,\ 3, M = p,\ 3, oM = l/!,\ 3) 

b = G)..-'{jM = 1jJG)"'. (8) 

Hence at the instant t1 

1jJ=bG-')..-'=bG-'t,-'=bph (Ij>/p),=b; (9) 

B., = Ij>'p-', B.", = b'p, == b'G-'I'm. (10) 

After thermodynamic equilibrium is established we 
obtain for the density of thermal energy Eth , the tem­
perature T and the entropy density S: 

(11) 

The specific entropy s per baryon is obtained dividing 
S by n1 = '\13 = ti3. We find 

(12) 

Consequently b = 10-3 yields s = 3 X 109 , b = 10-4 yields 
s = 108. The observed entropy lies within these limits. 
In letters, adopting for s the empirical formula4 ) 

s = g-1/4, we obtain the required b = gl/12. 

3. ESTIMATES OF THE LARGE·SCALE 
PERTURBATIONS 

We now turn to the other side of the problem: the 
long-wave perturbations and the appearance of structure. 
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As is well known[3] , perturbations corresponding to 
masses smaller than 1013 M. are damped out before 

recombination, owing to dissipative processes related to 
photon transfer within the hot plasma. A mass of 
1013 M.,. contains N = 1070 baryons, so that ,\ = '\min 

x 1070 /3 = 2 X 1023 n-1/2. The condition ,\ = ct for such a 
perturbation is attained in the radiation-dominated period 
at the instant t2. At that instant (l/!/ P2) = b2. In the sequel 
the perturbation is transformed into an undamped acous­
tic wave with IJI/p = u/c = b2 = const., where u is the 
hydrodynamic velocity, whereas the perturbation of the 
metric decreases, b < b2 for t > t2. 

At the instant of recombination the acoustic wave 
transforms into a superposition of an increasing and de­
creasing perturbation in neutral matter. Let us derive 
the effective amplitude of the increasing mode (i) after 
the recombination. The quantities referring to the instant 
of recombination will be denoted with the subscript r. 
We have 

(1jJ/p),= b,ct,)..,-' (1 +z,)(1+z)-' for z+1>Q-'. (13) 

For n = 0.2 (open Universe) we obtain tr = 1013 sec and 
for M = 1013 M we have '\r = 1022 cm, ctr,\~l = 30. The 

condition (l/!/P)i = 1 for z + 1 = 55) yields b2 = 10-4. 

The flat spectrum b = const (M) leads to the result 
that for a given z, e.g., z = 4, for M > 1013 M. (l/!/P)i 

decreases inversely proportional to '\r' i.e., like M-1 /3, 

so that 

(14) 

For masses which exceed Mr = Pr (ctr )3 = 3 x 1017 M . 
the decrease becomes faster 

(15) 

For a mass corresponding to the present radius of the 
Universe R = cH-1 = 1028 cm, P = 2 X 10-30 , MU = pR3 

= 1021 M ,we obtain 
(;) 

For n = 0.2 the perturbations do not increase for 
z < 4, The flat spectrum of the metric with b = 10-4 gives 
a picture which does not exhibit sharp, unsolvable, con­
tradictions with the observations. One should keep in 
mind, however, that by unifying with a single flat spec­
trum the entropy and the theory of structure, we have 
committed a giant extrapolation from '\min' correspond­
ing to one baryon to a ,\ 1023 times larger, corresponding 
to a galactic cluster, or to a ,\ 1026 times larger, which 
corresponds to the whole observable Universe. There­
fore we are entitled to carry out the numerous rough 
estimates mentioned (or not) above. 

The flat spectrum of perturbations of the metric leads 
in a radiation-dominated world (p = E/3) to the conclusion 
that the density perturbations are equal for different 
masses at the instant tM = '\Mc-\ but that instant itself 
is different for different masses, tM ~ M2/3. Reducing 
everything to the same early instant (,\ > ct) we obtain 
for different masses (l/!/P)M ~ tM - M-2/3. In this form 
the result was noted earlier by Harrison[4]; it seems 
that no one has noticed before the relation of the spec­
trum of perturbations of the metric to the entropy. 

Let us make more precise the definition of the quan­
tities considered above. We use the dimensionless am-
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plitude of the perturbations of the density, lJI/p or the 
perturbation of the metric', b; these amplitudes are con­
sidered as a function of the scale ,\ or of the correspond­
ing mass M = ,\ 3nm , or of the wave vector k = ,\ -1. Thus, 
we consider the dimensionless amplitude b(M) or b(k) 
and the analogous amplitude of the quantity lJI/p. 

In the theory of random functions one conSiders 
spectral resolutions and the spectrum is characterized 
by the Fourier-amplitude ~ which is not dimensionless, 
even if the amplitude itself is dimensionless. The quan­
tity we consider is related to the Fourier-amplitude by 
the relation 

b(k) = (b.'k')'I" (16) 

For our quantity b(k) the completeness theorem can be 
written in the form 

V-t Jb'(x)dV= Jb'(k)dlnk= Jb'(M)dlnM. (17) 
v 

These equations show that the introduction of dimension­
less b(k) or b(M) is indeed indicated. The proposed 
hypothesis, with a b(M) independent of M and lJI(M) 
~ M-2/3 ~ields for the Fourier- components ~ ~ k-2 /3, 

lJIk ~ k12. We recall that a random distributIon of inde­
pendent particles with 6N = N1t2 would have yielded 
Fourier components lJIk which do not depend on k. 

4. QUANTUM FLUCTUATIONS OF THE METRIC 
AND THE ROLE OF BARVONS 

We return to the original assumptions. The basis of 
everything that was said above is the principle of con­
sidering only those perturbations of the metric, to which 
are related displacements of the baryons in the initially 
cold matter. Just because of that principle we have re­
stricted our attention above to waves with ,\ ~ Amin' so 
that the total number of degrees of freedom considered 
(normal modes, separate modes) in a given volume is 
approximately equal to the number of baryons in the 
same volume. This principle strongly restricts the num­
ber of degrees of freedom under consideration. It would 
seem that at the planckian instant to one must consider 
all waves, at least6) down to ,\ ~ to. This yields a total 
number of degrees of freedom n~1to3 = g-1/2 = 1019 times 
larger than the one considered before. 

In order to motivate our refusal to consider the huge 
number of nonbaryonic degrees of freedom we note that 
the fluctuations corresponding to these degrees of free­
dom exist, in a certain sense, everywhere and at all 
times, and not only near the Singularity. If one investi­
gates the structure of the electromagnetic field or of the 
metric of space at the present time, i.e., far enough 
away (1010 years) from the Singularity, then the transi­
tion to ultras mall scales will exhibit these fluctuations. 
At the same time Nature (and consequently also the cor­
rect theory) is arranged in such a way that these fluctua­
tions do not contribute either to the denSity or to the en­
tropy of matter filling a given volume. If one wishes to 
talk in the language of vacuum fluctuations one should not 
forget about their renormalization to zero in quantities 
which refer to the vacuum (or to small corrections in 
the properties of real particles interacting with such 
fieldS). 

Further, it has been shown in[5,6] that the fields 
corresponding to vacuum fluctuations do not produce the 
creation of real particles and vacuum polarization for the 
conformally flat metric 7). Therefore the vacuum fluctua-
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tions which renormalize to zero today do not yield ob­
servable effects even if the zero fluctuations are intro­
duced near the singularity with a subsequent homogene­
ous isotropic expansion of the Universe. 

What then distinguishes the baryons and their dis­
placements? The motion of baryons in ultradense matter 
can be described by means of phonons; for a rigid equa­
tion of state the velocity of the phonons equals the speed 
of light, but the equations for the phonons are not con­
formally invariant, and even not Lorentz- invariant. In 
ultradense matter, for p = E, T oa = 0 only in one coordin­
ate system, namely the system where the baryons are on 
the average at rest and there is no flux of baryon num­
ber. It is just because the equations for phonons are not 
conform ally- invariant that phonons can be produced in a 
Friedmann universe. 

We consider perturbations of the metric correspond­
ing to zero-oscillations of the gravitational waves, re­
calling that the corresponding energy density is renorm­
alized to zero. From dimensional considerations it is 
clear that the energy density is E = A -4. On the other 
hand the energy density of a gravitational wave is ex­
pressed in terms of the dimensionless perturbation b of 
the metric and the wavelength as follows 

(18) 

Consequently, the perturbations of the metric related to 
zero-oscillations of the gravitational waves depend on 
the wavelength in the following way 

b = G"'A-t = t;;..-t, (19) 

This expreSSion has a natural form: for ,\ = G1 /2 = to (at 
the Planck wavelength) the perturbations of the metric 
are exactly of the order of unity. One could not expect 
anything else, since in the consideration of gravitational 
waves the answer does not contain either the particle 
properties or other dimensional constant, with the ex­
ception of G, which characterizes the elasticity of the 
vacuum. Less trivial is only the character of the depen­
dence of the dimensionless fluctuations on '\. 

We now apply the principle of equipartition of pertur­
bations (10) and we assume that the longitudinal fluctua­
tions of the metric are of the same order and have the 
same spectrum (dependence on A) as the gravitational 
waves. We carry this out at the instant to, then substitute 
into the expression (19?e the minimal phonon wavelength 
,\, = n-1 /3 = G1 /2g-1 6 Thus we obtain mln,o 0 • 

b (Ami.) = g'I.. (20) 

This value of b leads according to (12) to 

(21) 

As the perturbation of the metric expands the corre­
sponding gravitational waves vary in such a way that the 
graviton vacuum remains a vacuum. The longitudinal 
perturbations of the metric and the phonons related to 
them evolve in such a way that they yield an entropy 
which is considerably smaller than the observed value. 
Consequently, in an approach containing the consideration 
of zero oscillations of the gravitational waves a lowered 
value of the entropy is obtained for matter; one also ob-· 
tains a special conclUSion, that in the big- bang Universe 
there are less Short-wavelength gravitational waves than 
in the equilibrium Universe. The perturbation spectrum 
obtained falls off rapidly in the direction of long waves; 
the long-wave perturbations which give rise to galaxies 
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are not explained, are not unified with the perturbations 
which produce entropy and the discrepancy at long wave­
lengths is particularly large. Thus, at present one does 
not obtain the observed perturbations from first princi­
pIes, starting with the quantum fluctuations of the 
metric8). 

5. DIFFICULTIES OF THE THEORY OF QUANTUM 
FLUCTUATIONS OF THE DENSITY 

The standard approach to the problem of the ampli­
tude of fluctuations consists in considering the motion of 
the fluid as a superposition of excitations with different 
wave vectors k, i.e., one performs a spatial Fourier 
transform p = p + r;if!keiloc. hi the usual "laboratory" 
system one considers a stationary situation and does not 
take into account gravity. In this case, taking into ac­
count the elasticity of the fluid (speed of sound a), one 
obtains for each amplitude if!k an oscillator equation 

(22) 

It is natural to assume that the energy of each oscillator 
is either 1) Ek = w = ka in the quantum case, or 2) Ek = T 
for temperature T (measured in units of energy) which is 
sufficiently high, T > w, so that classical formulas ap­
ply. The first case leads to if!k = (k p/a) 1/2 , the second, 
to if!k = (Tp/a2 )112 (independent of k). 

We pass from the amplitude of a separate harmonic 
(having a dimension different from the dimension of den­
sity when one considers random fluctuations and a 
Fourier integral over infinite space) to the r.m.s. den­
sity fluctuation at a given scale if!(k) (cf. supra, end of 
Section 3). Omitting numerical factors we have in the 
system with Ii = c = 1: 

IjJ (k) = k'p'I'a-''', ljJ(k) = k'/'T'hp'ha-' (23) 

respectively for the quantum and high- temperature 
(classic) cases. We apply the latter formula to the ideal 
gas: a2 = Tm -l, where m is the particle mass. We obtain 

IjJ (k) = p'I'kO/'m"', IJl (k) I p = k'/'n-'I, = V-'I'n-'I, = N-'h; (24) 

here V = k- l is the volume and N is the average number 
of particles in the volume in which fluctuations are con­
sidered. The fluctuations in the number of independent 
particles can be considered as a result of the addition of 
acoustic vibrations, which are in thermal equilibrium. 
Eq. (24) is valid when the temperature is larger than the 
phonon energy for a phonon of wavelength of the order 
of the scale under consideration. In a small volume in 
which the wavelength is small and the phonon energy is 
larger than T the quantum formula is valid. 

A simple rule can be formulated as follows: for a 
given temperature and volume v one must calculate the 
fluctuations according to the quantum and the classical 
formulas and use the larger of the two resulting quanti­
ties. 

We now turn to the cosmological problem. Assuming 
the cold model T '= 0 we use the quantum formula. For 
cold matter we assume a = c = 1 and a~ply the formula 
to the planckian instant of time to = Gl 2: 

ljJo(k)=ko'p;\ Po=G-', ljJo(k)=k'G-'. (25) 

The corresponding fluctuations of the metric will be 

bo(k) = Gk-'Ijl(k) = 1. (26) 

This result is a natural consequence of the assumptions. 
hi the approximation when the fluid is described only by 
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its denSity and its pressure the nucleon mass does not 
appear in any way in the theory, and neither does the 
unique dimensionless parameter g. 

As is known from the claSSical theory of Lifshitz[8], 
and also follows from considerations about the independ­
ent evolution of remote parts of the Universe for A > t 
(cf.[9]), the quantity b(k) does not depend on time for 
t < k- l • But a dimensionless quantity which does not de­
pend on time and does not contain g, can only be equal to 
one, as was shown above. 

Thus, a naive application of the ideas of quantum 
fluctuations to cosmology yields a correct form for the 
spectrum C ~ kO, if! ~ k-2 • However, the absolute magni­
tude of the amplitude of the fluctuations in this concep­
tion is 104 _105 times larger than the observed one; thus, 
the agreement with observations of the type of the spec­
trum is illusory. For the thermal fluctuations of a fluid 
with the equation of state (2), temperature T and param­
eters taken at the planckian instant, we obtain for large 
masses and wavelengths: 

(1jJ1 p) = N-'I'g(T / m) ''', b = (gN)'I'(T I m)'I,. 

For a mass of 1013 M. ,N = 1070, T = m we obtain 

if! = 1O-3p , b = 1011. Thus, b ~ 1, which seems to signal 
that the initial assumptions are wrong. 

The bases of the naive application of the theory of 
quantum fluctuations also does not withstand criticism. 
We enumerate some objections. 

1) In the region of very large wavelengths (important 
for the birth of galaxies) a phantastically low tempera­
ture is necessary in order that the temperature fluctua­
tions be smaller than the quantum fluctuations; at the 
same time the "naive" temperature fluctuations at the 
planckian instant are too large and absolutely inadmissi­
ble: the large-scale perturbations of the metric would 
be b ~ 1. 

2) The cosmological situation is nonstationary, ac­
cording to the uncertainty relation t.Et.t = Ii there is no 
reason to restrict the energy of the fluctuations by liw 
per degree of freedom. 

3) If one takes into account the gravitational interac­
tion (or, what is the same, the equations of general rela­
tivity) the density perturbations with A > t increase as 
tV with a v depending on the equation of state. Conse­
quently, at this stage there are no acoustic vibrations 
and the equation of evolution of the perturbation has the 
form 9): 

;p. + k'a'ljJ. - rGp1jl. = 0, (27) 

so that one cannot introduce the frequency and a positive 
definite energy for each mode of the perturbation (this 
difficulty has been overcome, but at the cost of changing 
the equation of state, in [7J). 

One must admit that at the present time there is no 
logically satisfactory theory, which describes the ob­
servable Universe, is based on first principles and our 
knowledge of elementary particles. It remains to look 
for semiempiricallaws, which remain unreliable, as 
long as they are not derived from a fundamental theory. 

I am grateful to V. N. Gribov, I. D. Novikov, L. B. 
Okun', R. A. Sunyaev and particularly to A. A. Starobin­
skit for discussions and help. 
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l)However, the baryon excess is automatically conserved everywhere. 
2)M0 is the solar mass, equal to 2 X 1033 g. 
3)The metric is gf = lir + br; we omit the tensor indices in our order-of­

magnitude calculations. 
4)Cf. [2], where an attempt was made to derive s theoretically; we do not 

defend the justification of the expression for s given in that paper, but 
as an empirical formula it retains its validity. 

5)Z - 4 is the assumed instant of individualization of galaxies. 
6)We recall that by setting c = I, we do not distinguish the dimensions of 

length and time. In centimeters to = 10-33. 
7)Strictly speaking this assertion refers to fields and particles of zero rest 

mass mo = 0, but for particles of mass mo = m one obtains an effect 
proportional to a power of g, i.e., an extremely small effect. 

8)We note that in the paper of Sakharov [7] the computation of"the quan­
tum fluctuations was based on a substantial change of the equation of 
state of matter. 

9)The dimensionless r is related to II, Gp = t-2 • 
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