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A definition is given of a quantum-mechanical operator representing the number of photons travers
ing a spatial point in an infinite time. 

1. In the coordinate representation the wave function 
of a photon cannot be interpreted as the probability 
amplitude and, therefore, it is not possible to introduce 
local space-time characteristics of a photon. Formally 
this means that the components of the electromagnetic 
field tensor cannot be used to form a four-vector bi
linear in the field and possessing a positive time com
ponent (see, for example, (1]). 

We shall derive a four-component quantity J 11 which 
is not a four-vector but has the following properties: 

1) 01./ ax. = 0 (j.t = 0, 1,2,3); (1) 

2) J 0 is a positive operator; 

3) --7 J 10 d'x = N, 

where N is the photon number operator; 

4) the quantity 

(2) 

has the transformation properties of the time integral 
of a four-vector. 

Thus, in spite of the fact that we cannot introduce 
the density of the flux of photons at a point, we can in
troduce a time integral of this flux. 

2. We shall use the expression for the quantized 
vector potential of a free electromagnetic field: 

'lite \"1 J d'k A.(r, t) = 2;t ~ T, e:(k)[exp (ikx)c. (k)+ exp(- ikx)e.+(k) ]., (3) 
".1,1 

Here, ko = I k I, kx = k . r - koct, and the four-vectors 
et,(k) (,\ = 1, 2) satisfy the following conditions in ac
cordance with the selected Coulomb gauge: 

k.e:(k) =0, 

(I, i = 1,2,3), 

and the creation and annihilation operators Cx and c~ 
obey the commutation relationship 

[e.(k), c.,+(k')] = k,6u ,6(k- k'). (4) 

According to the transformation properties, the quanti
ties c,\ and c~ are scalar. The photon number operator 
is of the form 

(5) 

We shall introduce the operators 

1 - d'k 
b.(r,t)= \"1-=JeNk)exp(lkx)1'koc.(k)-, 

~l'8~ ~ 
• 

(6) 

E i J ' - d'k b.+(r,t)= ~ e:(k)exp(-lkx)1'koc.+(k)-. (7) 
1'8~ ~ • 

It is clear from the above expressions that bll and b~ 
are not four-vectors because of the presence of the 
factor .. /ko in the integrand. We shall also introduce 
the quantity 

.1 d'k d'k' 
n(r,t)=b.+(r,t)b.(r,t)= \"1,_, JJ~-' -,-e:(k)e:'(k') 

~8n ko ko 
1.~· 

x exp [- irk - k')x ]1' k.ko' c. +(k)c., (k'), (8) 

which is not a time component of a four-vector because 
of the presence of the factor "kokb. 

Integrating Eq. (8) over the coordinates, we easily 
obtain the relationship 

J d'rn(r,t)=N. (9) 

If we differentiate Eq. (8) with respect to t and employ 
the identity 

(k. - ko')exp[ - I(k - k')x] 

= I k+k', exp[l(k.~ko')et]Vexp[l(k'-k)r], 
k. + k. 

we easily find that 

Ii (r, t) + div 1 (r, t) = 0, (10) 

where 

e d'k d'k' 
l(r, t)= 8n,E HT.k7'e:(k)e:' (k')exp[ - I(k - k')x] 

"',1' 

x l' k.ko' , (k + k') e. + (k) C.' (k'). (11) 
k. +k. 

Let n be an arbitrary unit vector. Then, integrating 
Eq. (11) in the plane p 'n = 0, we obtain the relation
ship 

- -JJ d'~J dtBl(r+p,t)-N, (12) 

which means that the flux of the vector J passing in an 
infinite time through any plane is equal to the number 
of photons. 

We shall introduce the four-component quantities 

1.=(en,J), f.(k,k') = (1'k.ko', kl'koko', (k+k'») . 
• + k. 

Then, Eqs. (8) and (11) can be written in the form 

c d'k d'k' 
1.(x)=E8n'Sh;;-k;"e:(k)e:'(k') 

A,A' 

(13) 

x exp[ - I(k - k')x ]t.(k, k')e. +(k) c.' (k'), 
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and Eq. (10) assumes the form (1). 
In spite of the relationships (9), (12), and (10), the 

quantity J cannot be regarded as the vector density of 
the photon flux because fJ.J. and JJ.J. do not form four
vectors. 

We shall now consider the time integral of the quan
tity JJ.J.: 

~ 1 d'k d'k' 
I.(r)= IJ.(r,t)dt= \"1_, H--k , exp[-i(k-k')x) 

"""'-a4n ko 0 
A,A' 

v e.' (k) eo" (k') 6(ko - ko') f. (k, k') c, + (k) c.' (k'). 
(14) 

The product 6(ko - kb)fJ.J.(k, k') can be representea in 
the form 

6(k. _ ko')f.(k, k') = 6(ko _ k o') (k. ~ ko', k ~ k' ) 

=6(k._ko')k.;k: . 

Therefore, IJ.J.(r) can be represented as the time inte
gral of the four-vector 

I.(r)= I j.(r, t)dt, 

) \"1 c II d'k d'k' l() .' (k') j.(x = """'-a 8n' ""k;k;' e. k e. 
",' 

, ,k. + k: ') (15) 
xexp[~i(k-k )x)-2--c.+(k)c,,(k . 

The four-vector j also does not represent the density 
of the photon flux because j 0 is not a positive operator. 
However, the quantity IJ.J.( r), which is defined by Eq. 
(14) or Eq. (15), has all the necessary properties of 
the time integral of the photon flux density at a given 
point. 

Thus, avoidance of quantities which are local in time 
has made it possible to introduce photon characteris
tics which are local in space. 

In this connection we note that 

I n(r,t)d'r 
v 

can be regarded, for a sufficiently large volume V, as 
the particle number operator in this volume V (see, 
for example,(21), in spite of the absence of the neces
sary transformation properties. This is due to the 
fact that Eq. (9) is satisfied approximately if the volume 
V is sufficiently large. A similar situation applies to 
the vector J where the averaging over space is re
placed by the averaging over time. 

3. Let us consider the operator 
Til 

"ZT(r,t)= Hd'p I d"t"nJ(r+p,t+"t") (np=O). (16) 
Z _1'/1 . 

If T - 00 (in practice it is sufficient to satisfy the con
dition koeT» 1 for those frequencies which actually 
occur in the expansion), the operator /I~T can be re
garded as the operator of the number of photons trav
ersing a small area ~ in a time T. No restrictions 
are imposed on ~ and, in particular, we may consider 
the case when the dimensions of this area are of the 
order of the photon wavelength. Although the operator 

I is not bounded, the operator /I~T is bounded for all 
finite values of ~ and it leads to finite values of the 
average square of the fluctuations in the number of 
photons traversing the area ~. 

The operator /I~T was introduced by the present 
author[3] for a medium with a permittivity which varies 
in space. In that case the formulas are analogous to 
those given above but instead of expansions in terms 
of plane waves one uses expansions in terms of solu
tions of the wave equation for a medium with a speci
fied distribution of the permittivity ~(r). The opera
tor /I~T can then be used to consider the diffraction 
problems in dielectrics from the quantum point of view. 
It is found that the average values of the number of 
photons crossing an area ~ in a time T, 
II = < 1/1 I /I~T 11/1 >, correspond to the classical solution 
but they can be used to study the statistical properties 
of the quantity /I~T' It is found that the statistics of 
the fluctuations in the number of photons is different 
in free space and in the presence of dielectrics caus
ing diffraction. These differences affect the fluctua
tions 

0.' = <1/11".;11/1> - <1/11" .. 11/1>1. 

and the correlation function 

B(r, r~) = (1/1I"ZT(r, t)"'T(r', t) l,p) - (,pI"'ZT(r, t) 1,p)(,pI'YZT(r', t) l,p). 

In particular, the correlation radius Ro of the fluctua
tions in the number of photons in the case of diffraction 
by an aperture is of the order of the width of a diffrac
tion lobe (in free space it is of the order of the wave
length). The ratio a~/il for coherent light is less than 
unity, which corresponds to the finite value of the 
relative fluctuations ()"~/ (i/)2 if ~ « R~, whereas 
()"~/ (i/)2 ~ (vt l ~ ~-l if ~ :>:> R~. 

However, it should be pointed out in photon counting 
experiments one measures not the quantity /I~T but 
the number of photoelectrons m produced as a result 
of the interaction between light and the detector 
material. The statistics of m may differ from the 
statistics of /I~ T. Therefore, the statistical properties 
of the recorded photon flux do not represent the radia
tion field itself but the statistics of the photoresponse. 

The author is grateful to D. A. Kirzhnits for discus
sions which stimulated this paper and to V. I. RHus 
for valuable comments. 
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