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Nonlinear equations describing the drift velocity and temperature of a quasiparticle gas in the hydro­
dynamic approximation are considered. A class of exact solutions of these equations, the so-called 
Riemann waves, is obtained. The possible discontinuities are classified and discontinuities of the 
shock-wave type are studied in detail. 

As the temperature of a solid is reduced, normal col­
lisions (N processes) between quasiparticles become 
considerably more probable than Umklapp (U proces­
ses). The propagation of so-called second sound then 
becomes possible; from the microscopic point of view 
this is ordinary sound in a gas of quasiparticles. These 
oscillations have been studied very thoroughly[1] in the 
case where the drift velocity u of the quasiparticles is 
much smaller than their phase velocity s (the linear ap­
proximation) . 

It is obvious, however, that at sufficiently low tem­
peratures the linear theory condition (u/s « 1) can be 
violated. For example, Nielsen and Shklovskilf2 ] have 
shown that when the temperature difference ~ T between 
the ends of the sample is sufficiently large the phonon 
drift velocity can be comparable with the velocity of 
sound. The linear theory is then, of course, inapplicable 
and nonlinear equations must be used for the purpose of 
describing oscillations in a gas of quasiparticles. These 
equations can be derived by the Chapman-Enskog me­
thod; under the given conditions (i.e., when N processes 
are most probable) the distribution function is 

No(p) = {exp[ (e(p) - pu) / TJ - 1}-t, (1) 

where E(p) is the energy, p is the quasimomentum, and 
T and u are the temperature and drift velocity of the 
quasiparticle gas. 

Neglecting diSSipation, the gas-dynamic equations 
for a gas of quasiparticles are 

fJE 
F+divQ=O, (2) 

where P and E are the momentum and energy per unit 
volume, Q is the energy flux density, and nik is the mo­
mentum flux tensor. All these quantities are moments 
of the distribution function No(p), i.e., they are ex­
pressed in terms- of the latter by means of the appropri­
ate integrals,c2] where the integration is carried out, 
speaking rigorously, over the first Brillouin zone. If 
for large Ipl the growth of E(p) is not slower than that 
of pO', where 0' ~ 1, then the main contribution to the 
averages comes from small moments and it is possible 
to integrate between infinite limits. When this condition 
is violated the average energy and momentum taken over 
the entire range - 00 ~ p ~ 00 will become infinite. This 
means that large momenta playa decisive role and that 
the given approach has become inapplicable. 

We now turn to the case of acoustic phonons 

[E(p) = spI and shall consider, for simplicity, the one­
dimensional problem represented by u = {u(x, y), 0, O}, 
T = T(x, y), y = st. The equations obtained from (2) for 
w = u/s and e = In(T/To) (where To is the crystal tem­
perature at thermodynamic equilibrium) are 

fJw A fJw 
-+A-=O w={w,e}; 
iJy iJx ' 

, 3w'+3w'-5w'-5w 

( 5w'+w'-3w-3 
3(1-w)(1+w)' ') 

5w'+ 6w+3 (3) 

\ -3w' + 7w' +4w' - w-1 

5w' + w' - 3w - 3 
3w'+w 

5w'+6w+3 

Obtaining the left eigenvectors of the matrix A from 
the equation 1(1,2)A = El,21(1,2), we write (3) as 

l(t")(~+~t2 iJW)=o (4) 
iJy . iJx ' 

Here ~ 1,2 represents the eigenvalues of A: 
18w' + 6w' + 4w' - 6w - 6 ± 4w (P, (w) ) 'I. 

~t.,= -3w'+34w'+12w'-15w'-12±(3+w') (P,(W)'I, ' (5) 
P,(w) = 9w' + 42w' + 48w' - 35w' - 72w' -12w' + 24w + 12, 

The equations 

determine the directions of differentiation, which are 
the same for w and e in (4) and which are the charac­
teristic directions for the system (3). Equation (5) 
shows that for w < 11) the quantities ~ 1 and ~ 2 are real 
and different, i.e., (3) is a system of hyperbolic equa­
tions. 

The characteristic form (4) of the quasilinear equa­
tions (3) enables us to seek a special (i.e., nongeneral) 
solution of this system. n is easily seen that (4) is 
satisfied if 

fJw iJw 
-+St2(w)-=O, 
iJy . fJx 

It is clear that on the lines 

ax / dy Iw_oon" = '6t. ,(w), 

i.e., on the characteristics, w and e remain constant, 
and the equation 

(6) 

x=6t.,(w)y+<p(w) (7) 

defines implicitly the function w(x, y), which is the so-

1) The phonon drift velocity cannot exceed the sound velocity s, 
Le., for phonons w = u/s < L 
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lution of the initial system of equations for arbitrary 
cp(w); the explicit form of cp(x, y) is determined from 
the boundary conditions. The solutions of this class are 
called simple waves or Riemann waves. [3J If cp(w) = 0, 
Eq. (7) is the so-called "self-similar" solution of Eq. 
(3). 

It can be shown that in a simple wave the drift veloc­
ity and temperature can be related functionally using 
an expression that does not explicitly contain the coor­
dinate and time: 

de 6w+7w'-6w'-3w'±(P,(w»," 
dw 6(w'-1)2(w+1) 

(8) 

It is clear from (7) that points characterized by 
definite values of the velocity and temperature are 
propagated in space with constant velocities (which dif­
fer depending on w). The wave profile therefore obvi­
ously changes with time, and in some cases discontinui­
ties of the velocity wand temperature e appear. The 
coordinate and time of discontinuity formation are de­
termined by the simultaneous solution of the two equa­
tions [3J 

- =0 ( aX) 
[}W t=conet ' 

- =0 ( a'x ) 
a w2 t=const • 

(9) 

We now formulate the boundary conditions that must be 
fulfilled on the surfaces of a discontinuity; for this pur­
pose we consider an arbitrary element of such a sur­
face and direct the x axis along a normal to the sur­
face. Z ) From the continuity of the energy and momen­
tum fluxes we obtain 

[ T'w. ] _ 0 
(l-w')' -, 

4T'w 2 T' 
[(1-W:)' + (1_W')']=O, 

[ T'wxwu ] [ T'wxw, ] 
(1-w')' =0, (1-w')' =0. (10) 

Here (a] = a1 - az denotes the difference between the 
values of a on the two sides of the discontinuity surface. 

If no energy flows through a discontinuity, i.e., 
Tt'W"i 

(1- w,')' 
T,'w., = 0 

(1-w,')' ' 

then the conditions (10) become 

W X1 = W;.t2 = 0; [ T' ] = 0 
(1-w')' ' 

(11) 

and the velocity components (WY' wz) tangent to the dis­
continuity surface undergo an abrupt change (a tangen­
tial discontinuity). By analogy with ordinary gas dynam­
ics [3J it can be shown that these discontinuities are 
unstable. 

If the energy flux differs from zero (in a shock wave), 
from (10) we obtain 

[wu] = [w,] =0, 

[ (1 ~~') , ] = 0, [ Wx + 14~~'] = o. (12) 

Since the tangential component of the gas velocity at the 
discontinuity is continuous, a coordinate system can be 
selected in which the given element of the discontinuity 
is at rest and the tangential component of the gas veloc­
ity is zero on both sides (as in the case of a normal 
shock in ordinary gas dynamicS. Then w = wx, and from 
(12) we obtain 

2)We here drop our previous hypothesis of a one-dimensional prob­
lem. 

1 
w,w'=3' ( T')' w, (1-W")' 

-:r; = --;;.- 1 - w,' 

It is obvious that mechanical stability is possessed 
by the shock waves whose velocity relative to "undis­
turbed" gas (i.e., the region toward which the discon­
tinuity is moving) exceeds the propa~tion velOCity of 
disturbances in this region (W1 > 3-1 ). [4J Conse­
quently, in real discontinuities where W1 > 1/~, 
Wz < 1/~ the gas loses velocity when it crosses a dis­
continuity surface. We see from (12a) that the tempera­
ture then rises, i.e., only "heating" shock waves are 
realized, while "cooling" waves are unstable. 

Let us consider as an illustration the case of small 
nonlinearity when w « 1 but the linear approximation 
no longer functions and we must take into account the 
terms of (3) that are quadratic in w and e. From (3) we 
obtain 

ae 1 dw w ae 
-+-----=0 
ay 3 ax 3 ax . 

(13) 

These equations also yield a special solution represent­
ing simple waves. This solution can be obtained either 
directly or by decomposing the solutions (7) of the exact 
equations (3): 

x = 'Is (2w ± 3'/') y + <p(w), (14) 

::=-W±3"', e=-'/,w'±3-'/'w, (15) 

where e = (T - To)/T, because for w = 0 we have e = 0, 
so that the constant of integration in (15) is zero. 

Let the temperature at x = 0 be given as a function 
of time: 

e Ix~o = -'/,w' + 3-"'w = 'll(Y). (16) 

From this equation we can obviously determine y as a 
function of w: y = >Jt(w). Inserting this expression into 
(14) at x = 0, we obtain cp(w) and finally also 

x= '/3(2w+3'/')[y-.p(w)]. (17) 

We obtain w from (17), and thus also e from (15), as an 
implicit function of the coordinates and time. The con­
ditions (9) for discontinuity formation in the present 
case are 

2[y-.p(w)]- (2w+13).p'(w) =0, 

4.p' (w) + (2w + Y3).p" (w) = o. 
(18) 

When the function ~(w) is known explicitly, (18) and 
(17) can be used to determine the time and place of 
shock wave formation and the gas velocity ahead of the 
dis continuity. If, for example, the boundary condition 
for temperature at x = 0 has the form e(y) = ay, a dis­
continuity appears at the moment of time given by 
Yd = 3}'72 a-1 at a point ~ >::! %~a, with the velocity 
wd = %~. The discontinuity moves in space with the 
velocity (in a fixed system of coordinates) 

~ I = 2Wd+13 
dy w-=const 3 

Relative to the undisturbed part of the gas the shock 
wave moves at a velocity W1 that exceeds the propaga­
tion velocity of the disturbance: 

1 613 1 
w, = ---==--- = -->_ 

13 - Wid' 17 13 
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so that its mechanical stability is ensured. 
To realize the described situation it is, of course, 

necessary to require that the distance to the discontin­
uity be greater than the distance within which second 
sound is effectively damped.[l] 

We note in conclusion that in the case of strong non­
linearity, when w = 1 - a and a « 1, which is the oppo­
site of the case already considered, the initial system 
of equations breaks up, to terms of the order of a 2 , into 
two independent equations for wand (): 

aa aa 
-+-. -=0, ay ax (19) 

This means that it is possible to have a solution 
w = const, () = f(x - y). In this case pure thermal waves 
can propagate, unaccompanied by "waves of the drift 
velocity." 

The authors are grateful to V. M. Kontorovich for a 
useful discussion. 
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