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A theory of relaxation of particle distributions is developed for a plasma in the strong electric field 
of a high-frequency pumping wave under conditions of development of parametric instability with re
spect to potential perturbation bUild-Up. The possibility of increasing the number of ions with ener
gies exceeding the electron oscillation energy in the field of the pumping wave by (mi/me)1/3 times 
is demonstrated. The relation between the growing ion energy and the field perturbation energy 
density is established for conditions of increase of the plasma fluctuation field. High frequency har
monics of the electron velocity distribution are produced, the electron energy spread being deter
mined by the plasma fluctuation energy denSity per electron. The causes of anisotropy of the parti
cle velocity distribution are established; the anisotropy is manifest in an anisotropy of the tempera
ture and in possible permissible regions of resonance relaxation. 

INTRODUCTION 

WHEN powerful high-frequency electromagnetic radi
ation acts on a plasma, parametric instabilities de
velop in the plasma, leading to the appearance of large
amplitude fluctuations [1). The production of such fluc
tuations leads to a faster transfer of external radia
tion field energy to the plasma (1,2) and to an anomalous 
increase in the high-frequency conductivity of the 
plasma [3,4). At the same time, a redistribution of par
ticle velocities in the plasma takes place. The corre
sponding theoretical predictions (1;3,5,6), the results of 
numerical experiments[7,B), and the experimental 
data[9-11) indicate that this redistribution has a unique 
character. An understanding of the laws of plasma 
particle distributions produced by powerful radiation 
requires the development of a detailed theory. In this 
report we discuss the theoretical concepts that follow 
from the premises of[2,3) and pertain to the parametriC 
resonance of a fully ionized plasma in a very strong 
radiation field E( t) = Eo sin wot. 

Under conditions such that the oscillation velocities 
of the electrons in the field of the radiation wave are 
much greater than their thermal velocity, the incre
ments and frequencies of the perturbations that build 
up in the plasma during parametriC resonance do not 
depend on the particle velocity distribution. For this 
reason, fluctuations can grow exponentially in a para
metrically unstable plasma during an appreciable time 
interval, since the effect of thermal motion of the parti
cles on the increment becomes Significant only when the 
distribution function varies significantly. Similar con
siderations make it possible to assert that the high
frequency conductivity of the plasma is of the same 
order as the maximal increment of parametric insta
bility[3). Another relatively simple situation arises 
after a stationary plasma fluctuation level greatly in 
excess of the thermal-fluctuation level had already 
been established in the plasma. Here, too, it is suffic
ient to consider the relaxation of the plasma particle 
distributions. 

We formulate below a number of statements of the 
theory of relaxation of particle distributions in a 
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parametrically unstable plasma. We point out first 
those possibilities of fast-ion production which are due 
to the mechanism of Cerenkov interaction of the parti
cles with the potential-field oscillations in the plasma. 
For the steady-state fluctuation spectrum, we show the 
qualitative features of the relaxation process which 
lead to a redistribution of the particles, increasing the 
number of ions in an energy region whose order of 
magnitude is (md me)I/3 times greater than the elec
tron oscillation energy in the pumping wave field. An 
analogous possibility is discussed under conditions 
when the fluctuation field increases. Assuming a slow 
change of distribution, it is shown that in the resonant 
case the average plasma ion energy grows (mi/me)I/3 
times faster than the energy density of the growing 
perturbations. In the nonresonant case of the para
metric action of the radiation, the average ion energy 
is of the same order as the field-fluctuation energy 
denSity. Such an assertion represents an interpolation 
of formula (2.6) to the region of the limit of its applica
bility. 

We discuss the relaxation of the electron distribu
tions under conditions when the fluctuations of a para
metrically unstable plasma increase. It is shown that 
high-frequency harmonics of the electron velocity dis
tribution are produced and are comparable in magni
tude with the fundamental harmonic. The order of 
magnitude of the electron energy spread is determined 
by the plasma-fluctuation energy denSity per electron. 

We show the causes of the anisotropy of the particle 
velocity distributions; the anisotropy is manifest in a 
temperature anisotropy and in possible steplike regions 
of fast resonant relaxation. 

1. DISTRIBUTION OF IONS IN A PARAMETffiCALLY 
UNSTABLE PLASMA AT A STEADY STATE
FIELD FLUCTUATION LEVEL 

The quasi linear relaxation of ion distribution is de
scribed by the equation 

aF,(v,t) 

at 

a (il aF,(v,t) 
--DN , . av, av, 

(1.1) 
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where the diffusion coefficient in velocity space is of 
the form 

(il nei' S dk 
D" = m.' (211)' k,k.l<p,(k)I'6(ro(k)-kv). (1.2) 

Here we have taken into account the fact that the plasma 
fluctuations of the longitudinal field are stationary, the 
frequency of the corresponding waves is equal to w(k), 
and <P 0 is the zeroth harmonic of the fluctuation-field 
potential. Summation over the repeated indices rand 
s is understood. 

In the theory of the parametric resonance of a 
plasma in the strong field of a pump wave it is shown[1] 
that the frequency w is a function of the modulus of 
the projection of the wave vector (kz) on the direction 
of the pump electric field intensity vector 
(E = Eo sin wot). An analogous dependence holds for 
the perturbation increments. We can therefore assume 
that the plasma fluctuation intensity depends only on 
kz and on kl = (k~ - k~)1/2. Then the diffusion equation 
(1.1) for distributions that depend on v z and v 1 takes 
the form 

aF, 1 a [ aF, aF,] a [aFi aF'r -=-- v.J.D.J.--+v.J.D .. - +- D .. --+D -
at Vol avol a Vol av, av, a Vol "av,' 

(1.3) 
Then, for example, we have for the longitudinal diffu
sion coefficient the following expression: 

, +~ 

D"'=-4 ,e, 2 Sk,'dk, S dkoll<Po(lk,l,kol) I'. (1.4) 
1& mj V...L 

_00 Ic.:dflz)-Aztlzl/"..l. 

It is obvious that the velocity dependence of the dif
fusion coefficients, and hence the specific laws of quasi
linear relaxation, are determined by the field-fluctua
tion distribution in wave-vector space. In particular, 
situations are possible where small values of kl are 
noticeably represented in the spectrum of such fluctua
tions, while the values of the longitudinal components 
are Significantly larger (I kz 1 » kl)' In such a situa
tion, quasilinear relaxation corresponds to one-dimen
sional diffusion: 

(1.5) 

since the diffusion coefficient (1.4) is considerably 
larger than the others. Let us consider such a case, 
assuming for simplicity 

w 
l<p,(k" kol) I' = 6 (kol' - kol)-k 9 (k,,' - k.')9 (k,' - u'k,,') (1.6) 

" 
(where 8(x) = 1 for x> 0 and 8(x) = 0 for x < 0); 
this corresponds to a small width of the distribution 
with respect to transverse wave vectors compared with 
the longitudinal distribution and to (i ~ 1. In estimates 
one can take the quantity kzo as equal to rEf (rE 
= lei Eo/mew~), for when parametric instability de
velops the perturbations that grow most rapidly are 
those for which 1 kzrE I ~ 1. Then 

(1.7) 

According to (1.7), the longitudinal diffusion coef
ficient differs from zero in the finite region Vz 
~ w( kzo}/kzo. For values in this region, according to 

(1. 7), the ion velocity distribution becomes equalized; 
in particular, the number of fast particles increases. 
The width of such a region turns out to be compara
tively small so long as a is close to unity; this corre
sponds to the case when the external field frequency is 
close to 

(1.8) 

which corresponds to the threshold frequencyP]. It is 
natural that in that case only particles partiCipating in 
the redistribution constitute a narrow group with 
velocities near the value 

(l.i~ ) 

To the contrary, if the external field frequency differs 
from (1.8) and approaches the Langmuir frequency to 
within an amount comparable with the difference be
tween (1.8) and wLe, then the one-dimensional relaxa·· 
tion velocity region broadens and becomes comparable 
with (1.9). This means that the distribution of ions with 
velocities on the order of (1.9) takes on a "quasi-step 
like" character corresponding in such a region to a 
particle redistribution, corresponding to particle ac
celeration. It is thus shown that particle-distribution 
anisotropy can arise at ion velocities on the order of 
(1.9), which are much higher than the ion thermal 
velocities typical of the initial stage of the unstable 
state of the plasma. 

We turn now to the other case, when the transverse 
components of the wave vectors in the fluctuation 
spectrum of the longitudinal field of the plasma are not 
small in comparison with the longitudinal components. 
In this case, the diffusion equation (1.3) must be used. 
To get an idea of the resultant possibilities, we assume 

l<p,(k" kol) I' = w6(kol' - kol)6(k,o -Ik,i). (1.10 ) 

Then the diffusion coefficient on (1.3) take the form 
D' 

D,.' =-{9(k.J.o'vol' - [ro(k,o)- k"v,]') + 9 (kol"vol' -[ro(k,,)+ k"v,]')}' 

Vol D' (1.11) 
DA=--k 2 {[k"v,-ro(k")]9(kolo'vol'-[ro(k,,)-k,,v,]') 

ZOVJ.. 

+[k,ov, + ro(k,,)]9 (kolo'vol' -[ro(k,,)+ k"v,]')}, (1.12) 

Dol= k~' , {[k"v,-ro(k")]'9(kolo'vol'-[ro(k,,)-k,,v,]') 
zO V.L 

+[k"v, + ro(k,,)]' 9 (kolo'vol' -[ro(k,o) + k"v.]')}; (1.1:~) 

Di = e.'1uk.o' / 4n'm,. (1.14) 

Since the phase velocity (1.9) of the oscillations is 
large compared with the thermal velocity, we can 
confine ourselves to one term in (1.11) through (1.13) 
at positive (or negative) values of vz. Then the diffu
sion will take place in the velocity region by the in
equality 

k ' , 
ol0 ( v.- v, ) --> ---

kzo2 V...L 

(1.15 ) 

In this case (1.13) can be rewritten in the form 

~ aF. =_1_{_a_[ (VPh-~.)' aF, 
D, at Vol a Vol Vol a v.!. (1.16) 

+ vph- v, aF,] + ~ [ Vph- v. aF, +!.!.!..]}. 
Vol av, av, v.!. a v.!. av, 

If we introduce new variables 

V' = Vol' + (Vph- v,)', V,-Vph= v, Fi(v" Vol, t) = lJ>(v, V, t), . (1.17) 



RELAXATION PROCESSES IN A PARAMETRICALLY UNSTABLE PLASMA 893 

we can determine the properties of the relaxation 
process described by Eq. (1.6), which becomes in 
terms of these variables 

.i. a(!J =.3.....[(V"-V')-',. a(!J], (1.18) 
D, at av av 

with Vk~o > ~(k~o + !Cio), so that no singularity arises 
in the diffusion coefficient. 

It is obvious from (1.19) that the diffusion brings 
about a quasiequilibrium state: 

(!J(v, V)= (!J.(V)+ (!J,(V) { ~ (t - ~,)'" + arcsin ~ }. (1.19) 

The second term corresponds to the nonzero diffusion 
flux, including one on the boundary of the relaxation 
region. In our discussion, therefore, we must discard 
this term, so that the equilibrium distribution corre
sponds to the presence of a "drift" velocity equal to 
the phase velocity (1.9). 

To understand the time scale of such a relaxation, 
we assume that kio is comparable with but neverthe
less smaller than kzo. Then ~ can be neglected in the 
diffusion coefficient of (1.18). As a result we can write 
the following simple expression for the nonequilibrium 
solution: 

{1 {vk,on } 
(!J(v, V,t)=(!J.(V)+ "'-.! c. (V) cos Vk.LO (2n+ 1) (1.20) 

• -1 

{ D'k,,'n' 
Xexp -t V'k.Lo' (2n+1)'}. 

From this we get the relaxation time in velocity space: 

(1.21) 

Finally, we estimate the number of particles taking 
part in the relaxation process, in accordance with 
condition (1.15). In this case we assume a Maxwellian 
particle distribution. Then 

6n,= n,m,''''1 Sctv.e( k.Lo: _[ Vph- V, ]')exp [- m,(v.L'+v.')]1 
(2nxT,) , k" V.L 2xT, 

( k 2) -'h ( Vph'· k,o' ) 
= n, t + k.L'oo' exp 

2VTi2 k.Lo 2 + kz02 • 
(1. 22) 

Consequently, the number of relaxing ions increases 
with increasing klO. Such an increase is quite possible 
when VE » vTe (rE » rDe), since the condition 
krDe < 1 must necessarily be satisfied for oscillations 
to exist; at the same time, kzo ~ rEf for oscillations 
that grow in the presence of parametric instability. 
Naturally the relaxation equation is modified in this 
case (cf. (1.20». However, the relaxation time can be 
estimated on the basis of formula (1.21). 

Thus, the discussion above indicates the possibility 
of producing in a parametrically unstable plasma a 
considerable number of ions with velocities on the 
order of the phase velocity, and consequently with 
energies (mi / me )1/3 times greater in order of magni
tude than the electron oscillation energy in the pump
ing wave field. 

2. ION DISTRIBUTION RELAXATION WHEN THE 
FIELD FLUCTUATION LEVEL IS NOT 
EST ABLISHED 

Under conditions of growing field fluctuations, the 
relaxation of the particle distributions in a para
metrically unstable plasma becomes, in general, more 

complicated. However, even in this case it is possible 
to discern several important properties of the relaxa
tion processes. 

We note that the arguments of the preceding section 
remain intact in many respects if the quasilinear re
laxation is characterized only by Cerenkov interaction 
of the resonant ions. Then the diffusion equation (1.1) 
holds, and in it the diffusion coefficient (1.2) depends 
on the time by virtue of the time dependence 

<po(k, t) - exp {j dt'y(k, t') }. (2.1) 

Such a situation is realized with great accuracy, in 
particular, when the frequency of the external field is 
close to the value in (1.8). Then, for example, the one
dimensional diffusion coefficient acquires an additional 
factor 

(2.2) 

The same can also be said of two-dimensional dif
fusion with the coefficients (1.11) to (1.13). Then, if 
the fluctuation field grows at an exponential rate, one 
can again use the results of the preceding section, with 
the substitution 

t....,.. (e'" - 1» 2y . (2.3) 

In particular, the characteristic relaxation time for the 
relaxation process of the type (1.20) is 

-~ln2y"t (2.4) 
2y • 

where T is determined from formula (1.21). 
In formula (2.4) the logarithm is much greater than 

unity. This means that the characteristic variation 
time of the ion distribution exceeds the characteristic 
variation time of the fluctuations in the parametrically 
unstable plasma. Under conditions when such a situa
tion obtains, a simple description of ion relaxation is 
possible. For example, this can occur near the fre
quency (1.8), when the increment is small compared 
with the frequency of the growing perturbations. Then 
the diffusion equation for quasilinear ion relaxation 
during the exponential growth of the fluctuations can 
be represented in the form (1.1) with the diffusion co
efficient 

D '(v t)-~S dk k,k.y(k) I (k t-O)I' 'y(k}l (2.5) 
.. • - m,' (2n)' y'(k)+[w(k)-kv]' <po ,- e . 

Obviously, in the limit y = 0 this expression reduces 
to (1.2). 

The simplest consequence of the diffusion equation 
in velocity space with the diffusion coefficient (2.5) is 
that one can obtain the distribution down to low veloci
ties I k . v I « w, which necessarily presupposes that 
the ion velocities are small compared with the phase 
velocity (1.9). Then the velocity dependence in (2.5) 
can be neglected, and Eq. (1.1) has a simple solution. 
In particular, for distributions corresponding to (1.3) 
and for an initial Maxwellian ion distribution with tem
perature T ( 0) we have: 

The effective time-dependence longitudinal and trans-
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verse temperatures are determined here from the 
following formula: 

( n,xTg(t) ) = n,xT(O) + e,zn,S dk Icp.(k,t=O)I'(e"'-l) (2k.') 
n,xTl.(t) 2m, (2rr) , ,\,'+ro' kl.' 

(2.7) 

This formula is good for qualitative estimates over 
a broad region. The second term of (2.7) is equal in 
order of magnitude to the energy density of the plasma 
fluctuations for the nonresonant case (yl Wo 
~ (me I mi )1/2), while for the resonant case it is equal 
to the same energy density multiplied by (me I mi}I/3. 
In addition, formula (2.7) indicates the reason for the 
possible ion velocity distribution anisotropy due to the 
anisotropy in space of the wave vectors that character
ize the field fluctuations. 

We note in this regard that the order of magnitude 
of kz corresponding to faster growing fluctuations is 
determined by the quantity ~ri. Thus, for example, 
when Wo ~ wLe this value is determined by the maxi
mum of the Bessel junction Ji and corresponds to 
kzrE = 1.84. On the other hand, the quantity kl is 
mainly determined by the initial fluctuation distribu
tion, in which the maximum value of the transverse 
wave vector must satisfy the condition klrD «1. This 
makes it possible to assert that the measure of the 
temperature anisotropy must be less than T I/TIl 
~ (Ve/VTe)2. 

3. SOME PROPERTIES OF ELECTRON DISTRIBUTION 
RELAXATION IN A PARAMETRICALLY UNSTABLE 
PLASMA 

Owing to the low electron mass, the effect of the 
pumping field on the electrons is greater than on the 
ions. Following the results of the earlier studies[l,3], 
we discuss the electron distribution in a coordinate 
system that oscillates together with the electrons un
der the influence of the electric pump field E (t) 
= Eo sin Wo t. In this case one can assert that the de
velopment of parametric instability in the plasma leads 
to the appearance of a whole series of harmonics in 
the electron distribution function: 

i~ 

F.(v, t) = 1:, F;n) (v, t)e-'no". (3.1 ) 

Here the F~m vary little over a time interval on the 
order of the period of the external pump field: 

In the high intenSity pump field case of interest to 
us, where the electron oscillation velocity significantly 
exceeds their thermal velocity (VE » VTe) the higher 
harmonics grow simultaneously with the increase of 
the velocity spread in the zeroth harmonic F~O) (the 
only nonzero harmonic at the initial instant of time). 
One such manifestation is the growth of the energy 
fraction[l,12] determined by the harmonic F~2m at the 
resonance nwo ~ wLe. We shall show that this harmonic 
is not unique. 

According to[31, the system of equations for the 
harmonics of the electron distribution function can be 
written in the form 

• (n) aF.(n) e' a S dk 1:, , 
-mro.F. +--=-- --k,k; Icp.(ro"k,t=O)I· 

at me' av, (2rr) , • 

-exp(2,\,.(k)t) f, lu-l (k,rE) lu-n (kh) lIe,(ro,+i,\,,,k) 
I,u~_oo ,\,.-i(uro.+ro,-kv) l+lIe.(ro,+(u-l)ro.+i,\,,,k) 

lIe,(- ro, + i,\,,, - k) aF;') 
x __ ---~~~~~-----

l+lIe.(-ro,+(n-u)ro.+iV.,-k) av; , 
(3.2) 

where s labels the possible types of perturbations. 
We note that Eq. (3.2) describes the collisions of 

the electrons with the fluctuations of the growing per
turbation field in a parametrically unstable plasma. In 
this case, even when such collisions are small, it is, in 
general, no longer correct to state that only the zeroth 
harmonic is present at the initial instant of time 
(cf.[13]). Therefore one should regard a statement of 
this type as an approximate one, corresponding to the 
possibility of neglecting the collisions. 

A definite advance in our analysis of the properties 
of the system (3.2) can be made in the resonance case, 
when I Wo - wLel:S wo(me/mi}I/3. Then, to a first 
order in the ion-electron mass ratio raised to the % 
power, this system of equations can be written in the 
form: 

(n) aF;n) a {(1) (2) 

-inro.F, +---=- [D,; (n,v)+W,; (n v) 
at av, '(3.3) 

(1) • (2) aF;n) (1) 

+D" (-n,v)-ID,; (-n,v)]-a--[D,; (n,v) 
v; 

• (2) 8F e<n+2) (I) '. (2) aF ~n-2) } 

+ID'j (n,v)]-a---[D" (-n,v)-ID,; (-n,v)]-a-- , 
~ ~ 

D(!)(n v)+ W(')(n v)=~S~kk ~ 1<p.I'exp(2'\'.t~ 
I" '" '(2 )' ' 'k.J ( '+ ')' me tt 5 (D5 y. 

X roL"ro.'I,'(k,rE) ,\,,+i([n+1]ro.+Ul,-kv) 

[(ro. + ro.)' - roLe' - ,\,.']' + 4(ro, + ro.')'y,' '\'.' +([n + 1]ro. + ro, _ kv)' . 

We have neglected here the spatial dispersion of the 
dielectric constants in accord with the assumption 
that the influence of thermal effects on the dispersion 
properties of the plasma perturbations is small. The 
system (3.3) breaks up into two systems corresponding 
to the odd and even harmonics of the electron distribu
tion function. In our original problem there are no 
nonzero odd harmonics at the initial instant of time, 
and they can be subsequently disregarded. We note that 
a more accurate analysis shows that the odd harmonics 
are (me/mi}I/3 less than the even ones. 

At electron velocities that are not too large it is 
possible to neglect k· v in comparison with WOo In 
particular, this means that the velocity i.S small com
pared with the velOCity of the electron oscillations in 
the pump field. In addition, bearing in mind that Ws 
and ys are small compared with the external field 
frequency Wo, we see readily that the imaginary parts 
of the even harmonics of the electron distribution func-· 
tions are small: 

F,('n) (v, t) = 91 ('n) (v, t) + i..!.",('n) (v, t). (3.4) 
ro, 

Here y is the maximum value of the increment and 
determines the order of magnitude of the second term 
in the right-hand side of (3.4). Bearing in mind thae): 

D,.,(') (n,v=O)= 1 d~,,(t) D(') (n v=O)=~~ (I) (3.5) 
2(n+l)' dt ' '" n+l'" 

we obtain the following system of equations: 

l)We call L\j the "integral diffusion coefficient." 



RELAXATION PROCESSES IN A PARAMETRICALLY UNSTABLE PLASMA 895 

aF") dl'1 () a' a'·"") _,_= __ ,;_t ____ (F;') + ¢(2»+ 2yl'1,;(t) -"'-, (3.6) 
at dt av, av; av, av; 

a2 {4n<1>'2n) <1>"n-2) <1> ,'nH) } 

2n<1>"n)+I'1;;(t)av,av; 4n'-1 -2n-1-2n+1 =0, (3.7) 

a' {4nljl".) Ijl,'n-') 1jl".+2) } 1 as6(") 
2n1jl,2n) + 1'1.;(1) {}v, av; 4n'-1 -2n=T- 2n+ 1 = -Y--a-t-

+J:.. dl'1ij(t) _{}_'_ {[ 1 + 11 ¢".) 
2y dt av,av; (2n+l)' (2n-1)'} 

¢(2'+2) s6'2n_2)}. 

(2n+1)2 (2n-l)2 (3.8) 

Equations (3.7) and (3.8) have been written for n 2: 1, 
taking into account the fact that rp'O) = F~O). Then the 
following relations hold for the negatively numbered 
harmonics: 

(3.9) 

Formulas (3.4) and (3.9) make it possible to repre
sent expression (3.1) in the following form: 

- -F.(v, t) = F,") (v, t)+ 2 L/'2n) (v, t)cos 2noo.t + 2 :. 1:, Ijl"') (v, t)sin2noo.t. 

.~, .~, (3.10) 

The last term in (3.10) is of the same order of magni
tude as the discarded odd harmonics. We must there
fore not take them into account when we calculate the 
mean values, lest we exceed our accuracy limits. On 
the other hand, the imaginary parts of the harmonics 
of the electron distribution functions have a significant 
effect on the variation of the zeroth harmonic, as fol
lows from Eq. (3.6). It must be emphasized that al
though the odd harmonics are comparable in order of 
magnitude with the imaginary parts of the even ones, 
nonetheless the effect of the odd harmonics on the dis
tribution evolution described by formulas (3.6) to (3.8), 
turns out to be small, ~ (me / mi)1/3. 

A number of the properties of the distributions that 
satisfy Eqs. (3.6) to (3.8) can be discerened without 
solving this system. First (3.6) to conservation of the 
number of electrons: 

S dvF, (,)= n, = const, n S dv ¢(2o) = n J dv Ijl"n) = o. (3.11) 

Next, for the second moments of the velocities we 
have: 

~ S dv v.v ll ") = n dl'1.;(t) 
dt 1 jA"e e dt ' (3.12) 

J dvv,v;¢")=n,I'1,;(t), J dvv,v;¢"nH) =0, n;;'l 

S dvV'V;Ijl(,)=_~dl'1,;(t) n" Jdvv,v;Ijli2·+')=O, n;;.l. 
y dt 

Formulas (3.12) give the following time variation of 
the plasma electron energy (in the oscillating coordi-
nate system): .. 

J meP2 (0) 

dv-2-[F,(v,t)-F, (v,t=O)l, (3.13) 

= 'I, n,m, {1'1,,(t) -1'1,,(0) + 2 1'1" (t) cos 200,1}. 

The corresponding formula for the variation of the 
mean value of (7'2) me Vi Vj differs in that the trace of 
the integral diffusion coefficient is replaced by ~ij. In 
this case anisotropy of the electron energy parallel 
and perpendicular to the direction of the electric field 
intensity of the pump wave is obviously pOSSible, due 
to the anisotropy of the electron diffusion coefficient 
in velocity space. 

Equations (3.6)- (3.8) also make it possible to find 
the higher velocity moments. Thus, for example, the 
following asymptotic expression can be written for the 
fourth moments: 

J dvv,v;V.v,F,(v, t)= 2n, {I'1,;(t) 1'1 .. (t) + I'1jk(t) 1'1" (t) (3.14) 
. + !ilk(t) 1'1. (t)} {1 + 4/, cos 200,t + 'I. cos 400.t}. 

This expression is good for large time intervals, when 
the initial values of the moments and of the diffusion 
coefficients can be neglected. We emphasize that 
neither Eqs. (3.6)-(3.8) nor the consequences drawn 
from them have any meaning except for sufficiently 
large time intervals, when the collisions of the elec
trons with the plasma fluctuations significantly exceed 
those in the initial stage. 

Comparison of formulas (3.13) and (3.14) shows that 
along with the second harmonic of electron distribu
tion, which, as we noted before[l,12l, determines the 
energy growth, a fourth harmonic characteristic of 
the fourth moments of the velocities appears. Higher 
electron velocity moments are determined by the 
higher harmonics of the electron distribution, while 
the moment of order 2n order contains harmonics all 
the way up to cos 2n Wo t. 

It is obvious from (3.13) and (3.14) that the electron 
velocity dispersion is determined by the integral dif
fusion coefficient in velocity space. To better under
stand the ensuing possibilities, we assume a plasma 
fluctuation distribution that leads to transverse and 
longitudinal diffusion alone, just as in the discussion 
of ion relaxation. We can then introduce longitudinal 
and transverse effective electron temperatures: 

( xTI[ ) (m,!il[) e' S dk ( k.' ) 
xT.L = '/,m.l1.L = -;;;: (2n)' '/,k.L' 

(3.15 ) 

x~ 1'P.I'exp(2y,t) ooL,'oo.'J,'(k,r,,) 

~ (00.' +y.')' [(00. + 00.)' - OOL.' - y.'1'+4(100. +w,)'y.' 

At Wo < wLe where aperiodic instability occurs, 
formula (3.15) can be presented in the following com
paratively simple form: 

( n.xTI[ ) = _1_3 [( 1 + 10.:00< )'" + 1] 
n,xT.L 20.8n 1'1, OOL' 

t.- +- 1.84 6.8r,,-' 
XIk.Ldk.LLdk, 1'P·(-;;-,k.L,t) 1 e'''( k.L' ), 

where ~i = (WLe / wof - 1 and 

y' = ~OOL.'M [( 1 + ~,/t'(k,rE) ::::) 'I. -1] . 
Accordingly, for Wo > wLe, when 0 > Ai 
> - [32 JiwLi2/ WLe]1/3, 

1 { [ 32 00' ] 'I, } 'J, Y=411'1,looL' ~J.'(k,rE) 00::' -1 

and we have 

(3.16) 

( n,xTI[) =_1_3[(0.68~Li' y/' +1]Joo k.Ldk.L+Jood~, 
n,xT.L 2.72n 11'1,100Le'1 , _~ (3.17) 

1 ( 1.84 k = 0) I' 'y' ( 6.8rE -. ) x 'P. , .L, t e k' . 
rE .L 

The right-hand sides of (3.16) and (3.17) are of the 
same order as the total energy of the growing field 
fluctuations. Thus, we can speak of an electron energy 
comparable with the plasma fluctuation energy. 
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Formulas (3.15)--(3.17) reveal a possibility of 
anisotropy in the electron velocity distribution. In this 
case the ratio of the longitudinal mean electron energy 
to the transverse energy is determined by the quantity 
6.8(kj)effr-E, where (k~)eff depends on the initial 
fluctuation distribution. The analogy with the possible 
anisotropy in the ion distribution is obvious here. 

We shall touch briefly on one possibility of electron 
distribution relaxation that can be realized when the 
distribution of the fluctuations with respect to wave 
numbers is sufficiently narrow. We note that the max
imum of the increment determines the value of kz . If 
at the same time the spread in the values of kz is 
small, than diffusion in velocity space becomes partic
ularly fast in the neighborhood of the resonance region 
I Wo - k . v I ~ y. Then, ne~lecting the small quantities 
proportional to (me / mi)1 \ we obtain in accord with 
(3.3) the relatively simple approximate equation 

8F, (0) = 2~D~;) (0) 8F/O). (3.18) 
at au, au; 

From this it follows, in the first place, that the 
higher harmonics of the distribution function have a 
negligible effect on the relaxation of the fundamental 
in the resonance region. In the second place, the fast 
relaxation described in (3.18) leads to a "flattening" 
of the distribution in the vicinity of the resonance re
gion of velocities. All this makes it possible to en
vision the production of a steplike distribution which, 
as a result of the effect of the higher harmonics on the 
fundamental, can lead to a multistep distribution due 
to the presence of the higher resonance regions. 

Our analysis of the electron relaxation was made 
with a small deviation from parametriC resonance as 
an example. In the contrary case, when the deviation 
is large (I WO - wLe I ~ WLe), the diffusion coefficients 
in velocity space have terms which, in general, are of 

the same order but have different resonance regions 
(nwo ~ k· v). This makes the possibility of multistep 
distributions immediate ly obvious. 
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