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The noise emission spectra of extended media in the presence of a strong monochromatic field are 
considered by taking into account the variation of the field in the medium. The noise sources consist 
of thermal and spontaneous fluctuations of the medium and also of thermal fluctuations of the enter-
ing radiation. The fine structure of the spectral lines is determined. Analytic and numerical results 
are obtained for the noise radiation spectra. It is shown that in the case of an active medium with in
homogeneous line broadening the strong field saturates part of the transition line and produces a dip 
in the spectrum. A narrow peak is located at the center of the dip. The relative depth of the dip ap
proaches unity with increase of the medium length whereas the peak height increases insignificantly. 
The dependence of the spectral line shape on relations between the relaxation constants and the in
homogeneous magnitude of strong field is investigated for media with transition line broadening. The 
effect of extension of the medium on spectral line shape is considered and it is shown that in contrast 
to a medium with inhomogeneous broadening, the strong field saturates the whole transition line of the 
active medium. Noise emission from absorbing media in thermal equilibrium with the ambient medium 
is considered. It is shown that the spectral line width is determined by the strong field. The length of 
a passive medium for which noise emission is a maximum is estimated. 

WHEN a strong field propagates in a medium, non
linear effects are produced and influence both the propa
gation of the strong field itself and the shape of the 
spectral line of the noise emitted by the medium. The 
propagation of strong electromagnetic radiation in ac
tive media has been the subject of a number of 
papers [1-7J . Some of them deal with the influence of 
the strong field on the noise emission. However, these 
papers consider in the main only the power and width of 
the emission spectrum. Rautian[aJ derived expressions 
for the spectra of the spontaneous emission of a medium 
in the presence of a strong monochromatic field. These 
expressions are valid only for a sufficiently short med
ium, when the variation of the field over the length of 
the medium can be neglected. 

We consider here the spectra of noise emission of 
extended media in the presence of a strong monochrom
atic field, with allowance for the variation of the field in 
the medium. The analysis is valid both for active 
(amplifying) media and for passive (absorbing) ones. 
Rautian's results[aJ follow from the present paper as a 
particular case. 

1. FUNDAMENTAL EQUATIONS 

We start with a closed system of equations for the 
field and for the density matrix of the atoms of the 
medium. We write the field equation in the form 

a'~ a~ a'~ a'fJ' (1 1) at' + 4nu-at - c' -;;;;: = - 4nfit2 + Ulo'~(T). • 

Here a is the conductivity of the medium, fJ' is the pro
jection of the polarization vector on the field direction, 
c1f(T) is the thermal field, and x is the coordinate along 
the propagation direction of the strong monochromatic 
field. In accordance with the Callen- Welton theorem we 
have 

( ,.,(T)') _ 32n'liu (_ + 1) 
co w,t--- n, -

Ulo 2 (1.2) 
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where n1 = [exp(nw/kT1) - 1]-1 is the average number of 
photons in the equilibrium state, and T1 is the tem
perature of the medium. 

We specify the boundary conditions in the form 

~ (t, 0) = Eo cos Ulot + ~O(T). (1.3) 

Here Eo cos wot is the monochromatic field incident on 
the investigated medium and c1f~T) is the thermal field 
at the input, averaged over the cross section S of the 
investigated medium. The spectral power density of 
this fie Id is [9J 

(T)' 4nliUl (_ 1) (c1fo ).=-- n,+-
cS 2' 

(1.4) 

where ~ = [exp(nw/kT2) - 1]-1 and T2 is the ambient 
temperature. We assume henceforth n1 = n2 = n. 

Owing to the presence of a strong monochromatic 
field, we can separate in the equations for the density 
matrix elements one optical transition that is resonant 
with this field. The upper and lower levels correspond
ing to these transitions will be deSignated a and b. 

Instead of the diagonal density-matrix elements we 
introduce their sum and difference, R = Pa + Pb and 
D = Pa - Pb' The equations for Pab' D, and R take the 
form 

ap.. ap.. . id..E 
--+V--+('Ul .. +y •• )p .. = ---D at ar Ii ' (1.5) 

aD aD 2i ---at + va;+ y(D -D('») = - 1i""(d.aP.' - p •• d .. )E, 

aR aR 
-at+va;+v(R.-R(·»)= O. 

Here dab is the matrix element of the dipole- moment 
vector, y = Ya = 'Y b is the width of the levels a and b, 
and Yab is the width of the luminescence line. 

We specify the field ~ and the polarization vector fJ' 
in (1.1) in the form of traveling waves with slowly vary
ing complex amplitudes: 
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8 = l/dEe-'(o.'-"') +c.c.], fP = 1I2[Pe-'(o.'-''') +c.c.]. (1.6) 

Oraevskir[lOJ has shown that the higher harmonics of 
the polarization and of the population difference can be 
neglected subject to the following limitation on the field 
amplitude E: 

aE' ~ w,' / VYo', a = 1 do, I' / 3n'yvo'. 

Obviously, this condition is always satisfied at real 
field values. 

We note that by expressing the field in the form (1.6) 
we neglect the influence of the noise-emission flux 
propagating in the opposite direction. This can be done 
if the noise field is weak, when 

a«(jE') ~L (1. 7) 

Since the noise field can increase with increasing 
length of the medium, the condition (1. 7) imposes a 
limitation on the length of the medium. 

The complex amplitude of the polarization vector P 
is connected with the off-diagonal elements of the den
sity matrix by the relation 

2nd,. T . 

P== jP.dv=-T-j S p.,e"o •• -k.X)dtdv. (1.8) , 
Substituting (1.6) and (1.8) in (1.1) and (1.5) we obtain 
the following system of truncated equations for the com
plex amplitudes of the field and the polarization 

af}: aF; ~ -_+ c-+ 2noE = 2niw,P + iw,E(T); (1.9) at ax 
aP. aP. . ildo,l'n - (1 10) 
-+v-~+[-'(I1-k,v)+vo,lP.=----DE . at ar 3n ' 

aD aD i - ~ 
-at+vih+v(D-D"»= 2nn (P:E-P"E·). 

Here J.J. = Wo- wab 

Obviously, (E(T)2)n K = (8(T)2)w k/S, where n = W - Wo 
00, , 

and K is the projection of the wave vector K = k - ko on 
the x axis. 

The boundary conditions for (1.9) are 

E(t, 0)= Eo + E: T
), 

where, in accord with (1.4), 

(E,lT)') 0 = 8n:;o (ii++). 
We represent the functions E, P, Pv ' and D in the 

form of sums of the mean values and of the fluctuating 
components in the following manner: 

E = (E + ~El- i6E.) e-f;o, 

P = (P. + iP1 + 6P. + i6P1) e-i", 

Pv = (Pv + 6P2v + ilIP'D) e-iq;, 

D=D+6D. 

Here E and rp are the mean values of the real amplitude 
and phase. Neglecting the influence of the fluctuations 
on the mean values, we obtain from (1.9) and (1.10) the 
following equations for the mean values 

dE _ _ 
c-+ 2nO'E = - 2nw,P., 

dx 
(1.11) 

dP. _ ild.,I'n __ 
v--+(v., - i(l1- k,v) )P. = - --~-DE, 

dx 3" 
(1.12) 

dD _ iE _ _ 
v-+V(D -D('»=-~-(P: -P.). 

dx 2rm 

The equations for the fluctuating parts are 

( a a ) 2nw, _ IT) _+c_+2no (jE.,.±-_-P,~E, .• =-211(f)oIiP",+w,E".; 
at ax E (1.13) 

( 0 0 ) Id.,I'n (_ --+v-+v., IiP .. -(I1-kov)6P .. =---.. - D6E,+EIiD), ot or 3,. 

-+v-+v .. IiP,.+(I1-kov)6P .. =---.. -DIiE" ( a a ) Id.,I'n _ 
ot or 3,. 

a 0 1 _ _ _ (1.14) 
(-+v-+V)IiD = -;;:(EIiP" + P •• IiE. + P,.IiE,). at or n,. 

Here Er~) are determined from the relation i(T) 

= -(E~T1 + iE{T»e-i~. 

2. CALCULATION OF MEAN VALUES 

In (1.12) we can neglect the derivatives with respect 
to the coordinate if the field relaxation distance Xrel is 
much larger than the average distance traversed by the 
atom during the time of establishment of the polariza
tion, i.e., 

u / v., ~ Xxe\. (2.1) 

The condition (2.1) is usually well satisfied in solid and 
gaseous amplifiers, since u/y ab S 10-4 cm and xrel 

1-10 cm. 
Solving (1.12) subject to the condition (2.1), we get 

_ ildabl'n ED 
P.= -~ Vab-i(l1- k,v) (2.2) 

D(')(V'+(I1- kv)') 
D= ,a' ',t s=aE'. 

'lab (1 +S)+(I1-kov) 

For immobile atoms we therefore obtain 

_ g(l1)d l1-iVa', E D' 
P = 4n 'I.' 1 + g(l1)S • D = 1 + s . 

g(l1) = Yao'/ (11'+Yao'). 

for moving atoms at y ab ~ « kou we have 

p=_ ig(l1)d ~ 
4n 1'1 + S 

g(I1)= nYab exp {-__ I1'_}. 
l'2nk,1L 2 (k,lL) , 

Here d = 41TldabI2nDo/3tiYab. _ 

(2.3) 

(2.4) 

Substituting the expressions for P in (1.11), we ob
tain the mean values of the amplitude and of the phase. 
It is convenient to write down the solution of (1.11) in 
the form 

E ... G(S)=G(s.)e"·", cp(s)=F(s)-F(s,), s.=aE,', (2.5) 

where 'T/ = (w~(J.J.)d- 21TU)/2wo. 
The form of the functions G(z) and F(z) depends on 

the character of motion of the atoms. For immobile 
atoms 

[ 
4110' ] -°08(.)'/"0 

G(z) = z 1- () (1 + g(!1)z) , 
w,g !1 d 

(2.6) 

!1g(!1)d 
F(z)= - In{z[w,g(!1)d - 4110(1 + g(!1)z) 11. 

4vo'I'] 
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For moving atoms at yabff+T « kou 

G(z)= 1'~-1 (1 4nal'1+Z)~, (2.7) 
(l'1+z+1)" coog(lJ.)d 

F(z) =0, 

where 
coog(lJ.)d - 4na coo'g'(IJ.)d' 

a = ~ = ----=--::~~--
coog(lJ.)d+4na' 2na(coog(lJ.)d + 4na) . 

The corresponding values for a = 0 were obtained by 
Bo'lkova [lJ • 

3. CALCULATION OF THE POLARIZATION 
FLUCTUATIONS 

We represent the fluctuations of the populations and 
of the population difference in the form of sums of 
spontaneous parts, which do not depend on the field 
fluctuations, and induced parts due to the field fluctua
tions. 

The equations for the induced parts of the fluctua
tions coincide with (1.14). Since we are interested in 
the noise emission along the field direction, i.e., at 
k II leo, it follows that K «ko. We can therefore dis
regard the derivatives with respect to the coordinate in 
(1.14) if the condition (2.1) is satisfied. 

From (1.14) we can find the connection between the 
sp~ctral components of the polarization fluctuations 
o P!,2V(n) and the spectral components of the field fluc-

tuations oE1,2n' It is convenient to write this connec
tion in the form , 

6P"i(Q)= L,x,j(Q,V)6EjO, i= 1,2. (3.1) 

For K ij(n, v) we obtain the expressions 

x (Q v)= XoY·, (-iQ+y) ('1' .. '+ IJ.,')-'Y'Y,,'6 
II, y • .'(1+6)+IJ.,' d ' (3.2) 

x,,(Q,v)= XoY., [(-iQ+y)(y .. ,+IJ.,') + 'Y'Y .. '6 ]; 
'1' • .' (1 + 6) + IJ.,' d d (-iQ + Yo,) 

(Q ) _ XolJ.,y., (-iQ + '1') ('1' • .' + IJ..') + 'Y'Y.,6 (-iQ + '1'.,) 
x" ,v- y.,'(1+6)+IJ..' d(-iQ+y.,) 

(3.3) 
X21(Q,V)=- QIJ.. XII(Q,V). 

-i +'1'., 
Here 

Thus, the interaction of the components of weak noise 
fields with a strong field cause the polarizability of the 
medium to become a tensor of second order. The equa
tions for the cosine and sine components (OE1 and oE2) 
of the noise field are in general interrelated. 

The equations for the spontaneous parts of the fluc
tuations are obtained from (1.14) by discarding the 
terms containing OE1 and oE2. We solve these equations 
by the same method as in[1l,12]. This method enables us 
to express the space- time spectral density of the polar
ization fluctuations (0 ~)n K in terms of the spatial 
spectral density (o~)K' Under the condition Pa, Pb 
« 1 (see[13J ) we obtain 

(6P'.')C.K = 2 (6P,.'),.: Re ( -i~ + '1'), 

(I3P2.') C.K = 2 (6P,.') 1C Re [ -iQ + 'I' + '1''1'.'6 1 
d d (-iQ + y.,);} , 

(6P,,6P,;)C.lC = (6P,,'),.: :(~~~Q++y:~ . (3..4) 

The values of (0 p2 v)K are given by the expression [13] 1,2 
(6P'.')K=(6P,.'h= nl~.'I' R6(v-v'). (3.5) 

It follows from (1.5) that at Y ~ Yb = Y the average 
value of the population sum is R= R(O), i.e., (oP~,2v)K 
does not depend on the field. 

For a sufficiently short medium, when the field 
amplitude E can be regarded as constant and equal to 
Eo, the system (1.13) can be solved in general form. 
From the solution of this system we can obtain ex
pressions for the spectral densities of the field fluctua
tions (OE~)n' (oE~)n' and (oE10E:)n, and for the noise-· 
emission flux. The spectral density Wn(L) of the noise
emission flux of a medium of length L is defined as the 
difference between the noise fluxes at the input and at 
the output. Without going through the intermediate step, 
we present for this density the final expression: 

Wo(L) = nco,'c-'[ (69"') ""+c. A - 4="(Q) (ii + 1/2 ) JL. 

Here 

is the spectral density of the polarization fluc tuations, 

x" ('Q) = 1/2 (xt' (Q) + x,' (0) + x,," (Q) - Xt2" (Q», 

x,(Q) = S x,,(Q, v)dv, 

X'j(Q)= S Xtj(Q,v)dv 

is the imaginary part of the polarizability of the medium. 
The quantity Wn(L) characterizes the total thermal 

and spontaneous emission flux in a solid angle oJ 
= >..2/S, where>.. is the wavelength[9 J • 

4. NOISE EMISSION OF A GAS AMPLIFIER WITH 
INHOMOGENEOUS LINE BROADENING 

It follows from (2.4) and (3.3) that in the case of in
homogeneous line bro~ening, when yabv'I+T« kou 
and JJ. «kou, we have P1 = 0 and K12(n) - K21(n) = O. 
Consequently, Eqs. (1.13) are separable in this case and 
can be solved. By solving these equations we obtain the 
following expressions for the spectral densities of the 
fluctuations: 

, 4nficoo { 1 nco, S' {4n [ 
(6E,.2(X»0=~ n+T+--;';- exp --; a(x-x') (4.1) , 

+ co, J. x:.,(Q)dx ]} [(6P'~')0.K - 4fix:.,(Q) (ii + '/,) Jdx'}

The noise-emission flux of a medium of length L is 
represented as a sum of two terms: 

where 
cS, fico, (_ 1 ) 

W,.,o(L)=S;(6E, .• (L»c--2- n+T . 

It follows from (4.1) that 
• L • (4.2) 

W, .• o(L)= 2nc , S 1,.,0 (x')exp [- 4n {a(x - x')+ co, S x:.,(Q)ck}] ck', 
• 0 c ~ . 
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/,,20= ::·[(IlP,~,)0'K-4nx:,,(Q)(n+--})]. (4.3) 

An analysis of expressions (4.1) and (4.2) is in gen
eral difficult. We therefore calculate first the spectral 
density of the noise-emission flux at zero frequency. 
It follows from (3.2), (3.4), and (3.5) that at n = 0 

/ Olo'ng(/L)d[ 1 (_+ 1)+ 1 RO
] 

10 = ne31' 1 + s 1 + S n 2" 2" DO ' (4.4) 

/ = Olo'ng(/L)d 1'1 +s[_1_(n+~) +~ RO
]. 

20 ne' 1 + S 2 2. DO 

We assume henceforth that the variation of the field 
in the medium as a result of the conductivity a is much 
less than the corresponding variation due to the imagin
ary part of the polarizability, i.e., a « Wo I K ~ ,21. This 
condition is usually well satisfied. Neglecting a, we 
obtain 

Wo(L)=nOlo 1 + 612 [(1--1) (n+~+~ RO) +~ RO Sln~I. 
1 + 1; 1;0 2 2 DO 2 DO S, 

(4.5) 
'The dependence of ~ on L is determined here by form
ula (2.7) at a = O. 

On the other hand, if Inl »'Yabv'[, then 

1 1 RO 
Wo(L)=nOlo(exp{kog(/L+Q)Ld}-f) (it+ 2 +T DO)' (4.6) 

i.e., the noise-emission spectrum does not depend on 
the field (see[ 9J ). This result is phYSically obvious, 
since saturation of the working transition by the strong 
field comes into play only at frequencies In I ~ Yabv'[. 

In the intermediate frequency region 0 < I n I < Yab v'[, 
it is difficult in general to obtain explicit expreSSions 
for the noise-emission spectrum. We consider there
fore a particular case of practical importance, when 
Y « Yab' This condition is satisfied, for example, for 
a mixture of helium and neon at sufficiently high pres
sures. 

For the frequencies n satisfying the condition v'yYab 
« Inl « kou, we have 

/'0=/'0= Olo'ng(/L+Q)d{[ Vab'S - Vab'S-Q' (4.7) 
ne' 1'1 + s(Q' + Vao'S) , + 4Q2Vab' 

+. Q'(Q' + 4Vao' + Vao'S) ] (_ + 1 ) + 1 RO
} 

(Q' + Vao'S) , + 4Q'Vao' n T T DO' 

From this we obtain at ";1'1' ab « I n I « Y ab 

{ s ) _ 1 1 R') 1 R' 
Wo(L)=nOl, (~-1 (n+T+T D' +T D' s· (4.8) 

[ 1'1+so-1 1'1+6-1 1 (1'1+s-1)(~+1)]} . +-~ . 
s, S 2 (1'1+ s +1) (1'1+s,-1) 

At Inl »'Yabv'[, expression (4.7) leads to (4.6). 
Comparing (4.8) with (4.6) and allowing for the de

pendence of ~ on L, we see that at Jl = 0 there is a rela
tively broad dip of width on the order of Y ab.;r- at the 
center of the emission line. The relative depth of this 
dip, which we define as 

tends to unity in a long amplifier, when ~ »1, ~o, 1/~ 0, 
and to (n + 1/2)/(n + 1/2 + RO/2Do) in a short amplifier 
at ~ ~ ~ ° »1. The existence of such a dip is due to 
saturation of the working-level population difference by 

the strong field; this saturation causes the polarizabil
ity components K~,2 to saturate. 

At the center of the dip, the spectrum has a fine 
structure whose character depends on the length of the 
amplifier and on the magnitude of the input signal. In a 
short amplifier at ~ ~ ~ ° » 1, there is at the center 
of the dip a narrow maximum of width of the order of 
{YYab (compare (4.5) with (4.8)). The presence of this 
maximum is due to the increase of the spontaneous fluc
tuations (0 P~)n K at zero frequency with increaSing 
field. The relahve height of the maximum, i.e., the 
quantity 

tends to /[0/2 in a strong field. 
At large amplifier lengths, when ~ »1, ~ 0, 1/ ~ 0, 

the shape of the noise-emission spectrum at the line 
center depends on the field at the input. In the case of 
a strong input signal (~o » 1) there is at the line cen
ter a peak whose relative height is of the order of 
(1/2)v'[0In(U~0). In the case of a weak input signal 
(~o « 1), a peak appears at the line center only when 
the amplifier is very long and In (~/~ 0 »1/~ o. The 
relative height of the peak is then 

~6'ln~/( n+~+~ R') 
4DO SO 2 2 D' . 

We note also that when the amplifier length is increased 
the values of the spectral density Wn(L) at Inl 
» Yabv'[ increase much more rapidly than Wn(L) at 
n = O. 

The noise-emission spectra for the case 'Y = Yab 
were calculated with a computer. The results of the 
calculations are shown in Fig. 1. 

5. NOISE EMISSION OF ACTIVE MEDIUM WITH 
HOMOGENEOUS LINE BROADENING 

Obviously, formulas (4.2) and (4.3) are valid also for 
a medium with homogeneous line broadening at Jl = O. 
The expressions for the quantities (0 Pi)n,K and Ki(n) 
can be obtained in this case from formulas (3.2)-(3.5) 
by putting in them v = O. The result is 

4nx '(Q) = _ _ d_ Vao'[Q' + v' (1 + s) ] + YYabS[Q' - YYab( 1"+ s) 1 
, 1+; Q'(V+Vab)'+[Q'-YYab(1+;)1' ' 

d Va,' 4nx.'(Q)= -
1 + S Ya.' + Q' (5.1) 

/jP' = dn R' Yab'[Q' + y'(1 + s)] 
( ')O,K 2n D, Q'(V-+-Yab)'+[Q'-YYab(1-1;)]" (5.2) 

(IlP ') _ dn RO Ya.' 
, O,K - 2n D' Ya.' + Q2 

As follows from (5.1) and (5.2), the spectra of K~(n) 
and (0 P~)n ,K retain a Lorentz shape in a strong field. 

The spectra of K ~(n) and (0 P~)n ,K acquire dips in fields 
~ ;::: Y /Y abo In a strong field, the width of the dip is of 
the order of ('YYab~)1!2. 

We now derive expressions for the spectral densities 
of the noise-emission flux components W1n(L) and 
W2n (L). An expression for W2Q(L) can be obtained at 
all frequencies: 

T nOlo {( _ 1 1 R') [ ( s ) ,(0, ] JiI,o(L)=-2- n+T+T DO ~ -1 
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RO Va.' [ ( 6 ) '(O)-I]} +--61- - . 
2DO Q' So (5.3) 

In formula (5.3), the dependence of ~ on L is determined 
from (2.6). It follows from (4.3) that the maximum of 
the spectral density W2n (L) is reached at n = O. The 
spectrum of W2n(L) in a short amplifier has a width of 
the order of Yab' 

For the component W1n(L), we can easily obtain an 
expression at the frequency n = 0: 

W (L)= nlllos {(~-~ 
10_0 2(1+s)' So s (5.4) 

+ So - s) (n +~+~) 2 2DO 

RO ( 6 + Do S - 60 + In -r,- )} . 
On the other hand, if Inl »v'YYab~ , then WIn = W2n. 
It follows from (5.3) and (5.4) that a dip exists in the 
spectrum of W1n. In a strong field, the width of the dip 
is of the order of (yy ab 01/2 , and its relative depth tends 
to unity. 

The shape of the spectrum of Wn = WIn + W2n de
pends strongly on the ratio of the width of the dip in the 
spectrum of WIn to the width of the dip in the spectrum 
of W2n (~Y ab)' H Y ~ <R: Yab' then the width of the dip 
is much smaller than Yab and the decrease of W~ as 
In I - 0 is faster than the increase of W2n. The spec
trum of Wn therefore contains at the line center a dip 
of width (yy ab~ )1/2, the depth of which in a strong field 
tends ~o one- half. On the other hand, if Y ~ »y ab' then 
the width of the dip is much larger than Yab' and the de
crease of WIn as In I - 0 is slower than the increase of 
W2. Therefore the spectrum of Wn contains in this case 
a central maximum at n = 0, and two side maxima at the 
frequencies n Ri ±(Y'Yab01/2• In a short medium, at 
~ ° <R: 1, the heights of the side maxima are approxi
mately half the height of the central maximum, and the 
side maxima increase more slowly with increasing 
length of the medium than the central maximum. 

Figure 2 shows plots of the noise-emission spectrum 
of an amplifier at Y = Yab for different values of the 
input and output signals. 

6. NOISE EMISSION OF ABSORBING MEDIUM UNDER 
THE INFLUENCE OF A STRONG FIELD 

The results obtained in Secs. 1-3 remain in force 
also for an absorbing medium, i.e., when D < O. We 
confine ourselves to a medium in thermal equilibrium 
with the ambient. In this case the condition Ii + 1/2 
+ (1/2)Ro/Do = 0 is satisfied, i.e., RO/IDol = 1 + 2n. 

15 

Q~-J~-Jq--~5--~/--

Qlyo' 

FIG. 1. Spectrum of the fluctu
ations of an active medium with in
homogeneously broadened transition 
line at RO/Do = 3, kouhab = 10, 'Y = 
'Yab' and ~o == aE~ = 10. The curves 
are marked with the values of ~ == 
aE2. 

FIG. 2. Spectrum of the fluctu
ations of an active medium with 
homogeneously broadened transi
tion line at RO /Do = 3, 'Y = 'Yab, and 
~o = 10. 

I 

O~~----~-JJ~-Jq---t 

QlYa,' 

b 

J II 
fJlrd 

FIG. 3. Spectrum of fluctuations of an absorbing medium with 
inhomogeneous broadening (a) and with homogeneous broadening (b) 
of the transition line 'Y = 'Yab, n + Yo + RO/2Do = 0, ~o = 10; ko uhab = 
lOin case (a). 

We analyze first the expressions for the quantities 
11 2n in the case of a gaseous medium with inhomogene
mis line broadening at Y = Yab' After averaging over 
the velocities at IJ. = 0, we obtain 

lIlo'ng(Q)d RO S 
11 = ne' DO 2"'B(Q)[1 + s-Q'/v'+B(Q))," (6.1) 

lIlo'ng(Q)d R' v's (6.2) 
1,= ne' DO 2(v'+Q')(1+s)"" 

where 

B(Q) = {[1 + (Q 1 V + 6'1.),)[ 1 + (Q Iv - S'I.),]}'I •. 

From the form of the obtained expressions for 11 2(S1) it 
follows that when ~ ° » 1 the emission spectrum' of the 
short medium contains a central maximum of width of 
the order of y, the height of which is ~ ~ 1/2 , and two 
side maxima at the frequencies n ~ ±y ~ ~/2, the height 
of which is ~ ~ ~/4. At n > Y ~~;2, the spectral density 
of the noise emission decreases sharply. The reason 
for this drop is that the strong field does not influence 
the frequencies n » y(l + ~ 0)1/2, and a medium in 
thermal equilibrium with the ambient does not produce 
additional radiation. For an active medium, the emis
sion at these frequencies is different from zero. 

Figure 3a shows the results of a numerical calcula
tion of the noise-emission spectra of passive media at 
~ ° == aE~ = 10 for different values of the output field. 
As seen from a comparison with the plots in Fig. 1, the 
spectra of short amplifying and attenuating media are 
similar in shape, but differ in width. The Similarity in 
the shapes of the spectra in the frequency region 
n :::; Y ~~/2 is due to the action of the strong field, 
which equalizes the populations of the working levels 
in all cases. With increasing length of the medium at 
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~ ~ 1 the fine structure of the spectrum vanishes and 
the line width becomes of the order of y. 

The intensity of the noise emission of the passive 
media depends on the length of the medium. It is low 
for very short media, when ~ 0 - ~ « ~ 0, and for very 
long media, when ~ « 1. There exists an optimal 
length at which the noise-emission intensity is maximal. 
This optimal length can be estimated by considering the 
dependence of the spectral density of the noise emission 
at zero frequency on the length of the medium. It follows 
from (4.5) that 

() lim. R' t 1 + sl2 1 ~. (6 3) 
W o_. L =Z!D.I"~ nT' . 

The maximum value of W n = 0 is attained under the con
dition 

In~= 1+ ~ 
s 2(1 + s)+ s' (6.4) 

If ~ 0 » 1, then Eq. (6.4) has an approximate solution 
In (~o/O = 1, i.e., ]:2 = E~/e (here and below, e is the 
base of the natural logarithm). Substituting this value of 
E2 in (6.3), we obtain the value of Wn = 0 at the maxi-
mum: 

Thus, the maximum value of the spectral density of the 
noise emission at l1 = 0 is determined by the input field. 

We now consider the case of a medium with homo
geneous line broadening. Since the quantities 11 2n in a 
strong field are determined mainly by the polar'ization 
fluctuations (6P~'2)n,K' it follows that the emission of a 
short passive medium has the same character as the 
emission of a short active medium. Just as in the case 
of an active medium, the emission spectrum contains 
either a central maximum with two side maxima, if 
Y ~ ~ Yab' or a dip at the line center, if ')I ~ « Yab' 
With increasing length of the medium, the fine structure 
of the spectrum becomes smoothed out. 

We determine the optimal length of the medium by 
investigating the dependence of the spectral density of 
the noise emission at n = 0 on the length. From (5.3) 
and (5.4) it follows that 

W _ = lim. ~ [~+(~+_1_)ln~). 
0-' 2 ID'I S (1+;)' 2. (1+6)' ; 

From this we get at ~ 0 » 1 that W n = 0 is maximal at 

two field values: ~ RJ ~ ole and ~ RJ 1. The first of these 
maxima corresponds to the maximum of W2l1 = 0, and 
the second to the maximum of W1U = O. The appearance 

of the second maximum is connected with the fact that 
in an absorbing medium with homogeneous line broaden
ing we have K~(O) s; 0 at ~ ~ 0, i.e., a weak field is not 
weakened in the presence of a strong field, but is 
strengthened. In the first maximum we have 

and in the second 
W _ = lim, ~ 

0-' 8!D' I So, 

i.e., the two maxima are approximately equal in mag
nitude. The noise-emission spectra of an absorbing 
medium with homogeneous line broadening are shown 
in Fig. 3b. 

In conclusion let us discuss the conditions under 
which the results are valid. The fine structure of the 
spectrum is determined by the time- dependent param
eters y and Yab and by the field a"E2. In the model as
sumed by us, the quantities Y and Yab are assumed 
constant. Actually they themselves can depend on the 
field, and this can affect the character of the fine struc
ture. In addition, in our model we do not take into ac
count certain subtle effects, for example the recoil 
effects following emission of a photonI14] and others. 
These effects can lead to a hyperfine structure of the 
spectra, which we have not considered. We note also 
that to measure the noise-emission spectra it is neces
sary to satisfy the condition that the number of photons 
striking the detector during the measurement time T 

be much larger than unity. If the detector bandwidth is 
.6W, this condition takes the form WnT6W/liwo ~ T6w 
» 1, i.e., T » 1/6W. 
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