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Passage of a wide beam of fast heavy nonrelativistic particles through matter is discussed. Accurate 
distributions in energy and depth are found without assumption of small energy loss, in the case when 
the deflection due to multiple scattering can be neglected. The range distribution for heavy particles 
in matter is obtained. A simple approximate expression is obtained for the distribution function which 
is applicable for depths nearly equal to the total range. The limits of applicability of the results ob
tained are investigated. 

1. The problem of passage of fast charged particles 
through matter has been discussed by a number of 
authors[1-7J for plane geometry of the scatterer and a 
wide beam. The distribution function f(x, T) as a func
tion of the depth x and energy T has been calculated, at 
firstfor the case of thin absorbers and small energy 
loss [1,2J , and later with refinements [3-5J. References 
to the unpublished work of Symon[6J for the case of 
thick absorbers with high energy loss can be found in 
Rossi's book[7J and in the article by Rosenzweig[8J . 
The results given there refer for the most part only to 
electrons. However, the explicit form of the distribu
tion function itself has not been obtained up to the pres
ent time for heavy particles and thick absorbers. It is 
therefore of interest to find the distribution function in 
explicit form. We obtain below an analytic expression 
for the distribution function of heavy nonrelativistic 
particles without assuming that the energy losses are 
small, for the case of plane geometry, assuming that the 
deflection due to multiple scattering can be neglected. 
A simple approximate expression is obtained for the 
distribution function up to depths close to the total 
range. The distribution in particle range is found. 

2. Let a wide monoenergetic flux of fast charged 
particles of mass M »m with initial energy To « M 1m 
be normally incident on the surface of a plane-parallel 
uniform plate (m is the electron mass, and T is the 
kinetic energy of the particles in units of mc2). If the 
particle energy is 

T':l>Tcr =2 (137 ;;A-'1-)', (1) 

where A is the atomic weight of the scatterer, then in a 
Single collision event a particle cannot be scattered by 
an angle greater than ~max: 

t}mox ,., 280A -'I. (2 : T) -'I. ~ 1. (2) 

For this reason the mean square scattering angle (e 2 ) 

turns out to be small over the entire path of the particle 
up to its stopping, so that multiple scattering can be 
neglected. For protons, condition (1) is satisfied for 
T > 10-3 MeV for aluminum, and for T > 3 X 10-4 MeV 
for lead. 

We will designate by f(x, T)dT the number of parti
cles per unit volume at depth x whose energy lies in the 
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interval from T to T + dT. It is well known that f(x, T) 
satisfies the equation 

af _ Sm,xf ( T) dolT, e) 
---no x de ax 0' dB 

(3) 

·s· . dolT + e, 8) So 
+nO j(x,T+e) d de+-Ii(x)Il(T-To), 

o B Vo 

where no is the atomic denSity of the medium, da(T, E) 
is the scattering cross section corresponding to the 
transition from a state with energy T to a state with 
energy T - E, Vo is the initial velocity of the particle, 
So is the number of particles incident on a unit surface 
of the medium per unit time, E* is the lesser of the 
quantities t:. = To - T and Emax (t:. is the energy lost by 
the particle), and Ema is the maximum energy which 
the particle can transter to an atomic electron in the 
ionization process. In the nonrelativistic case[9J 

m 
Bmax=4 M T. (4) 

The function f(x, T) must satisfy the conditions: f(x, T) 
= 0 for x < 0 and f(x, T) = 0 for T < 0 and T > To. 

The transport equation (3) has been solved in the 
small-energy-loss approximation[1,2J , where t:. « To. 
In this case in Eq. (3) we can approximately set da(T, E) 
~ da(To, E). If t:. ~ To, replacement of T by To in the 
transport equation is not permissible and the exact solu
tion cannot be obtained in general form. However, if we 
take into account Eq. (4), we can expand the function 
f(x, T + E) in a series in the small quantity E. If we con
fine ourselves to the first three terms of the expansion 
in the region t:. > Emax' we obtain instead of Eq. (3) 

1 -,- a't at at So (5) 
--8 (T)--~(T)-+-=-Ii(x)Ii(T-To) 

2 aT' aT ox Vo ' 

where E(T) and E2(T) are respectively the mean energy 
and mean square energy lost by the particle per unit 
path. In calculation of E(T) we can set da(T + E, E) 
~ da(T, E), since close collisions with large energy 
transfer occur relatively rarely and it is essential to 
include them in determination of the probable energy 
loss but not of the average energy loss. [1OJ Therefore 
E(T) is determined by the usual Bethe- Bloch formula [9J : . 

Smax do(T,8) z'M 4mTIM 
dT)=no 8-d--de=2nnoZr.'--ln--

o B Tm f(Z) , 
(6) 
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where ze is the charge of the particle, Z is the atomic 
number of the medium, I(Z) is the total ionization poten
tial of the atom, and re is the classical electron radius. 
Equation (6) was obtained on the assumption[ 11J 

ze2 M 
hv""~ 1, T~;;-J(Z). (7) 

The first of the inequalities (7) is satisfied for protons 
if T »50 x 10-3 MeV. From the second inequality (7) 
we obtain T > 0.3 MeV for aluminum and T > 1.8 MeV 
for lead. For jJ. mesons the second inequality (7) gives 
respectively T > 0.03 MeV and T > 0.18 MeV. Setting 
T ~ To in the argument of the logarithm, in calculation 
of E2(T) we take into account that the main contribution 
to the integral over E is from the region of large energy 
transfers t so that the atomic electrons can be consid
ered free 7 ,9J. Us ing the well known form ula for the 
cross section for scattering of heavy nonrelativistic 
particles by free electrons [7J 

dcr(T, e) = nZr' z'M ~ 
de e Tm e2 ' 

(8) 

we obtain , 
- mS"",da(T+e,e) z'M ( m) 
e' = " e de de = nnoZr,' -;;;-In 1 + 4 At "" 4nnoZr.'z' (9) 

i.e., E2 does not depend on energy. 
Equation (5) has been solved for small depths [7J , 

when it is possible to set T ~ To in Eq. (5). On this as
sumption we obtain for f(x, T) the usual Gaussian dis
tribution (Eo = E(To)) 

t( T) - s, 1. {(To-T-e.,x)'} 
x, - ---exp - (10) 

Vo l' 2nx? 2x e' . 

3. In solution of Eq. (5) it is convenient to transform 
to the new variables 

u = T I To, I; = x I Ro; 

ST. dT m [ 4mToiM -I 

Ro= --""-To' 4nnoZr'z'ln J 
o e (T) M • I (Z) . 

(11) 

(12) 

In the new variables E = (2ur1 and E2 = (2vr1, where the 
parameter v is defined by the expression 

1 M· 4mTo 
v=z-;;ln J(Z)M' 

(13) 

Taking into account Eq. (13), we can transform the ex
pression for the range (12) to the form 

T.' A 1 
R. = 0,833--- [cm] 

v Zz' p , 

where p is the density of the scatterer material in 
g/cm3 • 

(14) 

Defining a dimensionless distribution function f( ~, u) 
by the relation 

f(~, u) =0, if 6<0, or f(ku) =0, if. ~<oandu> 1. 

we write the transport equation (5) in the form 

_...!.. a'f(l;,u) -...!..!.!.+!l.=S.~6(1;)15(1-u), 
4v au' 2u au al; D. 

where f( ~ , u) = 0 if ~ < 0, and f( ~ , u) = 0 if u < 0 or 
u>1. 

(15) 

As can be seen from Eq. (15), the dependence of the 
distribution function f( ~ , u) on the properties of the 
medium and the properties of the particles being scat-

tered is determined, in the approximation conSidered, 
by the single parameter v. The value of v in general 
does not depend on the charge of the scattered particles 
and depends very weakly on To and Z. Since v ~ M/m, 
we have v »1. For example, for a change of proton 
energy from 10 to 100 MeV the value of v changes in the 
range 4600 to 6700 for aluminum and 2600 to 4800 for 
lead. 

If we formally set v = 00 in Eq. (15), we obtain the 
equation for the distribution function fo( ~, u) in the 
continuous-loss approximation: 

1af. of. R. 
---+-=S.-6(1;)15(1-u). (Hi) 

2uau as Do 

The solution of this equation has the form (u ~ 0) 

f.(6, u) =2S.v.- IR.I')(1-uM(1-s-u'), (17) 

where 11 is a unit function. 
It can be seen from (17) that in this approximation 

the particle at depth ~ has with certainty an energy 

u(l;) = l'1- 1;. (18) 

It will be shown below that the energy value (18) agrees 
rather well up to large depths ~ ~ 1 with the most 
probable energy ump at depth ~. It is just this fact 
which is decisive for use of the continuous-loss model. 
However, the distribution function fo( ~ , u) does not des
cribe the energy loss fluctuations and the spread in the 
particle range in the material. In this approximation all 
particles up to their stopping travel the same path length 
~ = 1, i.e., x = Ro. Thus, Ro has the meaning of range in 
the continuous-loss approximation. 

The term with the second derivative in the transport 
equation takes into account the statistical spread in en
ergy and, as a consequence, the spread in range. Since 
the coefficient of the second derivative with respect to 
energy in Eq. (15) is small, it is evident beforehand that 
the distribution function has a well defined peak, and 
only at great depth does the smearing of the distribution 
function become significant. 

Let us look for a solution of Eq. (15) in the form 

( R. 1;. (19) 
f l;,u)=S.-;,-u-'+'''<1l(I;,;U), 1;.= 4v' 

For the function q,( ~, u) we obtain the equation 
a'<1l 1 a<1l (v - 'I,)' a<1l 
au' +~a;;:- u' <1l- aI;, =-15(sv)15(1-u). (20) 

Using the Hankel transformation in the variable u, it is 
easy to show that in the region ~ > 0 for 0 ~ u ~ 1 

f(l;,u)=S. R,U_'+'" jJv_'I.(YU)J'_'I.(y)exp{-~Y'}YdY, (21) 
Vo 0 4'\1 

where J is the Bessel function. Carrying out the integra
tion over y, we obtain the following expression for the 
distribution function: 

f(s, u) = 2S, ~. yU-'+'''Jv_'I' (2v n exp{ _ v 1; U'}, (22) 

where Iv_ l12 is the Bessel function of imaginary argu
ment. 

Let us calculate the distribution of particles in en
ergy without regard to the depth: 

S~ R. 2v 
N(u)du = du f(l;, u)dl; = 2S.---du. 

o v. 2v - 1 
(23) 
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We see that the distribution obtained does not depend on 
the particle energy. This result is the direct conse
quence of neglecting the deflection due to multiple scat
tering. The total number of particles in the entire half
space ~ > 0 is 

, R. 2v 
N= SN(u)du=2S.---. (24) 

• v. 2v-1 

Now we easily find the normalized probability distribu
tion function: 

1 v - t I, , { 1 + u' } ( u ) 
F(~,u)=Nt(~,u)=-~-U-('-I') exp -v-~- 1'_'1, 2v~ , 

(25) 

where F( ~ , u)d~ du is the probability of finding a parti
cle in the depth interval from ~ to ~ + d~ and the en
ergy interval from u to u + duo The function F satisfies 
the normalization equation 

w , 

S ds J duF(~, u) = 1. (26) 
o • 

4. It is of interest to consider a number of limiting 
cases in which the expression for F( ~ , u) is substan
tially simplified. In the region of small depths the en
ergy loss is small, and therefore ueff ~ 1. If the argu
ment of the function I / is greater than the square of 
·t . d' V-12 
I S III ex, I.e., 

O~s<2/v, (27) 

then instead of Iv_ 112 we can use its asymptotic expres
s ion [ 12 J and obtain 

F(S'U)""~ Csf'exP{-V[lnu+ (1-sU)']). 
In the region of effective energy values 

Eq. (28) goes over to the Gaussian distribution (10), 
which in the variables ~,u has the form 

1 (V )'/' { [U-(1-S/2)]'} 
F(s,u)""2 n~ exp -v S . 

(28) 

(29) 

(30) 

Thus, the inequalities (27) and (29) determine the region 
of applicability of the Gaussian distribution. 

In the region of large depths, ueff ~ -1::; 1. There
fore, USing the well known formula of Meissel [13,14J 

I ( x) "" (J.1x) "e-· exp{J.1(l + x'),"} (31) 
• J.1 f(J.1+1) (1 +x')"'[l +(1 + x'),"]"' J.1>l, 

where r(J,L + 1) is Euler's gamma function, after simple 
transformations we obtain 

1 (v-'/, )'/' [1 +(1 + 4u'/s') "'l'" 
F(s,u)=z '~ [1 +4u'/s')'1' exp{-vB(s,u)}, (32) 

l+u' ( U')'/, 1;[1+(1+4u'/s')'''] (33) 
B(s u)=--- 1 +4- +In . ,. E r 2 

We see from (32) that since V » 1 the peak of the dis
tribution function at depth ~ is determined mainly by 
the minimum of the expression (33). Solving the equa
tion dB/ du = 0, we find 

(34) 

which is identical with (18). Inclusion of the factor in 
front of the exponential in (32) gives a correction to 
(34) of the order V-I. Thus, to depths ~ :5. 1 the distri
bution function has a local maximum corresponding to 
an energy u = (1- ~)112. In the region of greater depths 

FaJa) 
JQ 

It 

5 

J 
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OJ 
Ilo TlTo 

FIG. I. Energy spectrum for protons with initial energy 20 MeV in 
aluminum at depths: 1-0.8 Ro, 2-0.9 Ro, 3-0.95 Ro, 4-Ro, 5-1.01 
Ro, 6-1.02 Ro. 

the distribution function generally does not have a local 
maximum, and the most probable energy is the energy 
u = O. If in the region 0:5 ~ < 1 we expand B(u, ~) in a 
series in powers of the difference [u - (1 - 0 1/2] and 
retain the first three terms of this expansion, we obtain 
the following simple expreSSion for the distribution 
function: 

1 I 2v ) 'I. { 1 - S } 
F(s"u)""2 n[l-(1-s)'] exp -2v1_(1_s),[u-(1-0'''l' . 

. (35) 
The region of applicability of this function is determined 
by the condition 

(36) 

Thus, over a wide range of depths the distribution func
tion is determined by Eq. (35) of the Gaussian type. We 
note that for small ~ Eq. (35) goes over to (30). 

In Fig. 1 we have shown energy spectra for protons 
with initial energy To = 20 MeV in aluminum (v = 5240, 
Ro ~ 0.196 cm). As can be seen, up to depths x ~ 0.9 Ro 
the curves are symmetric about the most probable en
ergy. Therefore at such depths the particle distribution 
in energy can be quite accurately described by Eq. (35) . 
With increasing scatterer thickness the asymmetry of 
the particle-energy-spectrum curves increases, so that 
Eq. (35) becomes inapplicable. In this case it is neces
sary to use Eq. (32) to find the energy spectrum. 

Curves 5 and 6 of Fig. 1 show the energy spectrum 
of particles at depths greater than Ro, i.e., in the region 
which is inaccessible in the continuous-loss model. We 
see that the probability of observing a particle falls off 
rapidly at depths greater than Ro. 

In Fig. 2 we have shown energy spectra for J,L mesons 
with To = 20 MeV for aluminum (v = 820, Ro ~ 1.42 cm). 
For mesons the asymmetry of the distribution function 
is appreciably more important and begins to appear at 
depths less than occurs for protons, so that the region 
of applicability of Eq. (35) is limited to depths 
x S (0.7-0.8)Ro. At large depths the distribution func
tion has a characteristic tail in the region of energies 
less than the most probable energy. Since the energy 
spread of the particles is quite Significant for mesons, 
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F(~,a) 

FIG. 2. Energy spectrum for J.I mesons with initial energy 20 MeV in 
aluminum at depths: 1-0.8 Ro. 2-0.9 Ro. 3-0.95 Ro. 4-Ro. 5-1.02 
Ro. 6-1.05 Ro. 7-1.07 Ro. 

use of the continuous-loss model for these particles is 
limited to depths x:S 0.7-0.8 of the range Ro. 

5. It is well known that particles with the same en
ergy, as the result of statistical fluctuations, traverse 
different paths in matter before coming to rest. Let 
W(r)dr be the probability that a particle completely 
loses its energy at a depth from r to r + dr' r is the 
range of the particle. As shown by Bohr[lsj, the range 
straggling of fast particles will be mainly determined 
by the initial part of the path, where the particle veloc
ity is large and the principal energy-loss mechanism is 
the collision of particles with atomic electrons. There
fore the range distribution can be obtained if in Eq. (25) 
we forma.lly go to the limit u - 0; taking into account 
that for small u 

( U) 1 ( vu ) ,-'I. 
1'_'1. 2v"T f"" r(v+'/,)"T • 

we find 
V'-'I. 1 { [ 1 ]} W(r)= exp -v -+lnr . 

rev - 'I,) 1r r 
(37) 

Making use of the fact that II »1 and using the well 
known asymptotic expression for the gamma function 

rev - 'h) "" (2n)'I·V'-'e-'. 

we will write Eq. (37) in the form 

W(r)= (2:J" exp{-v [++lnr-1]). (38) 

Solving the equation dW/dr = 0, we find for the most 
probable range the value 

2v 1 
rmp= 2v + 1 "" 1- 2v < 1. (39) 

Using Eq. (37), let us calculate the moments of the dis
tribution W(r). After simple calculations we obtain for 
the n-th moment 

- J r(v-n-'/,) 
r" = rOW (r) dr = v n --":....,---,..,..,....:.:.. 

o rev - 'I,) . 
(40) 

Setting n = 1 in Eq. (40), we obtain an expression for the 
mean range 

rev - 'I,) v 3 
r=v --,-"" 1 +-v> 1. (41) 

r(v-'/,) v- I, 2 

Comparing (41) and (39), we see that r > rmp' This 
means that the function W(r) is more drawn out for 
values r > r mp' For ranges less than the most proba
ble range, W(r) drops more rapidly. Near the most 

probable value (39) the range distribution function W(r) 
can be written approximately in the form 

( V)'" { (r-r )I}[ 2v W(r)"" 2n exp -v 2 mp 1 +3(r-rmp)']. (42) 

If we neglect the second term in the square brackets, 
we obtain the ordinary Gaussian distribution. The pres
ence of the second term reflects the asymmetry in the 
distribution W(r). The difference of (38) from a Gauss
ian distribution is due to the fact that successive colli·
sions of particles with the atoms of the medium are not 
statistically independent. 

The mean square range (n = 2) is 
v' 4 

~= ""1+-
(v-'I,) (v-'I,) v . 

The relative range straggling (in %) is 

(-;; - /,') 'I. 100 100 
-'----'-- 100 = --==- = --=- . 

r 1v-'I, 1v 
(44) Q 

Thus, the relative straggling for heavy particles is 
small as the result of the large values of II, while, since 
n ~ (m/M)1/2, the relative straggling increases with 
decreasing particle mass. It should be mentioned that n 
is a weak function of the initial particle energy To and 
the ionization potential of the atoms of the medium I(Z)i. 
The quantity n was calculated by Symon[6J and his 
numerical results for iron are given by Rossi[7J . For 
protons with energy To = 92 MeV, n = 1.26%; and for 
To = 18 MeV, n = 1.48%. Calculating the value of n 
from Eq. (44), we obtain for the same energy values 
respectively n = 1.36% and n = 1.52%. The ionization 
potential of iron was taken as [lOJ 1 ~ 330 eV. 

For iJ. mesons (M/m = 210) with energy 30 MeV, 
n = 3.20% for beryllium (I = 60 eV) and n = 4.15% for 
lead (I ~ 950 eV). The calculations of relative stragg
ling for iJ. mesons made by Sternheimer[lsJ give n 
respectively as 3.03% and 3.84%. 

6. In calculation of the distribution function (25), the 
following assumptions were made: scattering of parti
cles was completely neglected; the integral transport 
equation (3) was replaced by the differential equation 
(5); in expansion of the function f(x, T + E), terms 
a3f/aT3 and so forth were discarded. 

The deflection in scattering can be neglected if the 
mean square deflection angle is small in the region of 
depths ~ and energies u conSidered, Le., <e2(~) «1. 
Since 

I 

<e'CS»= Ro J <6.'(S'»ds', (45) 
o 

where <e~) is the mean square angle of deflection of a 
particle in a unit length at depth ~, which according to 
Rossi [7J is equal to 

<8'(t»= ___ 1_- 4nnoZ(Z+1)z·r·'ln(183Z_"') (46) 
• ~ u'(1;) To' • I 

then, substituting (46) into (45), we obtain after integra
tion 

Ro 1 
<6'(1;»= 2-ln--. 

1"0 1-1; 
(47) 

Here ltro = 2 <e~)~l is the transport scattering length 
for particles with initial energy To. Taking into account 
that the maximum depth to which our discussion is ap-
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plicable is limited by the condition ueff »MI(Z)/mTo, 
i.e., 

(48) 

it is eas y to see, subs tituting ~ max into (47), that 
(Il( ~max» « 1. The integral equation (3) can be re
placed by Eq. (5) if the" effective" width of the distri
bution function is much greater than Emax' USing (4) 
and (35), we find 

6:> 16(m I M)'v. (49) 

We note that inequality (49) is incompatible with (27), 
which determines the condition for which the distribu
tion function (25) goes over to a Gaussian distribution 
in the form (30). Then, since in expansion of f(x, T + £) 
in series in E we retained only the first three terms of 
the expansion, it is necessary that 

'1;}!1I~I;y:.!1.I. (50) 
au' au' 

By use of Eq. (8) it is easy to show that £3 '" 2E2"mu/M. 
By using the explicit expression for the function f( ~ , u) 
we can show that when inequality (49) is satisfied, con
dition (50) is automatically satisfied. 

7. Thus, the normalized distribution function in 
depth x and energy T for heavy nonrelativistic particles 
passing through a uniform medium has the form 

v-'I, (T) -v+'I. RoT {Ro T' F(x,T)=~ T. J._,,,(2v T)exp -v-;[ 1+ (r:) ]J, 
(51) 

where the quantities Ro and v are determined by Eqs. 
(13) and (14). At depths x« Ro[l- (2vf1/2] Eq. (51) is 
considerably simplified. At such depths the distribu
tion function can be represented in the form 

F(x T)=~(' v ]'/~xP{-2V Ro(Ro-x) [~_ 1/1 _ X]'} 
, To 2nx(2Ro-x) x(2Ro-x) To V Ro . 

(52) 

The expression (52) is symmetric about the most prob
able energy Tmp(x) for depths x < Ro: 

Tmp(x) =To(f-xIRo)'" (53) 

and the effective width 6 T of the distribution at depth x 
is 

[
X ]'1. BT=IT-Tmp(x)lerr""To . 

v(Ro-x) 
(54) 

At greater depths x 2 Ro(l - (2vfll2) the distribution 
function can be calculated from the formula 

1 l/-v- [1+l'1+4(RoTITox)'],/. 
F(x,T)""2T;V nRox [1 + 4 (RoTITox) ']". exp{-vB(x,T)},(55) 

where 

Ro[ (T)'] 1/ (RoT)' B(x,T)=----; 1+ To - V 1+4 Tox 

+ In"":"" [1 + Vi + 4 ( RoT) '] . 
2Ro Tox 

(56) 

It should be noted that Eqs. (51)-(56) describe the dis
tribution of particles in depth and energy for the condi
tion 

x:>8Ro~ln 4mToiM 
M J(Z) 

(57) 

The author is grateful to M. 1. Ryazanov for helpful 
discussions and valuable observations. 
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