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The "imaginary-time" method is formulated in a form which is most general and convenient for ap
plications. The relation between atomic ionization processes induced by an intense light wave and pair 
production from vacuum due to the influence of an electric field F(t) is clarified. A closed expression 
for the ionization probability w, valid for arbitrary dependence of F(t) on the time, is found for the 
case of linear polarization. The problem of calculating the Coulomb corrections to the probability w 
is discussed. 

1. INTRODUCTION 

T HE "imaginary-time" method was originally pro
posed [1,2J in order to solve the problem of the ioniza
tion of nonrelativistic bound systems (atoms, ions) in 
the field of an intense light wave. Being a generalization 
of the quasiclassical WKB approximation to the case of 
time-dependent fields, this method describes the tunnel
ing transition of an electron from a bound state to the 
continuum by using the classical equations of motion, 
but with an imaginary time. Such an approach has also 
turned out to be useful in connection with investigations 
of ionization in Coulomb collisions. [3J Furthermore, it 
has been established that the "imaginary-time" method 
works successfully in calculating the probability for 
pair I1roduction from vacuum due to an external 
field.[4,5J However, the relation between these two 
problems has remained unclear. 

It is shown in the present article that the ionization 
of atoms and the production of e+e- pairs from vacuum 
correspond to two limiting cases of the general rela
tivistic problem of the ionization of a level with arbi
trary energy E (mc2 > E ~ - mc2) due to the influence 
of an external electric field. Such a generalization, 
which is of interest by itself, possesses a number of 
advantages. In particular, by going to the nonrelativistic 
limit one can obtain a closed expression for the atomic 
ionization probability w in an arbitrary electric field 
(see formulas (15) and (21) given below), a result which 
had not previously been obtained. These formulas 
greatly simplify the calculation of the probability w, 
and allow us to investigate its dependence on the shape 
of the pulse, which is of interest in connection with the 
development of laser technology and the production of 
ultrashort pulses of light (see the review article by 
B. Zel'dovich and Kuznetsova[sJ). 

2. THE "IMAGINARY-TIME" METHOD 

Let F denote the amplitude of the electric field and 
let w be its characteristic frequency; let us set s = wt, 

F(t) = Fq>(s) , (1) 

where /cp(s) / :5: cp(O) = 1 (it is convenient to assume that 
t = 0 is the instant when the field is maximum; at this 
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FIG. I. The variation of the "time" t during the course of the parti· 
cle's subbarrier motion: a-for Eo> 0, b-for Eo < o. The point to is the 
initial instant of time, and t* denotes the branch point of the action W. 

instant the particle emerges from the barrier[1,2J). 
For Simplicity we confine our attention to the case when 
the field F(t) is uniform and does not change its direc
tion in space (the case of linear polarization). The 
probability for the ionization of a level with energy E 
is determined by the barrier penetration and is given by 
(in the case of an oscillating barrier) 

Wp = D exp {-21m W(p)}, 
o 

W(p)= W(O,to)= S (L+E)dt-pr/,:, 

" 

(2) 

(3) 

where L is the Lagrangian. The integration here is 
taken along the subbarrier trajectory connecting the 
initial state (an electron localized near an atom) with 
the final state (an electron emitted with momentum p). 

Taking into consideration that Ii = eF(t) in a uniform 
field, we obtain1) 

• 
W(O,to)=m S dt[Eo-dt)], e=(1-v')-'I,. 

" 
(4) 

In the subbarrier motion the "time" t flows along the 
contour C (see Fig. 1). The initial moment of time, to, 
is determined from the conditions 

e(to) = eo = Elm, (5) 

where E denotes the energy of the level (-1 < Eo < 1). 
As long as Eo > 0 the picture is generally similar to 

the nonrelativistic situation. For Eo < 0 the contour C 

1) Here and also in what follows h = c = I, and it is assumed that 
F ~ Fo, w ~ m. The Coulomb interaction of the electron with the 
atomic core is neglected (until sec. 6), Le., the derived formulas pertain 
to the ionization of negative ions of the type He-, etc. 
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FIG. 2. Shape of the function ",(u). The numericals 1-4 used to 
label the curves correspond to examples 1-4 from Table I. 

passes around the branch point t = t* of the function W, 
this being the point at which 

dt.) = 0, or p(t.) = im. (6) 

As Eo - -1 the contour C takes the form of a loop en
compassing the point t*, which corresponds to pair 
production from the vacuum. [4J Introducing the param
eter y characterizing the adiabatic nature of the sub
barrier motion (Wt denotes the tunneling frequency), 

(7) 

and assuming p(t) = imu, we transform expression (2) 
to the form 

{ Fo[ Pl.' PU']} w.=Dexp -- g(y)+c.(1')-+c,(1')- , 
F m'l. m 2 I 

(8) 

where Fo = (m2/e)K(Eo) is the field strength which is 
characteristic for a level whose binding energy is 
m(1 - Eo). The frequency dependence of the ionization 
probability is determined by the function g( y): 

2 '" g(1')=~( ) Sdu1jl(1'U)[(1-u')"'-eo], 
eo 0 

K(e) = atc cos e - d1- e') "', 
(9) 

where Eo = (1- U~)1/.!. Here the dependence of the proba
bility w on the shape of the external field only enters 
through the function lj! (u), whose definition and funda
mental properties we investigate in the Appendix. For 
a constant field y = 0, g(O) = 1, and as a rule the func
tion lj!(u) monotonically decreases with increasing values 
of u (see Fig. 2). 

Sometimes it is possible to evaluate the integral (9) 
in closed form. We shall confine our attention to two ex
amples. 

1) Let <p = cos wt. In the nonrelativistic case this 
corresponds to monochromatic laser light, and in the 
relativistic case-it corresponds to the field in a stand
ing light wave.2) Here 

1jl(u) = (1 + u')-V., 

2l'1 +1" -- (10) 
g(1')= 1"K(eo) {F(a,k)-E(a,k)-keox(yl'1-eo')}, 

2)In the relativistic problem it is generally impossible to neglect the 
influence of the magnetic field on the subbarrier trajectory. For ex· 
ample, in the limiting case Eo = -I (that is, for the case of pair produc
tion), the influence of the magnetic field leads to the result that w = 0 
in the case of a plane wave. [7] However, a field of the type we are 
considering is formed at the antinodes of the high-intenisty standing 
wave which can be obtained by using two laser beams. 

where F and E are the elliptic integrals of the first and 
second kind, 

(l=arccos eo k= l' 'V (x) Arshx x 
('1 + 1" - eo'1") ", ' (1 + 1") '10' ,.. = - (1 + x') ",-, 

When Eo = -1 we have: Ci '" 1T, and expression (10) agrees 
with formula (25) from [4J. In the nonrelativistic limit 
expression (10) goes over into the well-known Keldysh 
formula. [8] 

2) cp = (cosh sr2 is an example of a pulsed field. 
This case is unusually simple from the analytical point 
of view: 

g(1') = 1"K~eo) [a (1 + 1") ". - ao - eo1'a,] (11) 

(a is defined above, ao = cos-1 Eo, and Ci 1 

= tan-1(yv'1- E~)). 
Expressions (9)-(11) determine the dominant (ex

ponential) factor in the probability w. In order to deter
mine this factor it was sufficient to investigate the ex
tremal subbarrier trajectory on which 1m W reaches its 
minimum value (and the probability of tunneling is maxi
mum). In order to determine the factor D appearing in 
front of the exponential and the coefficients C1 and C2 in 
formula (8), in addition to the extremal trajectory one 
must also consider a beam of classical trajectories 
lying close to it. In this connection the initial point to is 
dis placed from the imaginary axis; however, in the 
quasiclassical case this displacement is small (see 
Eq. (A.10)), and as a consequence of this we can apply 
the "imaginary-time" method as usual. In view of the 
somewhat cumbersome nature of the expressions which 
appear, we shall not give them in explicit form, but we 
shall cite the results for the two limiting cases (Eo - ± 1) 
which are of the greatest physical interest. 

3. IONIZATION OF ATOMS BY AN INTENSE LIGHT 
WAVE3 ) 

The theory of this process has been inves tigated by 
many authors, starting with Keldysh [8J (see[9-12J and 
also[1,2 J). The results of the previous section enable us 
to obtain a general formula for the ionization probabil
ity w, which is applicable for an arbitrary field. Since 
the electron motion is nonrelativistic, and the wave
length of the light is much larger than the atom's rad
ius, then the field of the wave (of arbitrary polarization 
and spectral composition) effectively amounts to an os
cillating electric field F(t). Since the electron velocity 
in the subbarrier motion is much smaller than c, then 
one should redefine the quantities wand y according to 
Keldysh: [8J 

eF 
COt=-, 

K 

(I = K2/2 is the ionization potential and Fo = (2/3)K 3 ). 

We obtain the following result from Eq. (9) in the 
nonrelativistic limit Eo - 1: 

(7') 

3 • g(1')=2 S1jl(1'u) (1-u')du, (12) 
o 

where lj!(u) is the same function as above (see the Ap
pendix). A Simplification arises due to the fact that in 

3) Atomic units are used in this section: e = h = m = I (m denotes the 
electron mass). Here the field strength is measured in units of Fa = m2 t? / 
h4 = 5.1 X 109 V/cm. 
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the nonrelativistic regime the point to is located much 
closer to the real axis than t* is. We determine the 
momentum spectrum of the emitted electrons from the 
expression 

1 • W(O, t.) = -2" J (p' + x')dt. 
'. 

(13) 

Assuming that r(t) = ro + or, where ro(t) represents 
the extremal trajectory, we find: or(t) = op(t) = const; 
therefore the variation of the action W is given by 

IIW = W - w. = [r.(t.) - r. (0) jllp + 1/2ci/>p,lIp; + ... 

The linear term in op must vanish at the point corre
sponding to the minimum of 1m W. Hence follows the 
condition determining the extremal trajectory: 

1m [r(O) - r(t.) j = O. (14) 

In connection with the evaluation of the Cij' it is not 
only necessary to take the variation of the integrand in 
Eq. (13) into consideration, but the displacement of the 
initial instant to (see formula (A.l0)) should also be 
taken into account. Finally we obtain 

6W= (p.llp)II/.+ IMt.(<lp)'+PoP.(IIt.)'j. (15) 

For the case of linear polarization it follows from Eq. 
(14) that the extremal trajectory is one-dimensional and 
is directed along the field F. In this case wp is deter
mined by Eq. (2), where 

21 " 
21m IV (p) = -{f{Y) + c, {y)£::....+ c,{y)~}, 

(U ",2 xl: (16) 

1 ' 
/(y) = 'I, yg(y) = 'I"{y)-- JIP{u)u' du, 

'1" , 
(16') 

Y d 
c,='I"{Y)= JIP(u)du, c,= (1-y-)c,. (16/1) 

• dy 

Here p = (Pl/' Pi) is the electron's momentum upon its 
escape from the barrier (at t = 0); the extremal trajec
tory corresponds to p = O. Upon satisfying the condi
tions w « I and F « Fo, the effective values of pare 
very much smaller than K, and therefore the next terms 
of the expansion in (16) are unimportant. 

Let us investigate the behavior of the possibility w 
as the frequency w of the light increases. In the adia
batic limit y « 1, the ionization primarily takes place 
at the instant when the electric field is maximum, and 
the ionization current is characterized by sharp peaks. 
Assuming for s ~ 1 (s = wt) that 

(jl(s) =F(t)IF(O) =1-a,s'+a,s'+ ... , a,;;'O, (17) 

with the aid of Eqs. (A.7) and (16) we find 

Example I ~(.) .. = 001 I 
No. 

1 cos s 

2 exp (-s') 
3 ch-2s 

4 (1 + S')-1 

5 ch-1.'I' 

6 (1 + s''-'" 

~(u) 

(1+u'f'I, 
eM. (IT. 12) 
(1 +U')-l 
ch-au 
ch-1u 

(1 + u''-'/' 

g(y) =1- l/sa,,\,'+'I,(a,'-'I,a,)y'+ ... , 

c, = '\' - '/.a,,\,' + ... , c, = '/,a,y' + .. . 
Here Cl »C2, that is, the distribution in PI/ is much 
broader than the distribution in Pi: p l/K ~ YPI/ /K 
~ (F/Fo)l12. 

(18) 

As a consequence of the fact that al > 0, the function 
g( y) decreases with increasing values of y, and the 
probability w begins to increase. This increase becomes 
especially noticeable for y »1. In this case, as is 
clear from Table I, the function f(y) either approaches 
a constant limit (examples 3-6) or else increases 
logarithmically (examples 1 and 2). Since lj;(u) decrea
ses rapidly for u » 1 (see Fig. 2a; also see formula 
(A.8)), it follows from Eq. (16') that 

/(y) = 'I"{,\,)- 'I, a, a = lim [,x,p(z) ]. (19) 

for y »1. Hence, within logarithmic accuracy Cl R! C2 
R! f(y) and 

w(p)=Dexp {- ~f{Y) (1+ :: )}=Dexp {_2: f {y)}, (20) 

where E = (p2 + K 2)/2. Thus, the distribution of the emit
ted electrons with respect to the momentum p becomes 
isotropic for y »1 and has a width t.p ~ K(W/I)1/2« K. 

In conclusion let us cite the complete formula for 
the ionization probability w, with the pre- exponential 
factor D included: 

d'p D (w )'1. {21 } 
w= J (2n)'w p = 8c,c,'" n exp --;;;f{y) , (21) 

where D = 41T2 IAI2/Flcp(iTo) I , 1= K2/2, and A is the 
numerical coefficient in the asymptotic expression for 
the bound state wave function: 

l\Ji(r)=A{x/2n)"'e-"lr for xr~l 

(for Simplicity the case l = 0 is taken here). 
Formula (21) determines the total probability of ion

izing the atom during the entire time interval in which 
the field acts, and is applicable to that case when F(t) 
has the shape of a Single pulse. However, if the field is 
periodic, then the electron's energy takes a discrete 
set of values, and it is necessary to introduce a 0- func
tion under the integral sign in Eq. (21), in order to take 
the law of energy conservation into account. For exam
ple, in the case cp(s) = cos s this factor has the form 

: E6 ( P'~p.'), 
n 

P.=[2w{n-v)l'h, V=~(1+2~')' 
where n is the number of quanta absorbed. In this con-

't'(y) f(Y) l(y) 

Arshr In2r-1/2 2/r 
- (In r)'/' [r In"'T1-1 

aretg r n/2 2r-"ln r 
th r 1 2r-' In 2 
aretg (shr) n/2 

I 
Ar' 

r (1+r''-'/' 1 2r' 

Note. The quantities f and I refer to the nonrelativistic case r:> I: f is the argument of 
th£. exponential appearing in Eq. (21), and I is the barrier width defined by Eq. (24). A = 

2 f (x dx/sinh x) = 3.66 ... 
o 
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nection w retains the meaning of the ionization probabil
ity per unit time, averaged over the period of the field 
F(t). 

We note that formulas (12) and (16)-(21) in this sec
tion are new in comparison with previous work; [1-3J 
these formulas are applicable for an arbitrary electric 
field F(t). Their use does not require a preliminary de
termination of the Green's function for an electron in 
the external field and appreciably Simplifies the calcu
lation of the probability w. The results of calculations 
for several characteristic fields are collected together 
in Table 1. 

4. PAm PRODUCTION IN AN ELECTRIC FIELD 
(~o=-l) 

This process has been investigated by Schwinger[7J 
for the case of a constant field, by Brezin and 
Itzykson[13J for a field of the form F cos wt, and by 
NarozhnYl and Nikishov[14J and also by the author[15J 
for a field of the form F(t) = F/(cosh2 wt). The quasi
classical approach, based on the method of "imaginary 
time" and applicable to a wide class of fields, was de
veloped in articles [4,5J . For the case of linear polar
ization, the quantities appearing in Eq. (8) have the fol
lowing form: 

2 ' 
g(y)=- f 1jJ(yu) (1- u')'I'du 

.n _t ' 

C'(Y)=(1+;~)g(y), c,(y)=-yc:(y), D=1. (22) 

Let us emphasize that the function IjI (u) is determined 
solely by the external field cp(s), that is, it coincides 
with the function appearing in Eq. (12) (the parameter I' 
is now given by expression (7)). 

The general behavior of the curves g(y) and c(y) is 
quite similar to the nonrelativistic case. In the region 
I' »1 we find 

tty '( X' )'j, 
f(y)=!;g(y)= ~1jJ(.z) 1-7 dX"''t(y)-(1-ln2)a (19') 

and C1 ~ C2 ~ (1/2)g(y). Therefore, the distribution of 
the components of the pair with respect to the momen
tum p becomes almost isotropic for I' »1: 

wp=exp {- :;'g(y) (1+ ::)} =exp { - 2; f(y)}, (20') 

where E = 2(m2 + p2)1/2 is the total energy of the created 
pair (the effective values of p are ~ (mw)1/2 «m). The 
Similarity between these formulas and Eqs. (19) and 
(20) is obvious. 

Phenomena analogous to the production of e+e- pairs 
from vacuum develop in the Coulomb field of the nucleus 
containing Z protons near the critical charge Zc = 170. 
If the K-shell is not filled, then the Coulomb field spon
taneously creates pOSitrons if Z > Zc (see[16] for fur
ther details). The spontaneous creation of positrons is 
impossible as long as Z < Zc; however, for 11 + Eol 
« 1 such a system is extremely close to the" critical" 
state. This reveals itself in the fact that the threshold 
frequency for pair production, Wth = 1 + Eo, tends to 
zero. If such an atom (having an unfilled K-shell) is 
placed in an external electric field F(t), then the proc
ess of positron creation can occur in a subbarrier fash-

ion, where the motion of the hole in the lower continuum 
is nonrelativistic. The formulas given in Section 3 are 
valid for the probability w of positron production in the 
model we are considering (a level bound by Short-range 
forces), provided K is understood as (1 - E~) 1/2 (that is, 
Eo = -1 + (iK 2/2, where a = 1/137). If K ~ 1, then the 
production of pOSitrons begins when F ~ Fa 
~ 1010 V/cm, which is six orders of magnitude smaller 
than the "electrodynamic" field Fo = m2/e. Unfortun
ately, in the actual case as Z - Zc the Coulomb barrier 
becomes very substantial, sharply reducing the proba
bility w. 

5. SUBBARRIER TRAJECTORY OF THE ELECTRON 

By integrating the equation of motion with the initial 
conditions x(to) = 0 and x(to) = iK, we obtain the following 
result for the extremal trajectory: 

x(t) = eFw-' [X('to) -X(T)]; 

• (23) 
X('t) = S (t - T') cp(it') d't', t = - is = - iwl. 

u 

The particle stops at t = 0, changing the imaginary 
values of the momentum p into real values. The turning 
point x(O) = b defines the width of the barrier: 

)(' 

b=·2F 1(y), 

2 ' 
l(y)= -X(to) = 2 S 1jJ(yu)u duo 

y' 0 

(24) 

(25) 

Using the expansion (A.7), we find the following re
sult for I' « 1: 

lev) = 1- '/,a,y' + '/,(5a,' - 3a,)y' +... . (26) 

Since U1 > 0, the barrier starts to contract as the fre
quency w increases. The behc~vior of l(y) in the region 
y »1 is of particular interest. In this case C1 I' -1 > 1 (y) 
> C2Y -2 for all of the fields we considered, where C1 and 
C2 are certain constants (see Table 1). If 1(1') ~ c/y, 
then Kb is reduced from the static limit Fo/2F to a value 
~ I/w for I' » 1, that is, b still appreciably exceeds the 
atomic radius; however, if 1(1') ~ C/y2, then for y 

~ (Fo/F)l/.! the barrier contracts to atomic dimensions. 
Formulas (23)- (26) refer to the nonrelativistic case 

(the ionization of atoms); however, the picture is not 
qualitatively changed in going over to the relativistic 
regime. Thus, in the problem of pair production the 
effective width of the barrier between the lower and 
upper continua is given by 

2m 
b=-;pl,(y), 

y= ';, 1,(Y)={ 1jJ(yu) (1_uu,)". duo 

In the adiabatic region, instead of Eq. (26) we obtain 

(27) 

(28) 

and for I' » 1 we have 11(1') ~ (1/2)1(1') provided that 
u1J!(u) - 0 as u _ 00. 

Thus, shrinkage of the barrier for w »Wt is a gen
eral effect. This qualitatively explains the s harp in
crease of the tunneling probability w in the region I' » 1 
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Table n 

Atom II. eV I • II Atom II. eV I • 

~: I ~:i I g:~ I~! I iH I tH 
(associated with one and the same value of the field am
plitude F). 

6. ALLOWANCE FOR THE COULOMB INTERACTION 

Let us make a few remarks about taking the Coulomb 
interaction between the emitted electron and the atomic 
core into account. The importance of introducing this 
correction is already clear from the formula for a con
stant field F: 

w(F) = (3FoIF)"ws.r.(F), Fo = '/,-x'. (29) 
Here 17 is the Coulomb parameter: 

T) = Z/'X = z(lIJo)-'h (30) 

(Z is the charge of the atomic core, and 10 = 13.6 eV), 
and the probability of ionizing a level having the same 
energy E = - 1= - K2/2, but bound by a short- range po
tential, is denoted by Ws.r.(F). The parameter 17 is 
usually close to unity (see Table 11), and for F « Fo the 
Coulomb correction is extremely important. 4) There
fore, the question arises concerning the generalization 
of Eq. (29) to the case of a variable field. 

Let us consider the ratio FCoul/F(t) = a at the end 
of the subbarrier trajectory (t = 0): 

a=~=~~. 
b'F 3r(y) Fo 

As long as a « 1, one can neglect the influence of the 
Coulomb interaction on the trajectory, and take its con
tribution into account by using perturbation theory. By 
virtue of the fact that F « Fo this is, in any case, true 
for I' ;;; 1; if 1(1') ~ y-a as I' - 00, then the approxi-
mation under consideration is valid right up to I' Y c' 
where 

(31) 

(actually 1 s as 2, see Table 1). In first order pertur
bation theory the contribution of the Coulomb potential 
V(r) = - Ze2/r to the action W is given by 

o 

6W = - iT) In xr,- S V(r(t) )dt, 
t, 

where r(t) is the extremal trajectory, and rl is the point 
where the quasiclassical solution is matched with the 
atomic wave function (K-1 «rl «b). Hence for I' « 'Yc 
we find (rl drops out of the answer): 

[ 3F ]'" w(F,oo)= _oC(y) w (F (0). F S.l. , 
(32) 

Here ws.r.<F, w) denotes the probability for ionizing the 
level in a short-range potential, which was calculated in 

4)The reason for the appearance of the large factor (3Fo/F)2~ in (29) 
is as follows: a pre-exponential factor (/(f)~ appears in the wave function 
of the bound electron as a consequence of the Coulomb interaction, and 
this factor increases the density of the electron cloud for "r ~ I. Assum
ing r - b = ,,2/2F, we obtain expression (29) to within order of magni
tude. 

FIG. 3. The Coulomb correc
tion C(-y) from Eq. (32). The 
numerals on the curves corre
spond to the example numbers 
in Table I. 

err) 
f 

q 

J 

I 

J 

Sec. 3. The frequency dependence of the Coulomb cor
rection is determined by the function C(y): 

{
'SO X(To)-X(T) } 

C(y)=l(y)exp dT X(To)-X(T) -21n2 ; 
o 

(33) 

X(T) is defined in Eq. (23) and 1(1') is defined in Eq. (25). 
These formulas are valid for an arbitrary electric 

field F(t). In the case I' « 1, by using expansions (17) 
and (26), and after rather cumbersome calculations we 
find 

C(y) ='1 + 'I, (a, - '/,a,')y' + O(y'). (34) 

Thus, the corrections ~ 1'2 completely cancel each other, 
and the coefficient associated with I' 4 is numerically 
small. This leads to the result that, in the adiabatic 
region one can take the Coulomb correction in the form 
(29). 

Let us mention two simple cases when the correc
tion C(y) can be calculated in closed form: 

1) For the field cp = cos wt (laser light), by taking 
the value of the integral 

JdT sh To - sh T In [ch(To + T) -1], 
chTo-chT 

into consideration, we have C(y) == 1. As a result of the 
accidental cancellation, the Coulomb correction for 
I' > 0 has the same form as for the case of a constant 
field. [17J 

2) In the pulsed field cp(s) = (1 + s2r3/2 the integral 
(23) is evaluated by making the substitution T = sin t, 
which gives 

1 
C(y) = 1 + y' exp(y arc tgy). 

The values of the function C(y) are shown in Fig. 3. It 
is clear from this figure that a rapid increase of C(y) 
is possible in the region 1 < I' < YC' that is, even 
within the region where perturbation theory is valid the 
Coulomb correction to the probability w may differ sub
stantially from the static limit (29). 

To compare the theory with experiment it is neces
sary to determine the behavior of C(y) not only for 
I' « I' c but also for I' ~ I' c »1. This calculation runs 
into substantial difficulties since both the field F(t) of 
the wave and the Coulomb interaction with the atomic 
core influence to an equal extent the subbarrier trajec
tory of the electron when I' ~ I' c (in other words, they 
affect the wave function of the bound state). An attempt 
was made by Perelomov et al. [18J to calculate C (y) out
side the framework of perturbation theory; however, it 
was not possible to determine the form of C(y) over the 
entire range of optical frequencies. At the present time 
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the problem of taking the Coulomb interaction into ac
count for y ;G y c has not been solved, and this problem 
is of great interest from the experimental point of view. 

7. CONCLUSION 

It is convenient to treat the ionization of a bound
state level in a variable electric field by the 
"imaginary-time" method. Such an approach includes, 
as special cases, the theory of the ionization of atoms 
and ions in the field of an intense light wave and also 
the theory of the production of e+e- pairs from the 
vacuum. The relation between the two limiting cases is 
intuitively clear from Fig. 1, which establishes the shape 
of the "imaginary-time" contour. The specific charac
teristic of the problem under consideration (a uniform 
field F(t)) is the fact that the equations of motion for the 
classical particle can be integrated in analytic form. 
Thanks to this, it is possible to obtain the closed ex
pressions (15) and (22) for the ionization probability w; 
the external field enters into these formulas only through 
the function Ij!(u), which greatly simplifies the calcula
tion of w. It is easy to determine the explicit form of 
this function if the time dependence of F(t) is known. 
These formulas give the complete solution of the prob
lem and allow us to investigate the dependence of the 
probability w on F, on w, and on the shape of the external 
field. In our opinion these results effectively demon
strate the potentialities of the "imaginary-time" 
method. . 

The requirement that the external field be homo
geneous and the restriction to the case of linear polar
ization are not necessary in principle in order to apply 
the "imaginary-time" method (although, of course, they 
appreciably simplify the formulas). Thus, an elliptically 
polarized wave was treated in[1,2], and certain types of 
inhomogeneous fields were treated in[3]. Apparently 
other problems exist for which this method might be 
useful (for example, in the theory of atomic collisions 
or in connection with an investigation of multiphoton 
ionization and the excitation of atoms associated with 
channeling in single crystalS). An extension of the 
range of applicability of the "imaginary-time" method 
would be extremely desirable. 

I wish to take this opportunity to thank M. S. Marinov, 
A. M. Perelomov, and M. V. Terent'ev for a discussion 
of this work. 

APPENDIX 

PROPERTIES OF THE FUNCTIONS 1J!(u) AND T (u) 

As is shown in Secs. 2-4, the calculation of the prob
ability for ionization of a level in the presence of an 
electric field reduces to a one-dimensional integral 
which depends on the specific form of the applied field 
only through the function Ij!(u). Let us summarize the 
formulas relating Ij! (u) to the field (jJ (s), where s :: wt 
and (jJ(s) :: F(t)/F(O). 

For the extremal trajectory one has , 
p(t)= e S E(t')dt' = ixu. 

o 

By changing to "imaginary time" T :: - iwt :: - is and 
introducing the notation 

(jl(i"t) =q;("t), '1=wxleF, (A.1) 

we find the velocity of the subbarrier motion in the form 
ip l' 

U= --=-S iji("t')d"t'. 
X 'I 0 

(A.2) 

We note that the function cp(T) is usually real (for 
T < T1, where Sl:: iT1 is the position of the nearest 
singular point of (('(s) on the imaginary axiS). Because 
of this, the change from t to T allows us to explicitly 
separate out the imaginary part. Let T :: T (x) be the 
function which is the inverse to 

, 
x=x("t)= S q;("t')d"t'. 

• 
Then, from Eq. (A.2) we obtain dT :: ylj!(yu)du, where 

'¢(u) ="t'(u). (A.3) 

by definition. 
Sometimes it is convenient to use another definition 

of Ij!(u), namely, 
1 • 

'¢(u) = cp(s) for u = - if cp(s')ds'. (A.4) 

It is not difficult to see that (A.3) and (A.4) are equiva
lent to each other. The initial moment t :: to of the sub
barrier motion corresponds to u :: 1; therefore 

to=~T(Y)=i~ 't"(y) . (A.5) 
w eF 'I 

Now let us conSider the integral f qp)dt, where ~ (p) 
is any arbitrary analytic function of the momentum p. 
By changing to an integration over u, we obtain the re
lation , . . 

• !x S j s(p(t»dt=p Wxu),¢(yu)du,_ 
• e 0 

(A.6) 

whose application gives formulas (12), (15), and (22). 
In the adiabatic case y « 1, the function Ij! (u) enters 

for small values of u. By using the expansion (17) for 
F(t) near the maximum point, we find 

'¢(u) = 1- a.a' + ('I,a.' - a,)a' + ... , 
"t(a) =a-I/aa.u'+ .... (A.7) 

Substituting this series into (12) and (22), we arrive at 
the adiabatic expansions for the functions g(y), C1(y), 
and C2(y). 

The behavior of Ij!(u) in the region u » 1 is deter
mined by the singularities of rp(s) associated with com
plex values of s. Let the nearest singularity be located 
at the point s = iTlt where (jJ(s) = C(T1 - T)- 0' as T"-.c T1' 

Then, for u » 1 we find 

¢(a)= I , , { 
C a-o/(o-.) a > 1 

C,exp(-ulc), a=i (A.8) 

where, for example, C1 = [c/(Q1 - 1)0']1/(0' - 1). Thus, 
Ij!(u) decreases with increasing values of u, which leads 
to a corresponding increase of the ionization probability 
w in the adiabatic region y »1. 

In order to determine the momentum spectrum of 
the emitted electrons and the pre-exponential factor in 
the formula for w, it is not only necessary to take the 
contribution from the extremal trajectory into account, 
but it is also necessary to take the whole beam of class
ical trajectories, which are sufficiently close to the ex
tremal trajectory, into account. In the case under con-



846 V. s. POPOV 

sideration this amounts to the introduction of a non
vanishing momentum p at emergence from the barrier. 
Here the initial moment to = iTo/w of the subbarrier 
motion is determined by Eq. (5): 

P.c'+(p,,+ ~ fiii(T)d-t)'=-x" 

which gives 

To = T[y(1 + P.c' I x')''· + iyp" I xJ. (A.9) 

. In the quasiclassical regime p is always « K, which 
IS clear from the answer. Expanding in powers of the 
parameter p/K, we obtain the following result correct to 
terms of second order: 

To(p) =T(Y) + iyljl(y)plI Ix 
+ lldyljl(y)p.c' I x' - y'Ij)'(v)PII' I x'J. (A.10) 

The displacement of the initial point to from the imagin
ary axis turns out to be small. Therefore, the "imagin
ary-time" method also works for nonextremal trajec
tories. 

Formulas (A.3) and (A.4) enable us to explicitly de
termine the function </I(u). Without dwelling on the ele
mentary examples which are collected in Table I, let us 
consider several more complicated cases. 

I. For a Gaussian pulse cp(s) = exp(-s2) we have 

u = exp(T')W(T). Ij)(u) = exp (-T'), (A.11) 

where , 
w(T)=exp(-T') S exp(x')dx 

o 

is a tabulated function. By eliminating T, we can deter
mine the relation between </I and u: 

1 '/0 dt 

u=Z- S In"'t' 
o 

It follows from here that 

ljl(u) = {1-U'+T/,u'+"" u-+O 
(2u In'" u) -, u -+ 00 

II. Let us consider a field of the form cp(s) 
= (1 + s2fv. Here 

ljl(u) = 1- vu' + 1/.(T/,v'_v)u'+ ... 

as u - 0, and as u - 00 we have 

ljl(u) = { 4e-'" for v = 1 
[2(v-1)uJ-'/('-1i for v>1 

(A.12) 

III. In order to estimate the role of the higher har
monics in the spectrum of the incident wave, let us set 

<p = cn(s, x) = 1- l12s'+ '/,,(1 + 4x')s' + .... (A.13) 

Besides s = wt, this function still depends on the param
eter K and is periodic in t. The period is given by 

4K 1'" dx T=-=-S (0";;;x<1). 
w w 0 (1-x'sin'x)'" 

With the aid of Eq. (A.4) we find 

1jl (u) = [1+ ( ShxXU rr' . (A.14) 

IV. Another example related to elliptic functions is 
as follows: 

<pes) = sn(s + K, x) = cn(wt, x) I dn(illt, x). (A.15) 

In this case 

[ ( sin xu )']-'" ljl(u) = cos' xu + -x- . (A.16) 

It is curious that here (in contrast to all of the examples 
considered earlier) </I (U) is a periodic function of u. 
Therefore, g(y) does not decrease monotonically with 
increasing y, and in the limit y - 00 the ionization 
probability w has the same order of magnitude as for 
the case of a constant field. Qualitatively one can ex
plain this by the fact that the function (A.15) approaches 
a square wave as K - 1 (whereas the elliptic cosine 
(A.13), regarded as a function of the normalized argu
ment s/K, takes the shape of a sharp pulse). 
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