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Gasdynamic calculations of gravitational collapse of stars show that 1) the collapse dynamics is de­
termined to a large extent by neutrino emission processes, the main role being played by the Urca­
process; 2) at a certain stage of collapse the central core of the star becomes opaque with respect 
to its own neutrino radiation. Neutrino (and antineutrino) energy and momentum transfer processes 
are considered and incorporated into the gasdynamics. A system of neutrino gasdynamics equations 
is derived in the thermal conductivity approximation. This system generalizes the photon radiative 
thermal conductivity familiar from radiative gasdynamics. An additional diffusion equation for lep­
ton charges is obtained and follows from an analysis of {3-interaction kinetics in a medium of arbi­
trary nuclear composition. All transfer coefficients are calculated for the case of high temperatures 
when the baryon component of matter consists of free nucleons. A spherically symmetric boundary 
problem for the central core of a star is formulated. 

IF a star has exhausted its reserve of nuclear fuel 
during its evolution and if its mass (more accurately, 
the mass of its central dense core) is sufficiently large, 
then the catastrophic process of gravitational collapse 
inevitably occurs [l]. Gasdynamic calculations of the 
collapse were performed for stars with different 
masses exceeding the Chandrasekhar limit[2-4]. They 
have shown that the star becomes opaque to neutrinos 
during a definite stage. It must be emphasized that the 
character of the neutrino radiation and of the neutrino 
energy transfer determines in many respects the dy­
namics of the gravitational collapse(l], so that a 
physically correct description of neutrino mechanisms 
of radiation and energy (and momentum) transfer be­
come very important for the problem of gravitational 
collapse of a star as a whole. The onset of neutrino 
opacity can be one of the causes of the stopping of the 
catastrophic contraction of the collapsing core of the 
star and the formation, as a result of the stopping, of 
a powerful shock wave propagating through the shell of 
the star, which was partially involved in the collapse 
process prior to this occurrence. The singularities of 
the neutrino energy transfer can strongly influence the 
parameters of the shock wave and the fraction of the 
star-shell mass ejected into the interstellar space. 

In this paperl) we derive the neutrino thermal­
conductivity approximation on the basis of general 
kinetic transport equations for neutrinos and antineu­
trinos. The main difference between the neutrino and 
radiant thermal conductivities, corresponding to the 
fermion nature of the neutrino, lies in the additional 
transfer of leptonic charge (besides the energy trans­
fer). As a result we obtain an additional diffusion-type 
equation for the chemical potential of the neutrino. All 
these effects are included in the system of gasdynam­
ics equations, so that we arrive at a neutrino gasdy-

1) A preliminary report of these results is given in a preprint of the 
Institute of Applied Mathematics of the USSR Academy of Sciences 
(No. 18, 1971). where additional details dealing mainly the mathemati­
cal calculations can also be found. 

namics analogous to radiative gasdynamics (the initial 
transport equations take into account, in turn, the ef­
fects of the velocity of the matter). The concrete con­
ditions inside the collapSing stars are such that the 
principal role among the weak interactions are played 
by {3 processes (Urca processes) on free nucleons. We 
write out for this case the final expressions for all the 
coefficients of the neutrino thermal conductivity, and 
the equations themselves are supplemented with the 
suitable boundary conditions. The entire analysis is 
given in a spherical coordinate system for the spher­
ically-symmetrical case, which is of greatest interest 
in neutrino transport (this is important for an optical 
thickness on the order of unity). 

1. NEUTRINO TRANSPORT EQUATIONS WITH 
ALLOWANCE FOR THE MOTION OF THE MEDIUM 

The intensities of the neutrino (v) and antineutrino 
(iI) radiation Iv(r, €v, /l, t) and Iv(r, €iI, /l, t) satisfy 
transport equations that can be written in a relativ­
istically covariant form in analogy with the case of 
photons, to take into account the motion of matter. The 
equations for radiation transfer in a mOving medium 
were first derived by Thomas [5] and were subsequently 
conSidered in[6,7]. If we disregard scattering and con­
fine ourselves to pure absorption21, then the neutrino 
transport equations 3 ) in the spherically symmetrical 
case takes in the chosen reference frame the form[lO] 

1 al. + al. 1-~' aIv Iv (1.1) -- ~-+-----=--+q 
c at ar r a~ I. •. 

The mean free path lv, the bulk emissivity qv, and 

2)Scattering effects in the relativistically covariant transport equa­
tion are discussed in [7.8]. On going over to the thermal-conductivity 
approximation, with which we shall deal later on, it is preferable to use 
the approximate procedure employed for photons [9], namely combine 
the absorption coefficient with the scattering coefficient in the final 
expressions. 

3)The antineutrino case can be analyzed in perfect analogy. At the 
end of our analysis we simply add the contribution of the antineutrinos. 
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the intensity III are connected here with the correspond­
ing quantities lllo, qllo, and 1110, in the proper refer­
ence frame in which the matter is at rest, by the rela­
tions[5,S] 

l.o=LI., 
I. 

(1.2) 

L = e ( 1 _ v; ) = 8-' ( 1 + v~. ) -', e = ( 1- v;, (" (1.3) 

These relations ensure invariance of (1.1) under 
Lorentz transformations. The arguments of the func­
tions lllo, qllo, and 1110 are the neutrino energy tllo and 
the direction cosine J.l 0 in the proper reference frame. 
They are connected with tv and J.l by the relations 

(1.4) 

According to (1.2), the quantity Nv is invariant. For 
the subsequent calculations we shall need the differen­
tial connection between the neutrino energy and the 
solid angle in both reference frames; this connection is 
obtained from (1.4) (J.l is assumed fixed when the first 
relation is differentiated): 

de .. = Lde., dwo = L -'dw, (1.5) 

where dw = 21TdJ.l and dwo = 21TdJ.l o. In the nonrelati v­
istic apprOximation (vic « 1), neglecting terms of 
order (v/c)2 in (1.3), we obtain 

(1.6) 

Neutrinos are subject to Fermi-Dirac statistics. 
Therefore, in accordance with the Pauli prinCiple, the 
emissivity qvo of the matter should be lower the larger 
the occupancy of the phase space. In other words, in­
stead of stimulated emission we obtain here in the case 
of photons "stimulated absorption." The emissivity is 
obviously given by 

q .. = (1-Nv )B .. , (1.7) 

where Bvo no longer depends on the intensity of the 
neutrino emission and is determined by the properties 
of the medium. To find BIIO, we consider the equili­
brium case, when the emission intensity is determined 
by Fermi-Dirac statistic s [11]: 

£"03 _1 e.,03 

1'0=1 •• = e'k' [1+fS(e •• -I/l.») = e'k' N •• , 

fS(x) =exp(xlkT), 

where l/Jv is the chemical potential of the neutrino. 
Using now (1.1) with zero left-hand side, (1.7), and 
(1.8), we get 

( e'k' ) -, e' 
B.ol •• =I •• 1-~I.. = e2~' fS(I/l.-e •• ). 

(1.8) 

(1.8' ) 

(1.9) 

This universal connection between Bvo and lvo is the 
neutrino analog of Kirchoff's law. With the aid of (1.7-
1.9) we can write the right-hand Side of (1.1) for a 
medium at rest in the form 

Iv. I.. 1 •• -1.. (110) --+q •• =--+B .• =--- . 
l'Yo ivo· ivo· t 

where l~o is the mean free path with allowance for the 
stimulated absorption: 

(1.11 ) 

In the chosen reference frame, in which the matter 

moves, we obtain with the aid of (1.2), (1.7-(1.9), (1.4), 
and (1.11), respectively, 

- ~: + q. = -~<.~ + 1:' = - l.~· (I.L - i:) . (1.12) 

From this, in accordance with (1.2), we get the equili­
brium intenSity 

I, = L-'I,. = e~~3 [1 + fS(Le. - I/l.) )-'. (1.13) 

We see therefore that Ie is an anisotropic function. 
In the nonrelativistic case, using (1.6), we obtain 

from (1.13) the moments of the neutrino intensity 
Uve , Kve, and Sve: 

2 +, - 2 +! d -
U" = -i- J dlL J I,de. = -7 J ~ J I, ( ~. ) de •• 

-1 0 _1 0 

2n +, dlL - 4n 00 

=- J-J/ •• de •• =-J/,.de .. 
e L' e· 

(1.14) 
• 

4n(kT)' - x'dx (kT)' (I/l.) 
= =4n - kTF,-

e'k' J 1 + exp(x - ",.lkT) ek kT ' 
o 

where F3 is a Fermi-Dirac function of third order. 
Analogous calculations yield 

2n +J', J- 4n (kT)' ( "'v ) 1 K"=-e- IL dlL I,de'=3 d; kTF, kT =3 U,,, (1.15) 
-, . 

+! -

S .. =2n J IL dflJ/,de.=·I,vU ... (1.16 ) 
-, 

As a result of the anisotropy, Ie is the nonzero 
density of the energy flux Sve, whereas Uve and Kve 
are the same as in a medium at rest in the nonrelativ­
istic approximation. At l/Jv = 0 we have[ll] Uve 
= n'ls)aT\ where a = ("'15)1T~4/(ch)3 is the radiation­
density constant. 

All the preceding formulas remain valid for anti­
neutrinos, with the only substitution 

(1.17) 

which follows from the thermodynamic condition for 
annihilation and pair production of particles (relation 
(1.17) will be justified in Sec. 3 below from the point of 
view of kinetics). 

2. NEUTRINO THERMAL CONDUCTIVITY APPROX­
IMATION 

This approximation is based on the fact that there 
exists a small parameter, namely the ratio of the neu­
trino mean free path to the characteristic scale of the 
problem. It is the approximation calculation of the 
small differential terms in the left-hand side of (1.1) 
which leads to the sought approximation[12]. In a mov­
ing medium there is also another small parameter, 
vic. Later on, confining ourselves to the nonrelativistic 
approximation, we shall retain only terms of first 
order in {3 = vic. The product of the velocity ratio (3 
by the differential terms (1.1) increases the order of 
their smallness. We shall assume this product to be a 
quantity of second order of smallness if it contains 
derivatives with respect to the radius. We write down 
the transport equation (1.1), using (1.12) in the form 

DI.= __ 1 (I.L-~) (2.1) 
Ivo· L2 , 
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where the linear differential operator is given by 

D=~~+D =~~+Jl!-+ 1-Jl'.!...- (2.2) 
c at co c at or r aJl· 

In the zeroth approximation (at DIv = 0) we obtain 
for Iv the equilibrium solution (1.13). Substituting Ie 
in the left-hand side of (2.1), we obtain the first ap­
proximation: 

I (t) = I _ iv." DI veL c, (2.3) 

We shall subsequently need also the second approxima­
tion: 

I • i . i . 
[(')=[ __ V_'_DI(') =[(o+_v_'_D(~DI ) (2.4) 

v II L v 'V L L II· 

Since the difference I( 2) - I~I) is, by definition, of sec-
0nd order of smallnels, it is necessary to neglect the 
effects of motion in the second term of (2.4), Le., to 
put L = 1 and Ie = leo, and to omit from the operator 
D the derivative c- 1a/at, which generally speaking can 
be regarded as a small quantity of second order. We 
then obtain in place of (2.4) 

(2.5) 

We calculate I~l), taking into account the small 
correction due to the motion of the medium and retain­
ing the derivative with respect to time. Applying the 
operator D to Ie, we must bear in mind that all the 
differentiation operators should be carried out at a 
constant value of EOv. Therefore 

DI,=-[,[1+8("'v-Lev)1-'D( Le~;",.). (2.6) 

Taking into account (1.6) and the fact that the deriva­
tive c-1a/at is of second order of smallness, we obtain 

D ( L8Vk~ "'v ) = L8vD ( k1T ) - D ( :; ) - :; D , .• ( 7- Jl) . (2.7) 

The final expression for Ir,I) as a function of EOvo, in 
accordance with (2.3), (2.6), (2.7), and (1.4), is 

l(!)=!..:!... 
v L' 

+ ["iv
,· [ev,D (k1r)-D (k"'rv )- kBvr' D'"(~Jl)] (2.8) 

L'[ 1 +8(",v - 8v,) 1 

In analogy with (1.14)-(1.16), we find the moments of 
the intensity I( 1) by integrating subsequently with re­
spect to EO vo : 

K (I) - 2n S~ d S+I ~I(I) d 
v --c 8 vo L y 11, 

o 

~ +, 

S (0=2 Sd S~l(!)d v 1t evo L 'Y fl· (2.9) 

The first integration with respect to the angle in (2.9), 
with L taken from (1.6), is carried through to conclu­
sion. It remains to integrate with respect to the energy 
EOvo, which can be done only if l~o is known as a func­
tion of EOvo. However, the term in excess of the equili­
brium term is important only for the energy flux S~ll, 
whereas in the moments U~l) and K~ll the integrands 
are small quantities of second order (~lto/(ctchar) 

~ l6rchar' there tchar is the characteristic time). If 
they are substituted in the gasdynamics equations, they 
yield terms of the viscosity type. The ratio of the 
viscosity terms to the pressure is thus of second order 
of smallness. We shall therefore retain in the gasdy­
namics equations the equilibrium values (1.14) and 
(1.15) in place of U~I) and 1«/). Thus, in first-order 
approximation we have from (2.9) 

(0 4 4n S~ . ( aI,,) 4 
Sv =3vUV.- 3 iv, -a- d8,o=-vU .. +Hv. 

o r I! ,,0 3 
(2.10) 

To abbreviate the notation, we use in the expression for 
the energy flux Hv the derivative (aIeo/ar)EOvo at a 
constant value of EOv o• 

It is easy to write down the neutrino gasdynamics 
equations in the general relativistic case by using the 
energy-momentum conservation law for matter with 
neutrino (and antineutrino) radiation and by introducing 
the energy-momentum tensors Tik and Wik for the 
matter and for the radiation[13 1• In the case of an ideal 
gas and using the known expressions for the compon­
ents Wik in terms of the radiation intensity (at zero 
rest mass of v and j) we have here an analogy with the 
photon), we can transform to a convenient system of 
equations that includes the equations of motion and the 
entropyequation[141• Finally, in the spherically­
symmetrical nonrelati vistic case of interest to us, by 
transforming the derivatives of the tensor (see Kochin's 
book(151) we reduce these equations to the form 

p-=-~+ ----(3K-U)--- --p, (2.11) du ap [ aK 1 1 iJS] Gm 
dt ar iJr r c2 at r' 

p [~(.!!...)+P~(~)]=-u[- iJK -~(3K-U)-~~] dt p dt p ar r c' iJt 

+ [-~~(r2S)- iJU], (2.12) 
r' ar iJt 

where P, E, and p are the pressure, internal energy, 
and the density of the ideal gas, dj dt = a/a t + Vo / a r , 
and the integral moments of the intensities of the neu­
trino (and antineutrino) radiation are 

2 +t ~ 2 +, ~ 

U=-? S dJl S[vde" K=-i S Jl'dJl S [v de" 
-I 0 _1 0 

+, ~ 

S = 2n S Jl dJl S Iv dBv. (2.13 ) 
, 

The equation of motion (2.11) inc ludes the Newtonian 
force, and m is the mass inside a sphere of radius r. 

After substituting (2.10). (1.14), and (1.15) in (2.11) 
and (2.12), or more accurately, after substituting the 
values for v and v with allowance for (17), neglecting 
the term c- 2as/at, which is of second order of small­
ness relative to the term aK/ar, and changing over to 
the Lagrangian coordinates t and m, we obtain the 
system of equations4) 

ar or' 3 
at" = v, 

4)It is of interest to note the high accuracy with which neutrino 
radiation is described in these equations. Second-order corrections have 
been discarded in all the terms that take radiation into account. It can 
be shown that calculation of the neutrino-radiation intensity (2.S) to 
second order does not change this conclusion concerning the accuracy. 
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(}V {} Gm 
-= -4nr'-(P+K)-_ 

{}t {}m r' ' 

{}(E+U) {}(1) {} 
-(}t -- +(P+K)- - =~4n-(r'H) 

p at p am' (2.14) 

where the moments of the radiation of II and iI are 

7 4acT' (aT a¢: ) 
H=-g-3- 4nr'P IT am +TI.----r;m , 

K=~u=~aT'[('h ')'+2n'(." ')'+ 7n'] 
3 24n' "'. 'j" 15' 

IT = IT. + IT -;, I. = I •• - I .. ;, 

I - 15 S-I x'exp{2(x-¢:)} d 
TV- 7n' "(1+exp{x-¢.'J)' x, 

o 

I 15 S-I x'exp{2(x-¢.')} 
1j)V=- 'YO dx 

7n' (1 +exp(x-'iJ.'»' ' ¢.' ='iJvlkT. (2.15) 
o 

The expressions for lTv and for ll/Jv, which corre­
spond to the contribution of the anti neutrino to the 
energy transport, are obtained by replacing lvo by 
lvo and l/J~ by -l/J~ in the integrals. The integrals in 
(2.15) are analogs of the Rosseland averaging of the 
mean free path. The system of neutrino gasdynamics 
equations (2.14) and (2.15) would be complete were it 
not for the presence of the unknown function l/Jv' 

3. KINETICS OF (:3 PROCESSES FOR EQUlLmmUM 
DISTRIBUTION OF COMPLEX NUCLEI 

For an arbitrary mixture of complex nuclei and 
nucleons, it would be necessary to write down a system 
of kinetic equation, the number of which would be equal 
to the number of types of particles. But the tremendous 
difference between the reaction rates due to strong and 
weak interactions 5) enables us to describe the process 
by simpler relations. The concentration of all the com­
plex nuclei (A, Z) whose distribution is determined by 
strong interactions depends in equilibrium fashion on 
the concentrations of the free nucleons [16,17] : 

p n p A,Z ( 2nAm kT )'1' ( h' ) >AI' n.ol-Z n Z Q 
n.ol,Z = --h:-;':---- 2nmpkT 2A eXPkT""' (3.1 ) 

where the binding energies are given by 

QA,Z= (A-Z)mnc'+Zmpc',-mA,zc'. (3.2) 

At a specified number of baryons pimp, all that is 
left unknown in the system is then the ratio of the nand 
p concentrations, including their fraction in the compo­
sition of the nuclei 

form 6) 

-p ~ (:n)=p d~ (:P)=-':;p (1+t})' ~: 
= - np(W," + W,," + W a,") + nn (W,OI + W a" + Wa'OI) 

+ ,EnA,z(- W,ZA + W,ZA + IV.'A - W,ZA + W"ZA _ W.,ZA _ Wa,ZA + W,,'A), 

(3.4) 
where the summation extends over all possible com­
plex nuclei, including their excited and spin states. 
The total probabilities W,?A of the (:3 processes per­
tain to the nucleus (A, zf. The letter subscripts de­
note the type of the (:3 process, in the primed processes 
the leptons II and i7 are absorbed by the nucleus (A, Z), 
and in the unprimed ones they are emitted. According 
to classical theory of allowed (:3 processes [9], we write 
down the corresponding differential probabilities 
w~A(WAZ = J W;Z;Ad€dw): 

1 1 1 

a) e- + (A,Z)-+(A,Z -1) +v, W~A = Gz ,z_lQ,N"Q v (1- N,), 
Ef = B'J - EZ,Z-1; 

b) e+ +(A,Z)-+(A,Z + 1) + V, w~A = Gz,z+1Q ,N,Q-;(1- N-:;), 

B;- = 8-; - EZ. Z+1; 

c) (A, Z)-+e- +v + (A, Z + 1), W~A = GZ ,z+1Q,(1 - N,) Q-:; (1- N-:;), 

Fe = - B-; + 8Z,Z+1; 

d) (A, Z)-+e+ + V + (A, Z -1), w;-A = Gz,z-lQ,(1 - N,) Q, (1 - N,), 

8-;- = - 8v~' £Z,Z-I; 

a') v+ (A,Z)-+(A,Z + 1) + eO, w~,A = GZ,zHQ,(1- N,)Q,N" 
Be = ~IJ + EZ,Z+l; 

b'); -\- (A, Z)-+ (A, Z - 1) + e+, w~;~ = Gz,z-1 Il,(1 - N,) Q-:;N-:;, 

Be = 8-; + 8Z,Z-I; 

c') ; + e- + (A, Z) -+ (A, Z - 1), W;,A = Gz , z-lQ,N ,Q-:;N-:;, 

Be = I £z.z-ll- E-;-; 

d') V-+- e+ + (A, Z)-> (A, Z + 1), w;,~ = Gz, Z+1Q ,N,Q,N" 
B, = lez,ZHI- B,. 

Equation (3.5) contains matrix elements, since 
Gz Z±l = 41T~-11 {H'} Ii Z±l> where , , 

I {H'} I 2 _ m.c' ( h )' In 2 
i - 128n4c m.c (ft)i Fi (B.,.) 

(3.5) 

is expressed in terms of the comparative half-life (ft>i,. 
(Obviously, GZ Z±l = GZ±l Z). The lepton phase fac­
tors and the equilibrium distribution functions of the 
electrons (e) and of the positrons (e) are given by 

8n V' B'-Q - = -- B - 8 - - m 'c' Q - - ',' 
e,e (hc)S e.,e e,e e' v.~ - (hC)3 ' 

N. = [1 + ~(E. -1jJ.)]-', N-= [1 + ~(E-;+ 1jJ.)J-" 

(3.6) 

(3.7) 

t}= N. = nn+~(A-Z)nA,Z 
Np np + ~ZnA,Z 

where the function ~(x) is defined in (1.8'). Formulas 
(3.5) include also the connection between the energy of 

(3.3) the lepton e or e with the energy of the lepton II or II 
with 

The quantity " can change only as a result of (3 pro­
cesses. In a moving medium, these processes must be 
considered in the proper coordinate frame. 

n is easily understood that the kinetic equation with 
allowance for all the possible (3 processes takes the 

5) At temperatures T > 3 X 109 K, the role of the Coulomb barrier 
in nuclear reactions diminishes and the difference between the intensi­
ties of the strong and weak interactions comes fully into play [1], This 
leads to an equilibrium between the direct and inverse nuclear reactions, 

Ez, H' = (mA, z - mA, z=,)c' = QA, Z,,' - QA, z ± 8np. (3.8) 

The energy conservation law allows at most six (3 
processes with a given nucleus (A, Z) from (3.5), 

6)The problem of the kinetic analysis of (3 processes was posed in 
[18]. The most important question here is a direct comparison of the 
characteristic times of the strong and weak interactions, Although it is 
impossible to solve these problems exhaustively for all types of nuclear 
reactions and (3 transformations, a comparison of the time in principle is 
given in [19], 
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since we must have €e e 2: mec2. For nucleons, three , 
of these processes are actually realized for each. If 
the only difference between processes is due to a 
prime in the subscript, then these processes are 
mutually reversible. For nucleons this is seen directly, 
and for complex nuclei it is possible to make in (3.5) 
the substitutions Z - Z - 1 (a', d') and Z - Z 
+ l(b', c'). 

We introduce the mean free path of v and v with 
respect to absorption in the (3 process 

I,ZA = rnA, zcrfA(e.,') ]-1 = (nA, ZW,ZA)-lcQ.,--::N.,-: 

Taking (3.5) into account, we can group l'fA for the 
different {3 processes into two classes 

ZA c ZA C 1 a,b' = I, ,- ----".----; __ -;-;--
nA,ZGZ, Z±lQe,' (1 - N.,-;) • c, d - nA,ZGZ, z+lQe,.N e:e . 

(3.9) 

With the aid of (3.9) we can group pairwise into a 
single type the direct and inverse (3 processes in (3.4). 
Using the shift operation in (3.5), the equilibrium dis­
tributions of e and e from (3.7), the expressions for 
€e,e in terms of €v,v in (3.5), as well as (3.1) and 
(3.8), we obtain 

ZA Z+I,A cQ. { [() ]} nA,zWa',b'-nA,Z+lwa,d =---zA ~(",,-e.)-Nv (1+~ ",.-e. , 
la l , b' 

cQ-
- nA,zw~~c'+ nA,z_lw~~'/ = -[ZA' {~(-",,-e,)- N,[1+18(-",,-e,)I}. 

b', c' 
(3.10) 

The two possible processes of v absorption are com­
bined in the first line of (3.10), and those for v in the 
second. We have introduced in (3.10) the symbol 

",. = "', - enp - kT In (no> / np ). (3.11 ) 

If the energy conservation law forbids any {3 process, 
then we must assume that the corresponding Ii - "". 
By substituting (3.10) in the right-hand side of (3.4) 
and integrating with respect to €v,v and w, we obtain 
in the proper reference frame (the limit of integration 
with respect to energy are established by the energy 
conservation law) 

p 1 dtt SS cQ.o 
--;;; (1+ tt)' dt'= - l,T{~("" - e,,)- N.[ 1+~(",. - e,,)]} 

xde,.doo. Q 

+55 ;_;·{~(-",,-e-:.)-N,[1 +18(-",,-8,.)]} d8'odw •. '. (3.12) 
The necessary summation over all different pairs of 
nuclei has led to the appearance in (3.12) of the total 
mean free paths of v and v with respect to absorption 
in the {3 processes: 

-h- = 'i. ('Z;A + Z;A)' Z~ ~ = 'i. (zL + zz~). (3.13) 
'110 a' d' \I 0 b' e' 

We note that, generally speaking, the following inequal­
ities hold 

(3.14) 

because the possible mechanisms for absorption (and 
scattering) of v and vare not connected with the f3 
transformations of the nucleons. 

From (3.12) we determine the necessary and suffic­
ient conditions for complete thermodynamic equilibrium. 
The equilibrium distribution functions of v and v from 

(1.8) and (1.9) cause the two curly brackets under the 
integral signs in (3.12) to vanish only if the chemical 
potential of the neutrino satisfies relation (3.11). We 
note that the definition of the chemical potential of the 
antineutrino (1.17) is by the same token kinetically 
justified. 

4. DIFFUSION EQUATION FOR LEPTON CHARGE 

To obtain the missing equation for the chemical 
potential of the neutrino, we use the approximation of 
the neutrino thermal conductivity in the kinetic equa­
tion (3.12). 

With the aid of (1.2) and (1.8), (2.3), and (2.5), we 
represent the function Nv, taken in the second approx­
imation, only in terms of quantities in the proper ref­
erence frame: 

c'h' 
N, =N,o--, L'I.;[D(I,oL-')-D,.(/.;D,/,o)]. (4.1) 

e.o 

Substituting Nv from (4.1) and an analogous expres­
sion for Nv into (3.12) we obtain, assuming for sim­
plicity the equal sign in (3.14) and taking (1.8), (1.11), 
and (3.6) into account, 

p dtt S+' S~ L' 211 d/lo de,,-. -[D(I,oL-')-D,.(l.;D,.I,,)] 
mp (1 + t~)2 dt _I 0 8'0 

+1 ~ L2 
- 211 ~ dft.S de- - [D(Teo'L-3) - DTf'(l,~ D",i,o')]. (4.2) 

-1 0 '110 8';0 

where I~o is the equilibrium intensity of the antineu­
trino. Integrating in (4.2) with respect to JJ. 0 by the 
method described in Sec. 2, and introducing the equili­
brium concentrations of /I and v, 

4n 5"" de,. 411 "" dB-
n" = - -1,0, n- = -5 -2!!I ' (4.3) c 0 Evo 'J e C 0 8;'0 eO, 

we arrive at the equation 

p 1 d{} d (' n" - n7;'e ) 411 r de,. 1 a 
m;(1+tt),--,u-=PTt p --3-~e,;-7Or 

( 21 ' aleo ) , 411 5~ de,. 1 a (21 • aleo' ) 
x r '. 7ir T -3- e:=- --,:2Tr r '. fir ' . .. 

Just as in (2.10), €v o and €vo must be regarded as 
constants in the derivatives ole%r and al~o/ar. 

(4.4) 

It is remarkable that the entire aggregate of the 
first derivatives of (4.4) can be represented in the 
form of a derivative of the lepton charge density. We 
introduce the definition of the lepton charge density 

1 
::e = -(n, +n,,-n- - n-), p e 'lie 

(4.5) 

Taking into account (3.4) as well as the electroneu­
trality conditions Np = ne - ne, which can be used to 
determine the chemical potential I/Je of the electrons, 
we obtain from (4.4) the lepton-charge diffusion equa­
tion 

d::e 1 a 
lit = - ()?' Or fr2 (A. - A,)]. (4.6) 

where 

A,= -~ 1 de,. [,0' al, •• A-= -~S~ de,. Z-' oleo' (4.7) 
3 0 B II ) ar v j v e~o ... 0 ar . 

Changing over to the Lagrangian coordinates t and m 
we obtain from (4.6) 



826 V. S. IMSHENNIK and D. K. NADEZHIN 

afl' a 
-+401- (r'A)=O. at dm 

(4.8) 

The flux and density of the lepton charge are given, on 
the basis of (4.3), (4.5), (4.7), and (1.8), by 

7 4aeT' (AT aT a1jl.' ) 
A=-s----:lk 401r'p ra;;+A'---am ' 

x ,= + tn, - n, +~: ( ~~ r [('1':)'+ O121jJ:I} , 

AT = I.y, - AT;;; A. = A<. + A.;; 

15 S~l x'exp{2(x-1jJ/)} d 
AT> = 7;,< ., (1 + exp {x _1jJ/})' x, , 

15 S~ x'exp{2(x-IjJ/)} d 
/'''''V = - ['Yo x. 

701' (1 + exp {x -1jJ/})' , 

(4.9) 

The expression for ;\Tv and ;\I/!v are obtained from 
those in (4.9) by the procedure used in the discussion 
of (2.15). A comparison of (2.15) with (4.9) leads to the 
Onsager relation[ 14) ll/; = IT, which can be regarded as 
a check on the correctness of the given kinetic analysis. 
Equation (4.8) completes the system of neutrino gasdy­
namics equations in the thermal-conducti vity approxi­
mation. 

It is of interest to dwell on the character of the ap­
proximation used to derive (4.8). The lepton-charge 
flux A is proportional, in analogy with the energy flux 
H, to a small parameter raised to the first power. 
Nonetheless, to derive (4.8) we need the neutrino dis­
tribution function Nv in the second approximation. The 
reason is that one order of smallness in Nv from (4.1) 
is compensated for by the presence of the neutrino 
mean free path in the denominators of the integrand of 
(3.12). Notice also the high accuracy of (4.8), where 
the discarded terms are of second order of smallness 
relati ve to those retained (see footnote 4 above). 

5. BOUNDARY CONDITIONS IN THE NEUTRINO 
THERMAL CONDUCTIVITY APPROXIMATION 

Neutrino opacity sets in only in the central core of 
the star, where the temperature and density are both 
high. The shell of the star, which has an incomparably 
larger radial dimension, is transparent of neutrinos 
and antineutrinos. It is therefore necessary to con­
sider the neutrino core of the star and formulate ex­
ternal boundary conditions for Eqs. (2.14) and (4.8) in 
a certain intermediate value of the Lagrangian coordi­
nate M, which certainly includes the entire opaque 
region, but still does not subtend over the greater part 
of the transparent shell. It is clear that M itself has 
an arbitrary meaning, but errors in its choice lead to 
peculiar results. An overestimate of M leads to an 
artificial isothermal region in the envelope, and an 
underestimate leads to a sharp temperature gradient 
near the boundary M. The external boundary conditions 
are the consequence of the absence of neutrino-radia­
tion sources outside the central core of the star. The 
condition for the vanishing of the external v and v 
fluxes on the moving boundary m = M in the proper 
reference frame is 

00 0 

201 ~ deo ~ fLo (1'0 + 1'7;0) dJlo = 0, 
o -1 

00 ~ (1"0 1- 0 ) 
201 ~ dBo ~ fLo -,- - B~ dfLo = O. 

o -1 13,,0 v 0 

(5.1) 

Substitution of the functions Ivo from (2.8) with allow­
ance for (1.2) and subsequent integration with respect 
to IJ. 0 by the method used in Sec. 2, leads to two condi­
tions: 

(5.2) 

where 
15 aT" 

n = n,. - n'7; e = 6014 -k- [(1jJ:)3 + O121jJ: I. (5.3) 

In the theory of photon thermal conductivity, the 
first of the two boundary conditions (5.2) is used on the 
outer surface of the star[20). The total aggregate of the 
boundary conditions in the neutrino thermal conductiv­
ity approximation includes, besides (5.2), the conditions 
at the center of the star (the absence of pointlike 
sources): 

aT / ar = 0, a",. / ar = 0, m = O. (5 A) 

The function r and v, as well as the total pressure 
P + K, obey the usual gas dynamic conditions (r = 0 
and v = 0 at m = 0, continuity of all the functions at 
m = M). 

6. CASE OF HIGH TEMPERATURES 

At densities and temperatures that are typical of 
collapsing stars [3J it is possible to simplify consider­
ably the picture of the (3 processes. In the tempera­
ture interval 60 x 109 - 200 x 109 °K there are prac­
tically no complex nuclei [17 ,21). In matter consisting of 
free nucleons, the main (3 processes are (see [22]) 

r+p+tn+v (fora, a'), e++n+tp+v (forb,b'). (6.1) 

In the case mec2/kT = 5.9T;/ « 1 we can neglect the 
finite rest energy of the electron mec2 and the differ­
ence between the rest energies of the nucleons ~np 
= 2.53mec2. Then, according to (3.9) and (3.6), we 
have 

la,n = mp 1 + tr ~ (m.e' ) 2.----!- (6.2) 
0 0 tr P B. 1 - N, ' 

16'P = -.!!!:.r....~( m,e2 
)' __ 1_ (6.3) 

Vo P B-; 1-N.' 

where 
1(h)'ln2 

00=- - --",,2,10-"cm' 
401e m,e (tt) n • 

(604) 

In accordance with (3.3) and (3.2), we have the relation 
nn 

tr = - = ~(1jJ, -1jJ,)= ~(1jJ,)exp(-1jJ/). 
np 

(6.5) 

Calculation of the averaged mean free paths by means 
of formulas (2.15) and (4.9), with the function I/!e 
eliminated with the aid of (6.5) yields 

IT = B (1 + tr) {_ tr - 1 1jJ/ + 1 + tr [ (1]1.') 2 + n' ] } 
tr 2tr 3' 

I. = AT = ~ B (1 + tr) , .(.h ' _ tr ~) . A. = ~ B (1+ tr) , 
2 tr 'P tr+1 ' 2 tr ' 

B=~ mp~( m,e') '. 
7n' 0, (l kT 

(6.6) 

An essential property of the mean free paths is 
their decrease with rising temperature. At temperatures 
~200 x 109 °K, enough IJ. and 'IT mesons appear. The 
problem becomes complicated, since the mesons inter-
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act with the nucleons and change their concentrations. 
In addition, muonic neutrinos are emitted[41, to which 
the star likewise soon becomes opaque[2s 1• It is then 
necessary to consider one more diffusion equation for 
the muonic lepton decay, and to modify the previously 
introduced diffusion equation for the electronic lepton 
charge. An attempt to generalize the theory in this 
manner was made recently[241• 

We mention also a paper[2S1 that considers the in­
fluence of the Pauli principle for neutrinos on the 
volume luminosity of the star. It can be concluded 
from this paper that this effect takes place when the 
optical neutrino thickness is Tv ~ 1. In such a case it 
is necessary to take into account the neutrino absorp­
tion reactions when concrete problems are solved. A 
sufficiently good approximation at Tv > 1 is the neu­
trino thermal conductivity approximation considered 
above. 

We are grateful to Ya. B. Zel'dovich for interest in 
the work and useful remarks and Yu. S. Kopysov for 
certain discussions. 
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