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The magnetohydrodynamics equations of a plasma in quantized fields are considered. The stress 
tensor is calculated and the possibility of a hydrodynamic description of the plasma oscillations is 
discussed. Oscillations of a nondegenerate plasma are considered by means of the dielectric tensor 
calculated by the Green's function technique. 

T HE behavior of a substance in strong magnetic fields 
is a matter of considerable interest, especially in con­
nection with problems of astrophysics [l-4J . In addition, 
some phenomena in quantizing magnetic fields can be 
observed under laboratory conditions in the study of 
semiconductors and semimetals. We shall discuss the 
behavior of an equilibrium nondegenerate plasma in a 
quantizing magnetic field, such that nne» Te , where 
ne is the cyclotron frequency of the electron. For a 
low-temperature plasma (Te « I, where I is the atomic 
ionization potential), the magnetic fields are bounded 
from above by the condition nne «I, for in the opposite 
case the medium is weakly ionized[4J and the charac­
teristic plasma phenomena are absent. The correspond­
ing temperatures and fields are ~ 103 0 K and ~ 108 Oe. 
At higher temperatures, Te »1, the condition nne 
» Te can be realized in the plasma primarily for sub­
stances with small values of Z (Z is the nuclear charge) 
and, for example, at thermonuclear temperatures 
~ 104 eV, require fields H "! 1012 Oe. We assume that 
the ions are not quantized, nne « Ti ; for simplicity, 
moreover, we neglect collisions between particles. 
Under these conditions the distinguishing features of 
the quantizing field manifest themselves in the change 
in the stress tensor of the electron component, and this 
leads to singularities in the spatial dispersion of such a 
plasma. In this paper we present the magnetohydro­
dynamic equations of a plasma in a quantizing field, 
calculate the dielectric tensor, and discuss the plasma 
oscillations in the magnetohydrodynamic region 
(w, kvTi> kvTe « ni) as well as near the electron 
cyclotron frequency harmonics. 

1. EQUATIONS OF PLASMA HYDRODYNAMICS IN A 
QUANTIZING MAGNETIC FIELD 

We consider the hydrodynamic equations of a collis­
ionless charged liquid in an electromagnetic field. The 
Hamiltonian of a free particle in the second quantization 
representation has the form 

, 1 J (' e)2 J • d&(t)=-z,;; '\>+ P-7 A '\Jdr+e <p'\J+,\>dr-~ H,\>+a'\Jdr, 

(1) 
where If!(r, t) and If!+(r, t) are the Heisenberg field 
operators; <p is the electric field potential, A is the 
vector potential of the magnetic field H, a is the spin 
operator in units of 11/2, p. is the magnetic moment of 
the particle, p = ihV, and the remaining symbols are 
standard (the spin indices are not written). 
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The particle-flux operator j is defined as 
, in e 
j =-«V'\J+)'\> -,\>+V,\»--A'\J+'\J, 

2m me (2) 

the particle density is p = m IjJ +1jJ. These quantities are 
related by the continuity equation: 

ap / at + div j = O. 

Commuting the particle flux operator j with the 
Hamiltonian (1) and averaging the resulting identity 
over the local-equilibrium ensemble, we obtain 

aj, e. aT,,' a<p 
m-=-[JH],----en-+(MV)H,+[MrotH]" (3)* at c ark ar, 

where 

(4) 

M = !L<,\>+a,\» = n!La; n = <,\>+,\», j = <i>. 
For the quantities Tlk and M one should write, gen­

erally speaking, separate equations of motion. Thus, 
for the quantity na we obtain in analogous fashion 

aa. 2ft (5) 
nTt+ n(vV)a = -fi2 n[Ba]. 

We shall henceforth use a gauge in which <p = O. We 
calculate the stress tensor Tlk for the case of a con­
stant homogeneous magnetic field Ho = (0, 0, H). (The 
vector potential is chosen to be of the form Ao 
= (0, Hx, 0)). To do it we express Ttk in terms of the 
temperature Green's function for charged particles, 
G(r, r', T, T') 

T,.' = - :m l:~, {[ (p,' +~Ai(r"-c') ) (p.-~A.(r,-c») (6) 

+ (;.'+ ec A.(r',-c') )(pi-~Ai(r,-c) ) ]G(r,r',-c,-c')} 

1 AA 

+ 4m p,p.G(r,r,-c -c+O), 

where G(r, r', T, T') is defined as[5J: 

G(r, r', -c, -c') = - <T,,\>(r, -c),\>+(r', -c') >. (7) 
For noninteracting particles of type a in a constant 

magnetic field, the temperature Green's function takes 
the form [5J 

*[jHl =j X H. 
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G O( ,)=\""'11\Jo(r)1jJ;(r') (2 1) m r, r , Wm L.J . , Wm = m + T, 60 = flm - eo, so- !Wm 

q (8) 

Jl is the chemical potential, Eq and I/J q are the eigen­

value and eigenfunction of a particle in the state charac­
terized by the aggregate of quantum numbers 
q = (Py' Pz' n, u): 

eq = lelliH (n +~) + p,'Ii' - flaH, 
me 2 2m 

(9) 

1 ( p~li) 1jJo(r)=- exp [i(pyy+p,Z)]cpn x+-
2n ell 

n = 0,1,2, ... ; 

and CPn is the normalized wave function of an oscillator 
with frequency n = lelH/mc. 

In the case of an homogeneous and nondegenerate gas 
of charged particles, the stress tensor Tik is easily 
calculated: 

nfiQ th fiQ 0 0 

T~k = ( 2 0 c 21' nliQ h IiQ ) 
-2- ct 2:F o· 

\ 0 0 nT 

(10) 

For ultrastrong magnetic fields such that tH2e/Te 
» 1, the transverse electron pressure is much higher 
than the longitudinal pressure: 

,= T =' / T,,' = liQ,/ 2T,. (11) 

The difference between the transverse components of 
Tik and the longitudinal ones is connected with the fact 
that the energy (pressure) of the transverse motion in 
the limit Ii n e »T e is due to the electrons at the zero 
Landau level and equals nnne/2, whereas for longi­
tudinal motion the pressure is ~ nTe is not even depen­
dent on the magnetic field. However, such results con­
tradict the results Of[lJ, where the energy-momentum 
tensor of an electron gas in a quantizing magnetic field 
was calculated and the following was obtained for a non­
relativistic, nondegenerate gas: 

,'= 2liQ'exp (_liQ.\. (12) 
T, T, I 

The relativistic energy- momentum tensor T J.1. II was 
calculated in [lJ : 

lie (- 19'1' aq; ) T., =- '1''1''---'1','1' , 
2 ax, ax, (13) 

x=(r,iet), /.1, v = 1,2,3,4. 

Here I/J = (~) is the 4-component operator wave func­

tion. The tensor (13) is nonsymmetric and depends on 
the electromagnetic field gauge. The gauge- invariant 
tensor T~~v is of the form 

T'.. - 1 
.' = T., - ieA.'I'y.'I' = T .. - -A,J., 

e 

A = (A, icp), j = (j, iep). 

(14) 

The tensor T~n: 'coincides with the one obtained in[lJ 
only for an equilibrium state in which the electric cur­
rent is equal to zero, and satisfies the equation[8J 

aT~:"Q 1 . 
--= -F.,]., F" = aA,/ax, - aA,Jax,. (15) 

ax, c 

As shown in[6J the four-dimensional divergence of the 
antisymmetrical part of (14) is equal to zero by virtue 
of the equations of motion. We calculate TlnV in the 

J.1.V 
nonrelativistic limit (vic « 1), using the expansion of 

the bispinor v = (:) in powers of l/c[7] : 

a (~ e ) 
X= 2me P--;;-A 1jJ. (16) 

Substituting (16) in (14), we get for the stress tensor: 

(17) 

where Ekjl is the completely antisymmetric tensor 
(Em = 1); F ij is the three- dimensional part of the ten­
sor F Jl V' We omit here terms for which aTik/axk = O. 

If we take the nonrelativistic limit in (15), we obtain 
for the particle flux density an equation that differs in 
form from (3): 

aj, aT.. 1 . 
m-=---+emE,+-lJ H],. at ar. e el 

(18) 

In the right- hand side of (18), the total electric current 
jel differs from ej if the particles have spin[sJ: 

iel = ej + flcrot (1jJ+a1jJ). (19) 

If we substitute the values of jel and Tik from (19) and 
(17) in P8) and simplify, we again get Eq. (3). Since 
Tik in [ ] actually coincides in the nonrelativistic limit 
with (17), we easily obtain 

(20) 

For T ik' the ratio of the transverse and longitudinal 
components agrees with (12). This tensor differs from 
Tik is directly corrected with the kinetic pressure, and 
the spin contribution is explicitly separated. 

2. PLASMA OSCILLATION HYDRODYNAMIC ANALYSIS 

We consider the small oscillations of a plasma in an 
ultrastrong magnetic field. We seek the solution with 
all quantities proportional to exp i(k' r - wt). 

We assume that in the presence of a wave the stress 
tensor Tik retains its local equilibrium form in the co­
ordinate system where the constant magnetic field is 
directed along the z axis. We express the values of j 
and 11 found from the linearized equations (3) and (5), 
respectively, in the form Eiuik = jeI. i' where uik is 
the electric conductivity tensor. However, the Onsager 
symmetry relations are then violated[9J . Thus, even 
without allowance for the spin, we have (here and below 
ky = 0, kx = k 1) 

ik.l.k, [ wo<' '+ W,.' ,] 
O':u = 4ro1t 2D/' UTi De Z Ux , 

ik.l.kz ~ Woa.z z 
O'zx= 4(t)tt ~ 2DazVTa., 

m 



OSCILLATIONS OF A NONDEGENERATE PLASMA 489 

(21) 

W oa is the plasma particle frequency for particles of 
sort a 

VT~' = 2T~ / m~, u; = fiQ, / 2m,. 

It can be shown that the contribution made to 0ik by 
the presence of spin satisfies Onsager's principle auto~ 
matically, and thus the summary electric conductivity 
tensor does not satisfy this principle. It is known that 
collisionless hydrodynamics leads to wrong laws for the 
dispersion, say, of Langmuir waves, even in the ab­
sence of a magnetic field [1OJ. The quantization of the 
electron state in a magnetic field is equivalent to some 
degree, in the sense of the stress tensor, to a distribu­
tion with two distinct temperatures Til and T l' Of 
course, the equilibrium state in a magnetic field is 
described by one temperature and is stable, in distinc­
tion from the case with Til f: T 1 [llJ, but the electron 
stress tensor components T~ ~ nehne/2 and T~z 
~ neTe are the same for T1 = nne/2 and Til = Te' It 
can be shown that, considering a stress tensor of the 
form 

(22) 

where T is a unit vector in the direction of the instan­
taneous value of the magnetic field T~ = neT, and T~ 
= neT, we obtain for the electron component of tensor 
0ik in the "isothermal" case of Til = const and T1 
= const1): 

(J.~')-- ik.J.k,wo;' [_ 2T.J.+~+O(k.J.')]' 
4nwD, m. m, (23) 

When Til = T l' the symmetry of the conductivity tensor 
is restored. 

3. PLASMA CBCILLATIONS. KINETIC ANALYSIS 

We calculate the dielectric tensor Eik in a coordinate 
system in which the external magnetic field is directed 
along the z axis, using a Green's function. The ap­
proach is analogous to the kinetic treatment of the prob­
lem. To this end, we use the known definitions[5J: 

j,= ~{ !im [ __ ie~fi (!-._~)_ e~2A'] G(r,r','t,'t') 
a r -+T 2ma; ari ar~ ma.c 

'('-+'f+O 

+ e o G ( + 0) } G = G(O) + G(I), fl~ e'j/<-(J. ~ r,r,'t,'t , 
orj 

(24) 

where G(l) is the correction to the Green's function of 
non-interacting particles in a constant magnetic field, 
and is linear in the perturbing potential Al exp (ik· r 
- iwt). It is calculated by the usual methodeS] : 

i/'l CICI 

G(t)(r, r', 't, 't') = ~ S d't. S dr.G(O) (r, r., 't, 't.). (25) 
., 0 

exp (ikr. - iw't.) £ (r" (J.) G(O) (r" r', 't" 't'), 

1) Allowance for the variation in the quantity Tl - n - lUI does 
not alter our assertion that the conductivity tensor is not symmetrical. 

A e e'AoA.. 
}; (r, 0) = - --(2A.p + fikA.) + --- flOU •. 

2me me' 
(26) 

It is expedient to integrate with respect to Py in ex­
pression (8) for GO(r, r', w m ) [12J : 

I'] [ (x+x') (y - y'\ 1 
G(O) (r, r', W m ) = (2n) 'h exp - il']. 2 (27) 

~ ~ (x-x')'+(y-y')'] 
x ~ ~ S dp, exp{ip,(z - z')} exp [ -I'] ~'-----CC4-'---"--

n=O 

( (X-X')'+(Y-Y')') __ ,-1_ xL ~'--~---'---"---:-
n I'] 2 S, + iWm ' 

where 1) = jejH/hc is the square of the reCiprocal mag­
netic length, and Ln(x) is a Laguerre polynomial. 

Summing over the frequencies wm and changing to 
the retarded response, we obtain 

lim G(I) (r, r', t, t') = - (21'])' 3~' t ~ S dx. dp, dy •. 
,'_t+o It ft • 

n,n _0 a 

{ . (x+x.)(y-y.) 
xexp - tl'] 2 

(x - x.)' + (y - y.) , } 
I'] 4 ' . 

( (X-X.)2+(y-y.)') A 

XLn I'] 2 . exp(ik.J.x.)1(r"0) 

{ . (x,+x') (y.-y') {x.-x')'+(y.-y')'} 
xexp - II'] 2 I'] 4 

( (x.-x'\'+(y,-y')') . .,. , 
XLn' I'] 2 exp(-lwt)exp(lk,z+tp,(z-z» 

X n (e;,_k,. n')- n(e;,.n) 

e~. Pz - B~"'Pz-kz - nw • 
(28) 

Since we are considering a nondegenerate plasma, 
we have for n(Eq) the Boltzmann expression n(Eq) 

= exp (~q/T). 
Substituting (28) in (24) and performing all the neces­

sary operations, which are omitted here, we represent 
the resulting expression in the form of an expansion in 
powers of the small parameter kV21). The ionic con­
tribution to the dielectric tensor Eik is described by the 
usual formulas [1OJ . The final result is2 ) 

( 
e1 ig 6 ) 

8'k = - ig e. if , 
6 - if I'] 

wo.' wo.'Q, [Z~') z+ (.)] w,,' [Z~) 'Z~')] 
8.=1--. ----- ----- -- --+--

w' 2w' w - Q. w + ~2. 2w w - ~~, 0) + Q, 

f = wo':k.J. [Z~') _ Z~·) )- w,,'k.J. [Z(') _ ~ {Z~) + Z~i)}] ; 
2w k, wQ,k, 2 , 

I'] = 1-~ w;:k~« (Z(a) -1), 

2)The calculation of the corrections (- hn/T) to the transverse 
classical tensor €ik, assumed here to be small, is carried out in (13). We 
are considering the limit hne/Te ~ I. 
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Z(z)=X(z)-iY(z), 

, 
X(z) = 2ze-" Set' dt, Y(z) = l'~ ze-", 

o (29) 

Expressions (29) for the tensor t 'k are valid for 
particles far from the cyclotron har~onics. 

We note that for spinless particles the dielectric 
tensor (29) will have, along with some changes in the 
numerical coefficients, quantum corrections to t2 and f, 
of the form 

(30) 

The spatial dispersion of such a quantum plasma of 
spinless particles will differ from zero even when 
T = 0, which does not happen in non-quantizing mag­
netic fields. The absence of similar quantum terms in 
tik for electrons with spin is apparently a consequence 
of cancellation of the Landau ground level energy by 
the spin energy (cf. the analogous cancellation of spin 
and kinetic parts in the stress tensor Tik (17)). 

In semiconductors and metals in which the effective 
mass m~ differs from the mass me of the electron in 
vacuum and, in addition, the Lande factor g appears in 
the spin terms, this cancellation does not take place. 
Then corrections of type (30) arise, but vanish when 
me = m~ and g = 2: 

wo.'hkL ( ( W) ) [m. g ] f=-- Z -- -1 ---
'2wT.k, k,v,,' m: 2 ' 

The modes of all the possible oscillations can be 
found b1' solving a general dispersion equation of the 
form[lO . 

Det== Ik'<Sik-kik.-c-'w'e,,(ro, k)1 =0, (31) 

The slow magnetohydrodynamic wave (its spectrum 
is found from the condition TJ = 0) remains unchanged 
and, as before, is weakly damped when the condition 
Te » Ti is fulfille&lOJ. The Alfven wave can be found 
from the relation kZ2C2 = t 1 W2, and for obvious reasons, 
differs in no way from the usual case. The Alfven 
velocity of a hydrogen plasma CA2 = c2(1 + Woi2/ni2) 
becomes of the order of the speed of light when 
ni/H2 « 102 (H is in oersteds, and ni is the proton con­
centration in cm3). 

The dispersion relation for a fast magnetohydro­
dynamic wave is found from the equation 

k'c' / w' = S. - r / 1], (32) 

the spectrum of that wave is given by (kzvTe « W «ni ; 
W « woe) 

(33) 

As distinct from the classical case (line « Te), the 
term ~ (Te/Ti)k~vTi is absent from the expression 
(33) [lOJ. For spinless particles the corresponding 
spectrum takes the form 

The spectra of the high-frequency oscillations are 
not, in the main, different from those of the oscillations 
that exist at non-quantizing values of the magnetic field. 
Significant changes occur in the expressions for the dis­
perSion near the cyclotron resonances. To find their 
spectrum it is necessary to add to the dielectric tensor 
(29) resonant terms containing the parameter k~/2TJ 
raised to smallest possible power (for the given Z-th 
resonance). We have for propagation transverse to the 
magnetic field 

1= 1,2,3" .. , (34) 

w • .' ( kL' )"_' 
~e, res = ~e, res = - ~g res = --;;;z 2:;j . 

Q, I' 
X (l'Q,-w) 2(1'-1)!' 1'=2,3, ... , 

1181 res _ det res _ /jgres _ woe2 ( kL' )' 
--5--~--15- 4w' 2rl . 

Q. (hQ. ) Z' = 1. 
X Q,-w exp -y , 

The resonant terms proportional to k~ and k~ cancel out 
in the dispersion equation for the fundamental reson­
ance, and it is therefore necessary to retain in tik 
resonant terms proportional to (k~/2 TJ)2. Then the 
terms in (28) with n = 2, n' = 1, and higher do not cancel. 

The move propagating in the vicinity of the l- th 
resonance with an electric field vector parallel to the 
constant magnetic field (an ordinary wave) takes the 
form (dispersion equation TJ = ~C2/W2) 

(35) 

For other than ordinary waves, i.e., a plane-polar­
ized wave perpendicular to the constant magnetic field, 
the answers will be different for the fundamental and 
for the higher resonances (dispersion equation k2c2/W2 
= t2 - g2/t1): 

(36) 

_ Z'Q + L" ~.. • . ( k ') ,'_I W ' [l'(l' + 1)- ,.> '/Q'1 
w,'- • 2rl Q, [l"(l"-1)+w • .'/Q.'1(l'-2)! '(37) 

The difference from the classical case[14J is that the 
role of the Larmor radius R2 is assumed by the mag­
netic length 1/fi/. Propagation of cyclotron waves with 
W z > me becomes possible, which happens if me > Woe 
(a condition easily satisfied in a plasma in strong 
fields). The opposite situation, i.e., the existence of 
oscillations propagating in metals only at wz < 1 ne in 
the long-wave region, was discussed in[14J. 

In conclusion the authors thank A. A. Vedenov for his 
interest and useful suggestions. 
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