
S 0 V lET P H YS I C S JET P VOLUME 36, NUMBER 3 MARCH, 1973 

FLUCTUATION CHARACTERISTICS OF A DENSE PLASMA OF HIGH CURRENT 

DISCHARGES PRODUCED BY ELECTRIC EXPLOSION OF METALLIC WIRES 

F. A. NIKOLAEV, Yu. V. NOVITSKII, V. B. ROZANOVand Yu. P. SVIRIDENKO 

P. N. Lebedev Physics Institute, USSR Academy of Sciences 

Submitted February 22, 1972 

Zh. Eksp. Teor. Fiz. 63,844-853 (September, 1972) 

The fluctuation characteristics of a high current discharge plasma produced by electric explosion of 
lithium wires in vacuum are investigated (discharge geometry-straight Z-pinch, Wtr = 22.5 kJ, 
Tdisch ~ 120 JJ.sec, Imax = 220 kA, initial wire diameter do is 0.17 mm, 0.34 mm or 1.0 mm). Corre
lation reduction of the signals from magnetic sensing elements yielded the mean size, velocity of the 
inhomogeneities and energy spectrum of the fluctuations. In the second part of the paper the magneto
hydrodynamics equations are analyzed; this leads to relations for plasma pulsations which are in 
good agreement with the experimental data. It is concluded that plasma fluctuations of the discharge 
are determined by superheat instabilities peculiar to an optically transparent plasma. 

1. INTRODUCTION 

T HE plasma formed by the discharge of a capacitor 
bank (1800 JJ. F, 5 kV) through a lithium wire does not 
possess a regular structure during the first quarter of 
the period of the discharge current (0-40 micro
seconds); it has inherent inhomogeneities of composi
tion and luminescence whose location and size vary with 
time. This character of the discharge was indicated by 
the results of measurements of the local magnetic fields 
and the high-speed photographs of the discharge [1,2] • 

Study of the oscillograms of signals from magnetic 
probes placed inside the plasma shows that large os
cillations of the magnetic field are present during the 
first 35-40 microseconds. The curves consist of ag
gregates of pulsations of various amplitudes and periods 
superimposed on one another without any visible regu
larity, i.e. the instantaneous values of the magnetic 
fields are irregular sums of three-dimensional pulsa
tions (Hcp' Hz, Hr) of different orientation, amplitude, 
and frequency. Since electric and magnetic fields ac
company the majority of the collective motions of the 
plasma, it is possible to investigate plasma motions 
with the aid of the magnetic fields associated with them. 

Measurements show that the fields excited in the 
plasma are of random character, i.e., there is no re
producibility from discharge to discharge (from "shot" 
to "shot"). This is evidence of the turbulent state of 
the plasma and the fact that the hydrodynamic quantities 
(pressure p, velocity v, and temperature T) pulsate ir
regularly during the first 40 microseconds, changing 
with extreme irregularity in time and space. After the 
current maximum (t > 40 JJ.sec) the turbulent state of 
the plasma passes to the quiescent state ("smooth," 
continuous character of signals from the magnetic 
probes), in which the hydrodynamic variables are con
nected by a definite functional relation, which we deter
mined in previous papers [1] • 

In this paper we investigate the fluctuation charac
teristics of the considered discharge plasma both by the 
method of correlation reduction of the magnetic meas
urements and by dimensional analysis of the magneto-
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hydrodynamic equations. Apart from its own value, the 
determination of the plasma fluctuation characteristics 
permits a more exact analysis of the integral charac
teristics of the discharge (the time of existence of the 
turbulent state of discharge constitutes an appreciable 
fraction of the discharge time, the latter being ~ 100 
JJ.sec. 

2. CORRELATION REDUCTION OF MAGNETIC FIELD 
MEAS UREMENTS 

A. Formulation of the Problem 

To determine the mean values of the physical quanti
ties in a turbulent process it is necessary to employ the 
statistical description of turbulence. Since it is difficult 
in practice, and in particular in our experiment, to ob
tain the large number of measurements made in a large 
number of identical repeated trials for the determina
tion of the mean values of the hydrodynamic fields, it 
seems realistic to utilize measurement data obtained in 
the course of only one (or several) trials. By the same 
token, it becomes necessary in practical calculations to 
replace the "averages over the ensemble" (mean values 
in the probability- theoretical sense) with the" averages 
over one realization" (directly observed averages). For 
such a convergence to be fulfilled for a random process, 
i.e., for the ergodic theorem to be valid 

lim I XT7(t) - x (t) I = 0, 
t_~ 

it is necessary and sufficient that the correlation func
tion Bxx(T) satisfy the condition (see[3]) 

which is satisfied if Bxx( T) - 0 as T - 00. We introduce 
here the following notation: x(t) is the value of the field 
pulsation, i.e., the difference between the individual 
values of the field and its mean value; x(t) is the proba
bi!ity- theoretical mean value of the random process; 

XT (t) is the average over the realizations in a time T a. 
a 
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In different physical random processes BXX(T) - 0 as 
T - co; therefore, if the physical process is stationary 
(steady-state turbulent flow), then the probability
theoretical mean values of the hydrodynamic fields can 
be determined by averaging over a sufficiently large 
time interval. 

Summing up what has been said above, we can draw a 
number of conclusions. From a single realization of a 

, random process one can assess the probability- theor
etical mean values (and thus considerably simplify the 
analysis of the process) if the following conditions are 
satisfied: 

1. The averaging interval T a must be sufficiently 
large, since a reliable determination of x(t) calls for 
time averaging over an interval T a much longer than 
the corresponding correlation time defined by 

1 ~ 

Teorr= B~(O)~ Bxx('C)d'C. (1) 

Then one can determine the degree of accuracy in the 

replacement of x(t) by x'i':{t), i.e., the largest mean-
squared error[3]: a 

.------ -I' T eorr B 0 IXT (t)-x(t) ~2-T xx( ). 
• • 

Thus, for example, for Ta = 15 j.Lsec and Tcorr 
= 3 j.Lsec, we have 

1 
Bxx(O) IXT.(t)-x(t)12~O.4. 

(2) 

2. Since we are considering an essentially non
stationary stage of the discharge (from the instant of 
explosion of the wire to the establishment of laminar 
flow), the averaging interval Ta must be sufficiently 
short that the process can be regarded as stationary in 
that time interval. Physically, the process to which such 
a realization corresponds must be a steady-state proc
ess, i.e., all external conditions that produce the proc
ess (discharge current I, voltage U) and all the mean 
characteristics of the current (e.g. mean temperature 
T, mean density n) should, strictly speaking, be invar
iant in time. The chosen averaging interval T a enabled 
us in practice to satisfy these two contradictory re
quirements, since in our case there is satisfied the 
condition Tcorr = 3 j.Lsec < Ta < 15 j.Lsec < Tav. motion 
= 100 IlseC (Le., an extremely irregular "pulsation" 
motion is superimposed on an average motion that 
varies comparatively slowly). 

3. The turbulence we are considering must be homo
geneous (the condition for the ergodic theorem). Since 
we are investigating a discharge contained within walls, 
we must conclude that our analysis of turbulence will be 
valid only if the dimensions of the plasma inhomogenei
ties are substantially less than the characteristic di
mension of the discharge (for example, the chamber 
diameter, equal to 10 cm), Le., the turbulence must be 
small-scale. 

For ergodic random (Le., stationary and metrically 
transitive) processes, the expression for the correla
tion function takes the form 

1 T. 
B...,(r:)= lim -J x(') (t)y(')(t +r:)dr:, (3) 

Ta-+ oo 2TY _ Ta 

where x(k) is the realization of the k-th random process 

x(t) and y(r) is the realization of the r- th random proc
ess y(t). For ease in calculation we use the correlation 
coefficient of the stationary random process ("normal
ized correlation function") 

R.(r:) = B .. (-r) / B .. (O) 

and the mutual correlation coefficient 

R...,(-r) = B.,(-r) / [B .. (O)B,,(O) 1"', 

where BxX<0) and Byy(O) are the rms values of the 
steady state random processes x(t) and y(t). We recall 
that we are considering processes with zero mean 
values: x(t) = 0, y(t) = O. 

Once the correlation coefficient is calculated, we 
can calculate the correlation time Tcorr (with the aid of 
formula (1)), which characterizes the process in the 
sense that at T > T corr the quantities x(t) and x(t + T) 
can be regarded as uncorrelated in practice. 

It will subsequently be shown that if the correlation 
functions are known we can determine the dimensions 
of the plasma inhomogeneities, their velocity, and other 
quantities . 

B. Reduction of Results. Results of the Measurements 

In this experiment (the setup and procedure are des
cribed in[l]) the local fields were measured with minia
ture magnetic pickups consisting of single layer-coils 
of ~ 3 mm diameter. In one trial it was possible to 
measure dH(t)/dt (or H(t)) at four different points of the 
discharge plasma, while varying the orientation of the 
probes permitted us to measure the different field com
ponents (H ,Hr , Hz). The Signals from the pickups 
were recotded with the aid of an S1-33 oscilloscope on 
photographic film. Typical oscillograms of the magnetic 
field intensity derivatives are shown in Fig. 1 (hence
forth H' will deSignate the derivative with respect to 
time). The experimental data were tabulated (at inter
vals determined by the maximum fluctuation frequency 
and the bandwidth of the recording apparatus) and were 
fed to a computer along with the corresponding compu
tation programs. 

With the aid of the computer we calculated the norm-
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FIG. I. Oscillograms of signals from magnetic probes. Each division 

equals 10 microseconds. Traces: I, IV-H'<p(t), II-H'r(t), III-H~(t), 
v-total discharge current I(t). 
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alized autocorrelation functions RX(T) of the magnetic 
field fluctuation, the mutual correlation function Rxy(T) 
between different points of the plasma, and the fluctua
tion spectrum. It should be noted that the time delay of 
the measuring apparatus (fl. ~ 107 Hz) and the finite 
size of the pickups (~ 3 mm)1fimits the possibility of 
measuring the small-scale and high-frequency compon
ents of the turbulence. The averaging in our experi
ments was therefore over the time interval T = 1/flim 
~ 10-7 sec and over a region of space having linear 
dimensions of the order of 3 mm. 

The averaging interval Ta was chosen to be 15 Jlsec, 
approximately in the middle of the first quarter-period 
of the discharge. This satisfied the two aforementioned 
conditions on the choice of Ta. The autocorrelation co
efficient underwent almost no change when Tawas var
ied by ± 5 Jlsec, which indicates that the choice of the 
interval Tawas a reasonable one. It should also be 
noted that the correlation functions agree for different 
identical trials (the same initial wire diameter, energy 
input, wire material), Le., for different realizations of 
the random process. This indicates that no.!. o~ly are 
the mean discharge parameters (I(t), U(t), T, n)[4] 
reproduced from one trial to the next, but the statistical 
properties of the fluctuation of the initial phase of the 
discharge and the character of turbulent motion are all 
preserved. 

As noted earlier, the accuracy of the replacement of 
- ~ 

x(t) by xT (t) is about 40% in our case. a 
Figure 2 shows the autocorrelation coefficient of the 

derivative of the azimuthal component of the magnetic 
field Rx (x == H~) for wires of initial diameter 0.17 mm. 
An analogous functional form is obtained for the axial 
and radial field components. 

Figure 3 shows the autocorrelation function of the 
fluctuations of a helium- neon laser beam that passes 
through a plasma (the oscillograms for the calculation 
were taken from [5'] , where measurements of light pass
ing through a lithium plasma were made at the same 
lithium discharge parameters as in our case). It is 
seen that the plots in Figs. 2 and 3 are similar. Since 
the fluctuations of the transmitted laser beam are mainly 
determined by the plasm a- density fluctuations, the good 
agreement of the autocorrelation functions indicates that 
the magnetic-field fluctuations correspond to fluctua
tions in the plasma interval parameters. 
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FIG. 2. Autocorrelation coefficient of the derivative of the azi
muthal magnetic field component Rx (x == H~) for a lithium discharge 
with initial wire diameter do = 0.17 mm. 

FIG. 3. Autocorr~lation coefficient of the brightness fluctuation 
of the laser beam illuminating the plasma. 
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FIG. 4. Mutual correlation coefficient Rxy(r) (xy == H; H;) of sig
nals from magnetic probes separated by different distances r. 

FIG. 5. Mutual correlation coefficient Rxy(r) (xy == H'J H;) as a 
function of the distance between probes: I-do = 0.31 mm, 2-do = 
0.17mm. 

Figure 4 shows a family of mutual- correlation func
tions of the signals from two magnetic probes at differ
ent distances between probes. As the distance increases, 
the maximum of the mutual correlation function Rmax( T) 
decreases. 

Figure 5 shows the mutual correlation coefficient 
Rxy(r) of Signals from two magnetic probes as functions 

of the distance between probes (x and y correspond to 
values of the magnetic field at different points in the 
plasma). As expected, the correlation coefficient de
creases with increasing distance. From Fig. 5 it is 
possible to determine the dimension of the turbulence, 
Le., the characteristic scale of the field of the fluctuat
ing quantities, over which significant correlation still 
obtains between field values at two points [3] : 

L=_1_j Bv,(r)dr= j R.,(r) dr. (4) 
B(O) 0 0 

The inhomogeneity dimension thus determined is 0.9 cm 
for the plasma formed by the explosion of a lithium 
wire of initial diameter do = 0.17 mm, and 1.3 cm for 
do = 0.31 mm. 

Figure 6 shows H~(t) oscillograms for do = 1.02 mm 
(a) and do = 0.17 mm (c) (the distance from the center 
of the pickup to the discharge- chamber axis was 3 cm 
in both cases), from which it is seen that pulsation am
plitude increases and the pulsation spectrum broadens 
as the number of particles in the discharge is de
creased. Analysis of the results presented in Fig. 5 and 
Fig. 6 shows that the autocorrelation function becomes 
more level as the mass of the wire increases; conse
quently, as the optical density of the discharge increa
ses, the dimensions of the inhomogeneities increase 
(whereas the discharge characteristics let) and U(t) re
main almost unchanged). 

According to the general concepts, the excitation of 
turbulent currents is due to instability[6]. As we pro
ceed to thicker wires, Le., to an optically denser, 
"black" plasma, the superheat instability mechanism 
characteristic of transparent plasmas becomes 
weaker[7]. We can therefore conclude that the suppres
sion of turbulence in the case of "thick" wires is con
nected with the suppression of the superheat instability, 
that determines the turbulence of the plasma in our 
case. 

If the plasma inhomogeneities move with a mean 
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FIG. 6. OsciJIograms of H~(t) for a-do = 1.02 mm, b-osciJIogram 
of total current I(t), c-do = 0.17 mm. 

FIG. 7. Dependence ofTRmax on the distance between probes: 1-
do = 0.31, 2-do = 0.17. 

velocity v, then the equality Ivl = v/TR is valid 
max ' 

where r is the distance between probes and TR is 

the time shift corresponding to the maximum vr::l~~ of 
the mutual correlation function[8]. We can therefore de
termine the velocity of the plasma inhomogeneities from 
the plot of TR = f(r) in Fig. 7. This velocity is equal 

max 
to ~ 10 km/sec and 7 km/sec for do = 0.17 mm and do 
= 0.31 mm, respectively. It is interesting to note that 
these values are equal to the speed of isothermal sound 
in the plasma, calculated for the averaged parameters 
of the investigated plasma and given in[1]. 

rot H = 4nc-1j. 

In these equations j is the current density, c is the 
speed of light, H is the magnetic field intensity, T is 
the temperature of the plasma, p is the density, and 
d!dt = (a/at) + va/ar. 

(8) 

The second term on the right-hand side of (7) deter
mines the energy losses due to volume radiation; we 
shall use henceforth the values a = 2 and {3 = 1/2, since 
they are just right for the volume radiation losses of a 
lithium plasma. 

In the analysis of Eqs. (5) to (8) it was assumed that 
H"" jX/c, i.e., the magnetic field is determined by the 
local current. It was also assumed that one can exclude 
induction effects due to the motion of the plasma 
(E »vB/c) and that the electric field is determined 
only by the component due to the ohmic resistance of 
the plasma (E »c-1(a/at) jHdx)[l]. Equations (5) to (8) 
yield the following relations for the parameters of the 
pulsations of the hydrodynamic quantities: 

3. ESTIMATE OF PLASMA-INHOMOGENEITY 
PARAMETERS 

where A = 5 X lOll eV_cm2/sec2 and c = 3 X 1010 cm/sec. 
Here x is the mean dimension of the inhomogeneities, 
T is the mean temperature drop, and v is the mean 

The individual realizations of the fields of turbulent velocity of the inhomogeneities. 
motion satisfy the magnetohydrodynamic equations (see In the numerical calculations we took the values of E 
Eqs. (5) to (8) below). However, the equations of tur- and Qo obtained experimentally for the investigated 
bulent motion, obtained by separating the regular and lithium discharge of[l] at an approximate time 25 /J.sec 
pulsation parts, always prove to be indeterminate (Le., and a wire with do = 1.17 mm. These were E = 70 V/cm 
they contain more variables than equations), and in tur- and Qo = 24 X 1024 cm5_sec-3_g_eV1/2. The conductivity 
bulence theory it is impossible to reduce the problem a = 4 x 1013 sec-1eyl/2 was taken from a theoretical pa-
to one of finding a unique solution determined by known per[9]. Finally, we find (for do = 0.17 mm and an instant 
initial and boundary conditions. To find the inhomogeneity of time 25 /J.sec): t f::o 2 x 10~ sec, T = 3.1 eV, and 
parameters of the mean values of the pulsations it is P = 1.7 X 10-5 g/cm3, which correspond to a particle 
therefore necessary to adduce additional considerations. denSity in the lithium plasma n = 1.7 X 1018 cm -3, X = 3 
In this case we use dimensionality considerations based cm, P = 20 atm, and v "" 23 km/sec. 
on the separation of those physical parameters which It is seen from the obtained data that dimensional 
affect the stationary regime in the turbulent flow under analysiS gives for x, t and v results that are close to 
consideration. The characteristics of the turbulence, the experimental ones. We recall that the time (incre-
obviously, depend on only a small number of physical ment) of instability development, determined from high-
parameters. In the present problem such dimensional speed photographs, was approximately 2-5 /J.sec[2]; 
parameters are: E (the electric field intensity), ao (a t~e dimensions of the inhomogeneities and their veloci-
quantity characterizing the conductivity of the plasma: bes prove to be close to the corresponding values ob-
ao = a/r/2 where a is the conductivity), and Qo (a quan- tained from correlation analysis and are equal to 0.9 cm 
tity characteristic of the emissivity of the plasma: and 10 km/sec (for do = 0.17 mm). Thus one can as-
Qo = q/ paTa, where q is the energy flux of the radiation sume that our analysis gives approximately correct 
from a unit volume). The quantities E and a character- values for the other parameters of the turbulent flow of 
ize the energy input to a plasma volume with definite T the investigated plasma as well. The fluctuations of the 
and p, while Qo characterizes the energy disSipation by temperature, density, and pressure of the plasma do not 
radiation from that volume. differ greatly (by a factor on the order of 2) from the 

We write the equations of magnetohydrodynamics in averaged parameters previously determined in[1,4]. 
the following form: Thus, plas rna turbulization does not lead, in our case 

*[jHl =oj X H. 

ap / at + div pv = 0, (5) to qualitative changes in the properties of the discharge 
dv 1 (to an essential change in the mean ion charge, an anom-

d [ (6)* Pat = - gra p + --;;- iH], alous change of the c onduc ti vity, a change in the radia-
d T tion properties). This is confirmed by the fact that the 

ApTTtln p'_' = jE - Qop~T', (7) general discharge characteristics (total current I(t) , 
electrode potential U(t), total light flux <I>(t)) have a 
smooth and continuous character. 
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4. CONCLUSION 

Our investigation (a correlation reduction of the os
cillograms of the local magnetic fields together with 
an analysis of the magnetohydrodynamic equations) of a 
lithium plasma obtained by exploding a wire in a vac
uum has shown that the discharge is made turbulent 
during the first quarter-period, while the inhomogenei-

. ties have a mean linear dimension of about 1 cm and 
move in the plasma with the speed of sound, while the 
denSity and temperature fluctuations in the plasmoids 
can become appreciable (of the order of the mean values 
of these parameters in the plasma, p ~ 1.7 X 10-5 g /cm3 , 

T ~ 3 eV). With increasing discharge mass (initial 
wire thickness), the turbulence of the plasma decreases, 
the dimensions of the plasmoids increase, and their 
velocity falls off. 

In general outline, the picture of discharge develop
ment is the following. After the explOSion of the wire, a 
conducting channel of inhomogeneous structure is 
formed at the center of the chamber at the initial instant 
of time. The electric field E applied to the discharge, 
and the flowing current I, heat up the plasma and the 
discharge column expands. 

In a dense, optically transparent plasma 
(n = 1017_1018 cm -3, T ~ 3 e V), there arise instabilities 
that initiate and maintain turbulization of the discharge. 
Decay and dissipation of the turbulence set in at about 
40 /lsec as a consequence of instability damping. One 
can assume that the line emission of the plasma is 
responsible for the damping of the superheat instabili
ties. Although it does not materially determine the 
radiation of the investigated discharge as a whole (the 
line emission energy constitutes about 10% of the total 
radiation energy), the line emission can stabilize 
plasma instabilities, as attested to by calculations 

made for analogous discharges at the Institute of Ap
plied Mathematics [9J • 

The authors thank I. A. Kosykh, whose computer pro
gram they used to calculate the correlation function. 
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