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The theory of the shadow effect is considered from the standpoint of multiple-scattering theory. 
Thermal vibrations of atoms are taken into account by introducing an effective temperature-dependent 
potential. The problem of classical scattering by an effective potential is solved. A formula is derived 
for the spot width which is in qualitative agreement with the experimental data. The results are com
pared with the data of Lindhard and with qualitative considerations based on the uncertainty principle. 

T HE basic theory of the shadow effect developed by 
Lindhard[lJ in the purely classical approximation is 
well known. The Born approximation is used in such 
problems with great reservations[2J. Discussion of the 
effect from the kinetic point of view[3] gives the com
plete picture, but the estimates of the widths of the spots 
and lines and their temperature dependence do not agree 
with experiment. The recent work of Vedrinskil and 
Sharko CiJ , which was based on the theory of double 
scattering, apparently does not yet permit specific re
sults to be obtained which relate to the shadow effect. 

1. We will discuss the problem of scattering of pro
tons with energy ~ 1 MeV in a crystal lattice from the 
point of view of multiple-scattering theory. Let the 
proton-lattice system be described by the Hamiltonian 

H+~VI' 
I 

where VI is the potential for interaction of the proton 
with the I-th lattice site. Then the solution of the scat
tering problem is given by the equations (see, for ex
ample, Goldberger and Watson [5J ) 

(+)_ +'\' 1 T 
'¢N - X .t....:. E _ H + iY) I,¢" , 

(1) 

where X is the incident wave and the operators TI are 
determined by the equations 

1 
TI = VI + VI TI. (2) 

E-H+iY) 

The solution of the problem in explicit form without 
additional assumptions is difficult. The principal as
sumption which will be used here is that we can neglect 
back- scattering in propagation of the particle to the 
point of observation. The possibility of neglecting back
scattering is due to the high energy of the particle and 
is confirmed by the calculation made by us previ
ously[2J. We showed in that work that the scattering 
amplitude is large in a narrow range of angles near 
J = O. 

Let us consider, in particular, scattering by a Single 
straight string of atoms. From Eq. (1) it follows that 

1-. 
'¢I ,.. X + ~ 1. TI',¢I', 

"~1 E-H+llJ 
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which gives 

(3) 

Equation (3) gives the solution of the problem in quad
ratures if the operators TI are known. With a more 
complicated location of the atoms the contribution to 
scattering into a given solid angle will be given by sev
eral strings of atoms, each of which can be taken into 
account sequentially. 

The operators TI are determined from Eq. (2) with 
the known potential VI' We will assume that all atoms 
are identical, and then 

VI = V(r-I-u,), 

where 1 is the radius vector of the site of the l-th atom 
and the quantity ul is the deviation of a nucleus from its 
equilibrium position at the center of the site. If we 
consider the motion of the nucleus as quasiclassical, its 
coordinates cannot change greatly during the time of 
interaction with the proton. The final result must be 
averaged over the various configurations of the nuclei, 
for which it is necessary to know the probability distri
bution for the various configurations. The quantum
mechanical averaging is carried out directly in calcu
lations of the matrix elements of the scattering matrix. 

2. We will consider those cases in which the Born 
approximation is valid for scattering by a single atom, 
and the potential describing the interaction of the proton 
with the atom we will take as a screened Coulomb po
tential: 

Ze' ( Or) V(r)=-exp --
r ro 

We have 

T I ;:::; V(I''--I-'uI) 

The operators inside the parentheses in Eq. (3) are the 
operators for scattering by individual atoms, including 
both elastic and inelastic channels. We will limit our
selves to discussion of elastic processes. This means 
that we are excluding from consideration all processes 
which lead to a change in the vibrational state of the 
lattice in each of the scattering events. 
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Let us complete the transformation of the potential, 
which permits separation of the terms leading to elastic 
processes from the remaining terms. We will expand 
the deviation ul in normal coordinates: 

11:' .. n.=_ Q e,.1 ... Nh •. 

Substituting this expression into the Fourier expansion 
of the potential, we have 

d'k "IT {ik .} V(r-l-u,)=S -"-3- e'·(,-I)"V. exp - N"Q.e,q, . 
(2n) '" • • 

Utilizing the fact that Q_ q = Qq and expanding the ex
ponentials which occur under the product sign, we obtain 

d'k k 
V(r-l-u,)= S--eik('-I)V. IT{ 1- i- (Qqe,ql+ 

(2n)' Nt, 
q>O 

+ Q_,e-,q,) _ IkQ_.I' __ 1_[ (kQ.)'e'iql + (kQ_,)'e-',q'] + ... } . 
N 2N 

Here the notation q > 0 means that the product is taken 
of all possible terms for which the vector q takes on all 
values in the half space. 

We have, then, 

d'k " IkQ I' 'r. 
V(r-l-u,)= f-e'k(,-nv. [IT( 1--' )] 

• (2n)3 N 
q 

x [1_~k(Qqei"+Q_qe-iq,) ] IT Nt, 1-lkQ,I'/N + .... 
q>0 

Using the relation 

IT(1- Ik~ql')=exp(_ ,ElkQql'), . . 
we obtain 

d'k 1 
V(r-l-u,)= S--e'k(,-nVkexp (-- ~ IkQ 12) 

(2n)' 2 '-' q 

• 
IT[ i k(Qqe'q' + Q_qe-iql)" ] 

X 1- Nt, 1-lkQI'/N + .... 
q>O q 

The contribution to inelastic processes originates 
from terms containing e± iq '1 to any nonzero power. 
Rejecting these terms, we find that the part of the po
tential responsible for elastic processes has the form 

d'k 1 
Vel (r--l-u,)=J (2n)' e,·(,-nVkeXp\ -21: IkQql')' . 

In the Born approximation the potential enters 
linearly into the matrix elements. Carrying out the inte
gration over generalized coordinates, we obtain a poten
tial dependent only on the proton coordinates and the 
number of the site: 

d'k 
V (r-I)=S __ eik(,-nV r"W 

ell (2n)' " 
(4) 

where k2W is the exponent of the Debye-Waller factor: 

W- 1 ~ n.+'/, 
- 2MN'-' -w-.-· 

q 

Averaging this expression over the statistical ensemble 
then gives 

31i' T :" xcix 
W=-[1+4{-) J-]. 8Me e 0 e'-1 

The exact expression for Veff has the form [2J 

Ze' ( W ) { ( r) [ ( w't, V,//=-exp -, exp -- 1-$--
2r To r. r. 

__ r )] _ exp (.!...) [ 1 _ $ ( W''' + _r )]} 
2W'r. r. r. 2W't, 

For WI / 2 ~ ro we have approximately 

The assumptions which have been made lead to the 
assertion that if we are interested in elastic scattering, 
then in calculation of the T operator from Eq. (2) the 
potential VI can be replaced by Veff(r - 1) and subse
quently it is not necessary to take into account the mo
tion of the lattice. This statement follows from quantum 
theory and it gives us the right, in making a calculation 
in the classical apprOximation, to consider the problem 
of scattering of a proton by a string of atoms as the 
problem of scattering by a string of effective potentials. 
Below we carry out the calculation in the classical ap
proximation. 

3. Let us consider the problem of scattering in the 
classical approximation in a potential averaged along 
the string of atoms, following Lindhard PJ . If we spread 
the potential Veff introduced above by Eq. (4) along the 
string of atoms, we obtain 

2Ze' w e-"lo (pxI2W't,) 
V(p)=--J xdx, 

a 0 x'+w 

W 
w==, ' r, 

(5) 

where p is the deviation from the string, a is the lattice 
parameter, and Jo is a Bessel function of zero order. 
For p < WI / 2 the potential reduces to the form 

V(p)=.--' 1- - b,+- -'- b" Ze'a [ (P' ) 1 ( 0' )' ] 

wa 4W 2 4W 

where 

a. = -wewEi(-w), 
b, = - [weW Ei(-w) + 1] / eW Ei(-w), 

-(w)'eWEi(- w)- w + 1 
b,= - " . 

2ewEi (- w) , 

Ei is the exponential integral. The asymptotes of the 
coefficients ao, bl , and b2 are as follows: for w -->00 

aO :::::: 1, b,:::::: 1, b, :::::: 1, 

and for w - 0 

1 
a, "'" wln-, 

w 

1 
b, "" 1/ln-, 

w 
( 1) -, 

b, "" 21n -;; . 

We have considered a spherically isotropic proton 
beam with its center at the string of atoms, which was 
then scattered by the smeared effective potential (4). 
Scattering at small angles was investigated. For 
p < WI /2 the result is expressed in terms of the elliptic 
integrals K(k), F(cp, k). It was possible to evaluate the 
shadow width: 

L\-/} :::::: (Ze's / aE) 'I,; 

here E is the proton energy and 

[weWEi(- w)+ 1]' 
s=2~~~~~~

-weW Ei(-w)-w+1 

(6) 
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the asymptotes of ~ have the form 

1:~ro'/W for W/ro'-+oo; 
~ ~ 2 for W / ro' -+ o. 

The shadow width obtained (6) is in good agreement 
with experiment[6J • Equation (6) gives the experimen
tally observed decrease in shadow width with increasing 
temperature. This dependence is determined mainly by 
the ratio w == W/r~. It is weaker for w « 1 than for 
w »1. This provides the possibility of evaluating the 
screening radius ro, which apparently has a value in a 
crystal which is smaller than the value given for a free 
atom by the Fermi- Thomas method. 

The evaluation carried out shows that the dependence 
of the shadow width on the thickness of the crystalline 
sample is very weak. Investigation of the dependence of 
shadow depth on temperature gave qualitative agreement 
with experiment-a decrease in depth with increasing 
temperature. However, the numerical value of the depth 
turned out to be significantly greater than given by ex
periment. Apparently the filling of the shadow is ac
complished also by protons scattered by other strings 
of atoms, and these are not taken into account in the 
present problem. 

4. Previously[2J it was shown that use of the Born 
approximation for calculation of the temperature depen
dence of the shadow width leads to the following result: 

M ~ 1/kW'I,. 

Application of the Born approximation to the shadow 
effect is justified for the following reasons: 

(7) 

1) The Born approximation is always valid if the 
perturbation is small. For the case of a particle mov
ing in a lattice with a large impact parameter, p > ro, 
where ro is the screening radius, this condition is satis
fied, since the greater part of the nuclear charge is 
screened. 

2) If p < ro, we can assume that the particle motion 
occurs in the pure Coulomb field of the nucleus, and in 
this case the classical and quantum descriptions lead to 
an identical result[7J • 

It is of interest to compare the result (7) with the 
result of Sec. 3 and with qualitative reasoning. We have 
for the value of the scattering angle in an individual 
scattering event 6J = 6Py/p, where 6py is the change 
in the transverse component of the proton momentum. 
In scattering of protons by a string of atoms with allow
ance for the thermal vibrations of the latter, the region 
of localization of a particle of any energy cannot be less 

than a certain quantity equal to the amplitude of the 
thermal displacements of the nuclei, i.e., 

I!y ~ W'I" 

where W1 / 2 is the rms displacement of the lattice 
nucleus. According to the uncertainty principle 6py 
~ ti/Wl/2. If this is taken into account, the smallest 
value of proton scattering angle, with thermal vibrations 
of the lattice nuclei taken into account, is found to be 
given by Eq. (7). The classical formula (6) leads to the 
same function (7), but only for the condition that the 
amplitude of the vibrations of the nuclei is larger than 
the Sfreening radius. However, the experimental re
sults 6J apparently indicate that this condition is satis
fied. Thus, Eq. (7) is confirmed from three different 
points of view. A more careful analysis of the problem 
on the basis of more accurate quantum theory (3) will 
be undertaken later. 

In conclusion the authors thank the participants in 
the seminar given by Professor A. F. Tulinov for helpful 
discussions. 

IJ. Lindhard, Mat. Fys. Medd. Dan. Vid. Selsk. 34, 
No. 14 (1965); Phys. Letters 12, 126 (1964). 

2 G. M. Filippov, N. G. Vodyanov, and V. I. Korneev, 
Trudy III Vsesoyuznom soveshchanii po fizike vzai
modelstviya bystrykh zaryazhennykh chastits s mono
kristallami (Proceedings of the III All- Union Conf. on 
the PhYSics of Interaction of Fast Charged Particles 
With Single Crystals), Moscow State University, 1972, 
p. 19. 

3 G. M. Filippov, Vestnik MGU, seriya fizika, 
astronomiya 22, No.6, 75 (1967) [Moscow University 
PhYSics Bulletin 22, No.6, 44]. 

4R. V. Vedrinskil and I. E. 5barko, Izv. Vuzov, 
Fizika 8, 123 (1971). 

5 M. Goldberger and K. Watson, Collision Theory, 
New York, Wiley, 1964, Russ. transl., MIR, 1967. 

6 A. F. Tulinov, V. S. Kulikauskas, and M. M. Malov, 
Phys. Letters 18, 304 (1965). V. N. Bagaev, F. G. 
Neshov, A. A. Puzanov, and A. F. Tulinov, Zh. Eksp. 
Teor. Fiz. 60, 191 (1971) [SOV. Phys.-JETP 33, 106 
(1971)] . 

7 D. Bohm, Quantum Theory, New York, Prentice
Hall, 1952, Russ. transl., Nauka, 1965. 

Translated by C. S. Robinson 
81 


