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The dependence of the elastic cross section, overexcitation cross section, and diffusion cross 
section on resonance defect is calculated. The difficulties that arise as a result of the restricted 
applicability of the quasiclassical description of the motion given by a set of two second-order 
differential equations are set forth. It is shown that the well-known Stuekelberg result for the 
overexcitation cross section is correct only for sufficiently large resonance defects. 

1. We consider processes of the form 

A"+B-+A'+B, (1.1a) 

(1.1b) 

which describes slow elastic (1.1a) and inelastic (1.1b) 
collisions of an excited atom A* with an unexcited atom 
B. If the initial states of the atoms are connected by a 
resonance-allowed dipole transition, the collision cross 
sections in both channels (1.1a) and (1.1b) can signifi­
cantly exceed the gas kinetic cross section. [lJ 

We are interested in the dependence of the elastic 
scattering cross section as' the excitation transfer 
cross section at, and the transport (diffusion) cross 
section aD on the value of the resonance defect 6c 

Existing data in the literature on excitation transfer 
cross sections refer primarily to the case of exact 
resonance (6E = 0) and are based on the calculation of 
at in the impact-parameter approximation. l2-4J The ex­
citation transfer cross sections for small resonance de­
fects in the straight flight approximation was carried out 
in l5J . This research deals with the collision of alkali 
metal atoms excited to one of the doublet levels with 
atoms in the ground state (Galitskil, Vdovin, Dobrodeev). 
Calculation of the excitation transfer cross section for 
collisions of slow atoms in the case 6E f. 0 was per­
formed by Stuekelberg,lsJ who used a combination of 
the quasiclassical method with the Born approximation. 
For values of the orbital momentum 1 less than some 
value j, he calculated the partial cross sections quasi­
claSSically, and for 1 > j he used the Born approxima­
tion. The energy of interaction was written in the form 

u = blr', (1.2) 

which includes the case s = 3 of interest to us (the 
dipole-dipole interaction). As will be shown below, the 
results of Stuekelberg describe correctly only the 
asymptotic behavior of the excitation transfer cross 
section at large resonance defects. As to the intermed­
iate values of 6 E, the contribution to a t of the region 
1 ~ J turns out to be important, where the results of 
Stuekelberg (and also of Novikov[ 7J) are incorrect. 

The calculation of the cross section in the case 
6E f. 0 presents difficulties due to the restricted appli-
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cability of the quasiclassical description of the motion 
prescribed by a set of two coupled second order equa­
tions. The region where both the classical and the Born 
approximations lead to incorrect results turns out to be 
important in the- problem. 

We have attempted a correct calculation of the elas­
tic scattering cross section a S' the excitation transfer 
cross section at, and also the transport cross section 
a r over a wide range of resonance defects 6c In addi­
tion to the problem of the total cross sections, definite 
interest attaches to the dependence of the phase shift of 
the scattering on 1 and on the value of the resonance 
defect, and also the partial cross sections of the atomic 
collisions in channels (la) and (lb). These quantities 
are calculated in the given case and in the case of exact 
resonance (6E = 0). 

2. In the two-state approximation, llJ the wave func­
tion describing the collision can be written in the form 

'I' = x,(~., rb)'I',(r)+ X' (r., fb)'I',(r). (2.1) 

Here ra and rb are the coordinates of the electrons in 
atoms A and B relative to the corresponding nucleus, 
r the vector joining the centers of the masses A and B, 
Xl and X2 the wave functions which describe the initial 
and final states of these atoms. 

The functions </! 1 and </! 2 satisfy the set of equations 

(V' + k,')"" = U12'1'" (V' + k,'),p, = U21,p" (2.2) 

where 

U'j= ~~ JJV(r.,r.,r),p,,ptdr.drb, 

Vera, rb, r) is the interaction operator of atoms A and 
B, k1 and k2 are the wave numbers of the relative motion 
of the atoms before and after collision. 

Expanding </! j in Legendre polynomials, 

"';=.E (21+1)/,J',(cos9), 
I 

we obtain the following set of equations for the functions 
fZf 

( d' ,1(1 + 1) ) a;:; + k, - --r'- I", = u,d,." 
(2.3) 

( d2 /(1+1)) 
---;J;i + k,' - --r'- I", = u"/,,., 

where U12 = U21 = b/r3 • 
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From considerations of convenience, we chose a 
model description of the dipole-dipole interaction, 
corresponding to the "rotating model approximation," 
according to which the dipole moments of the atoms fol­
low one another in the time of collisions, i.e., 

b = -2(d"d,,)M / )'. 

where di are the projections of the dipole moments of 
the atoms on the axis connecting them. Such a notation 
simplifies the calculation and leads only to an inconse­
quential error in a numerical factor of the order of 
unity in the final expression for the cross sections. [3J 

If the energies of the relative motion of the atoms 
before and after scattering are the same (exact reson­
ance), the characteristic value of the orbital quantum 
number is the value Z = Zo for which the kinetic energy 
and the interaction energy of the atoms are equal at the 
classical turning point, i.e., 

10 = (bk) '/,. (2.4) 

We shall further assume that lo »1. (For example, at 
room temperature, lo ~ 30 for hydrogen and 10 ~ 100 
for mercury.) 

The set of equations (2.4) must satisfy boundary con-
ditions of the form 

1",(1'=0) =/1,,(1'=0) =0, 
I", I ,~~ ~ i' sin (k,r - nl/ 2) + a,elk", (2.5) 
/1,21 T_"" ........ ~leiR2r. 

The asymptotic expressions (2.5) describe the behavior 
of the wave functions at infinity, both in the elastic and 
the inelastic scattering channels. It is natural that the 
incident wave is absent from the inelastic channel. The 
coefficients a Z and f3z are subj ect to determination. The 
cross sections of interest to us, expressed in terms of 
the quantities a Z and i3z, have the following form: [lJ 
excitation transfer cross section 

4nk, \""1 (2 6) 
at=~~ (21+1)I~d', . 

elastic scattering cross section 

4n \""1 
a.= k,'~ (21+1)la,I', (2.7) 

total scattering cross section 

4n \""1 [ k'] a=k;'LJ (21+1) lad'+klBd' (2.8) 

and, finally, the cross section aD describing the diffu­
sion is equal to 

aD' = :~ 12 (l + 1) I~, - B,+d'· (2.9) 
, . 

The solution of the set (2.3) will be sought in the form 

where 

I", = C"j,+,/, (k,r) +C"n'+'/,(k,r), 
h, = C"j,+,/, (k,r) + C"n,+'k(k,r), 

j"'/,(kr) = (nkr/2)Y'I'+'/,(kr), 
n,+'dkr) = -(nkr/2)Y'N'+'/,(kr), 

(2.10) 

and Jv(x), Nv(x) are Bessel and Neumann functions, 
respectively. Conditions describing the behavior of the 

waves functions at zero and at infinity must be imposed 
on the coefficients Cij . 

C,,(r = 0) = C,,(r = 0) = 0, 

C,,(r--+ 00) --+i'(1 + ia), C,,(r--+ 00) --+ i'+I~, 
C,,(r --+ 00) --+ i'a, C" (I' --+ 00) --+ i'~. 

(2.11) 

We also impose on Cik additional conditions of the form 

dC" dC" dr il+Y' (k,r) + dr n,+y, (k,r) = 0, 

dC" de .. 
-;];' il+'k (k,r) + dr n,+'h (k,r) = o. 

Then the functions Cik satisfy the following equations: 

CII' = (b I k,T")n,+,/, (k,r)/" ,(k,r), 
C,,' = - (b I k,r')j,+'b (k,r)/" ,(k,r), 
C,,'= (bik,r')n'+'k(k,r)/",(k,r). (2.12) 
c,,' = - (b I k,r')i,+y, (k,r)f" I (k,r), 

Here it is taken into account that the Wronskian is 

i,~y, (kr)n,+y, (kr) - i,+'. (kr)n,:,,, (kr) = k, 

3. We first consider the case of exact resonance 
(C.E = 0), i.e., we assume that k1 = k2 = k. We investigate 
the solution of the set (2.12) in various ranges of change 
of r. For r - Z/k »Z 113/k, we have 

J.(v sery) "'" (~)'" sin( vtgy -- vy +~), 
"vtgy, -. 

( 
'J ) 'f, ( n ) N.(vsecy)""'- --- cos vtgy-vY+-4 . 

nvtgy 
(3.1) 

Noting that the product of the functions nand j oscil­
lates, and those of nn and jj do not, and averaging over 
the interval (r - 1T12k, r + 1T12k), we get the following 
set of equations as the zeroth approximation: 

dC,,_C' 
d~ - 22, 

Here 

dC" 
d~ = -C,,; 

dC" 
d~ = C12 ; 

d~, = -c", (3.2) 

~ b dx 

S = - .f 2x' (x' -I') 'f, , 

The solution of the set (3.2) satisfying the conditions at 
infinity (2.11) is 

CII = i'[ (1 + ;a,) cos s -/3, sin s], 
C" = i'(a, cos ~ + iB, sin sJ, 
C" = i'[iB, cos ~ - a, sin s], (3.3) 
C" = ;'[11, cos S + (1 + ia,)sin s], 

For the determination of aZ and f3z it is necessary to use 
the conditions of the vanishing of the functions C 12 and 
C22 for r = O. With the help of the second and fourth 
equations of the set (2.12), these conditions can be writ­
ten in the following form: 

~ b 
i'a, + S -;-k i,+'/, (kr)f,,2(r) dr = 0, 

o I' 

~ b 
i'll, + S-j'+'h(kr)/,,(r)dr=O. (3.4) 

e r 3k 

We consider the range r - Z/k <t: Zl!3/k. The functions 
fZ and fZ are exponentially small in this region with 

, 1 ,2 

account of the condition that b/r3 <t: k2 for r = Z/k; there-
fore the boundary conditions for C12 and C22 can refer 
to the point r = r*, where r* = Z/k ~ Zl/3/k. In the reg­
ion Ir - Z/kl ;;, Zl!3/k, the relative change in the coeffi­
cients Cij does not exceed IC.Ci/Cijl ~ Z~/Z7/3. There-

fore, if ZVZ 7 !3 <t: 1, i.e., 
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(3.5) 

then in the range Ir - Zlkl S Zli3/k, the coefficients Cij 
change only slightly. In view of this, the conditions of 
the vanishing of C12 and C22 can be imposed for ro = llk. 
Then 

~,cos So + (1 + ia,)sin So = 0, 
a, cos So + i~, sin So = 0, 

00 b dr 10' 
1;0= S 2r' (1-1'lr')';,=""2f' 

il/' 

Solving the set (3.6), we obtain 

a, = i sin' 60, ~, = -1/2 sin 2so. 

(3.6) 

(3.7) 

(3.8) 

We recall that the expression (3.8) is valid only under 
the condition (3.5). 

We now compute the excitation transfer cross section 
at. With account of (2.6), (3.8) and (3.5), we have 

", 

" 
(1) 4.rt 10 4,n II/ 

at =k'.E(21+1)1~"''''';k210', 
1=1 

(2) 4n ~ n'l ' , 
at =k' l..J (21+1)1~"'= 2k:[1+0(l0-/)]. 

1=loY/7 

Consequently, for sufficiently hlrge Zo, 

(3.9) 

an = n'lo' / 2k'. (3.10) 

Similarly, for the case of elastic scattering, we get 

i.e., for Zo » 1, 

a, = n'lo'/2k'. (3.12) 

It is interesting to note that in the case of exact reson­
ance, the values of the cross sections in the elastic and 
inelastic scattering channels are identical with accuracy 
to terms of order of the cross section multiplied by a 
small quantity 0(1r/17). 

It follows from Eqs. (3.10)-(3.14) that the excitation 
transfer cross section and the scattering cross section 
are determined by the large values 1 ~ l~/2, and there­
fore knowledge of al and [3z for smalll is not required. 

We now compute the diffusion cross section aD' If 
we assume that the expressions (3.8) for a l and f3l are 
valid for any Z, and compute the diffusion cross section, 
it is then seen that the cross section is determined by 
1 - Zo. For such l, the quantities al and [3l cannot be de­
termined by Eqs. (3.8). Using Eqs. (3.3), we can see 
that the error in the differences al - aZ < 1 and [3l - [3Z < l' 

produced by the imposition of the boundary conditions 
at the point r = Zlk rather than at zero, can be deter­
mined in the following way: 

A lb. iJi,+y, (kr) , 10' 
Ll a/-ul+tl ""-JI+%(kr) ~rlll.r"""'lhlh~-r3 at IJ ' 

t; I a, - a,+,1 ~ t; I ~, - ~,+,I. 

Therefore, for the estimate of the diffusion cross sec-

tion, we can use the expressions (3.8) for aZ and [3Z' 
Then 

Consequently, 

(3.13) 

where r(x) is the gamma function. 
, 4. We now consider the more interesting case of 
inexact resonance: t.k = k1 - k2! O. It must be expec-

: ted that the scattering and overexcitation cross sections 
change if even for Z ~ l~/2 the turning points in the first 
and second channels are separated sufficiently, i.e., if 

IMI '" k __ k,+k, (4.1) x = -k 10 ;;. 1, 2 . 

We first investigate the vicinity of the resonance, i.e., 
the region 

x <iii'; 1. (4.2) 

If x « 1, we can solve the set (2.12) by perturbation 
theory. Here we obtain for the coefficients a Z and [3Z, 
with accuracy to x2 , 

a, = 1/.i{2 - exp[ -2si] [WI - iw,]' - exp[2si] [w, + iw,]'}, 
(4.3) 

~,= I/.i{-(w.' + w,')exp[2si] + [WI' + w,']exp[ -21;i]}, 

where 
S~ cos t;kr b 

S - dr-,..~---
- -'Ik 2(k'-I'/r')'h r" 

00 

S b sin t; kx dx S~ b sin t;ky 
Wt = - --" ,_· ____ e2i~(:d d _, -2(1(,,1 

'Ik 2x' (k' -l'/x') 'I, ,y 2y' (k' -l'/y') 'I, e , 

SOO b sin t;kx 
w - i e2i~(x) • 

, - 2x' (k' _ l'/x') 'h dx, 
"k 

It follows from the expressions (4.3) that at small x the 
cross sections depend on the resonance defect in the 
following way: 

a,(x)=a.(t;k=O) [1_1n2 x'ln_1_], 
4n Ixl 

at(x)= at(M = 0) [1-~ln,_1_]. 
n Ixl 

According to (2.9), 

aD" = aD"(t;k = 0) [1- x2 (n/2)Y'] = aD'. 

(4.4) 

(4.5) 

(4.6) 

5. We consider now the case of "large" resonance 
defects (x ::?> 1). For the calculation of the coefficients 
al and [3Z' it suffices to know only Cu(r) and C12(r). 
Actually, the coefficient [3Z can be computed from the 
formula 

and for a Z we have the expression 

= bdr 
a, = i-IS -k' j'+'I,(k,r)h.,(k,r), 

o r 

which, using (2.12), can be transformed into 
~ b dr 

a, = C21 (oo) f ~i'+'I,(k,r)i,+,,,(k2r) 
00 b dr 

+ C,,(oo) S ' i,+';' (k,r)n,+,,, (k,r) 
o k(r+a) 
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b '. b dr } + S dr {-, i,+% (k,r) h' (k,r) S ( ) , h+% (k,r) n,+'/, (k,r) . 
oro r+a (5.1) 

We have introduced the parameter a in the potential in 
order to avoid the divergence that arises with formal 
use of the potential b/r3 at small r. 

In order to find Cll and C12, we eliminate C2l and C22 
from the equations of (2.12). Then 

~ b dr 
C" = -S -,,-n,+y, (k,r)/..,(k,r), 

o r 

(5.1 ') 

Substituting (5.1) in Eq. (2.12) for Cll and C12, we get 

de" b { SW b dr (k ) - = -n'+11 (k,r) - i'+'h(k,r) --n,+II(k,r)/", ',r 
dr r"k , r' 

W b dr 
+ n,+y, (k,r) ~ -;::- i,+v. (k,r) /,,' (k,r) }, 

dC" = _~. i'+'I. (k,r) {_ i,+'I, (k,r) SW b ~r n,+v, (k,r)f", (k,r) 
~ ~k , r 

W b dr 
+ nl+Y, (k,r) S -.,-il+'I, (k,r)fl,\ (k,r). (5.2) 

, r 

We find the solution of the set (5.2) for r »llk. For 
definiteness, we shall assume that kl > k2. We use the 
representations of the functions jl + 1/2(kr) and nl + 1/2(kr) 
in the form 

where 

h,<!) (x) = (Ttx/2) 'I'H,(1) (x), 

and Ht(x) in a Hankel function of tpe first kind. 
To calculate the integrals in (5.2), we replace the in­

tegration over the interval [r, 00) by integration over the 
interval [r, r + ioo). This can be done since the integral 
over the arc of infinite radius is zero and the singulari­
ties of the functions C ij' if they are inside the contour 
formed by the interval of the real axis [r, 00), the arc of 
infinite radius and the interval [r, r + ioo), make a con­
tribution of the order Ii'll I « 1 to the integral. The ad­
vantage of the substitution given above is that along 
straight lines parallel to the imaginary axis, hy) (x) has 
an asymptote of the type of a damped exponential. Using 
the asymptotic representations of the Bessel function 
(3.1) for r »llk, and expanding the product bz-3Cij (z) 
under the integral in a series about the point z = r, we 
replace the set (5.2) by 

It i + - C1 +----C" de [ ( b ) , ] 3b' 1 b' k 
~ 2r'kl"1k - 4rl(kM)' ' 4 r'(kM)' ' 

dC,,[ (_b_)'] = 3b' C, -.-!...~c". (5.3) 
dr 1 + ./2r'kfl.k 4r'(kfl.k) , ' 4 r'(kfl.k)' 

If we seek a solution of the set (5.3) in the form 

[ b'] -'I, 
c" = 1 + 4r'(kl"1k)' F'i, 

then we get the following system of equations for F ij: 
dF,,' 'F" b' [1 ( b)'] -'. 
~ = 4k'/I.k;'- + 2r'kM ' 

t2 ____ 11_ 1 __ dF F b' b) '] -, ~ - 4k'l"1kr' [ + (2r3kM . (5.4) 

The solution of the set (5.4), which takes into account 
the boundary conditions (2.11), is 

where 

F" = i' cos lIkS( 1 + ta,) + i'a, sinl"1ks, 

F" = il cos Aksa,- i'(1 + ia,) sin I"1ks, 

~ b' -, b' 

s(r) = S dr[ 1 + 4(kM)'r"] 4r'(l"1kk)' 

{ 13 1 + 13 r/ro + (r/ro) ' 1 ( r 13 ) = ro -In _ +-arctg2 ---
12 1 - l'3r/ro + (rfro) , 6 ro 2 

1 (r 13) Tt} +"3arctg2 -;:;+2 -"3 . 

Here 

ro = 10/ k(2l"1k / k)'/'. 

(5.5) 

We now calculate al and I'll' We first note the follow­
ing. When Eqs. (5.3)-(5.5) are used we have three 
branch points in the upper half-plane 

The solutions (5.3)-(5.5) are valid for r »llk and also 
in the case rot.k »1. Since x2 » 1, the solutions 
(5.3)-(5.5) make it possible to determine Cil and I'll for 
values of I, such that 1 « J, where 

_ j(I"1k)'" 1-10 T . (5.7) 

substituting the expressions for Cij in Eq. (5.1), we ob­
tain 

~,= -ReI, + 1m I" 

where 

S"" bdr , ) [ . ( '() 1 ',Ok I, = ,il+,,,(k,r /I+'!. k,r) + W'+'I. k,r e , 
o (r'+ro )'h 

W bdr 
I, = f ' i,+,,, (k,r) Ii,+". (k,r) + in,+,,, (k,r) le-"·'. 

o (r' + ro') /. 

The function ei ~ t.k can be written in the more conven-
ient form _ _ 

e".' = [ 1 + 13 r/ro + (r/ro) 2 ] ;, •• '",3 ( 1 + ir/ro) ' •• '/" 

1 - 13 r/ro + (r/ro) ' 1- ir/ro 

. [ 1 + 2i (r/ro + 13/2) ] '.·'1" [ 1 + 2i (r/ro - 13/2) ] ,.A'I" X e-Il'tTo6.11. 13 

1 - 2i (r/ro + 13/2) 1 - 2t (r/ro - 13/2) 

Transforming to the upper half-plane, we can calculate 
the integral approximately along the real axis in terms 
of an integral over the vertical cut [ro, ro + ioo). Conse­
quently, 

I, "" S bdr j'+'I.(k,r) [h+".(k,r) + in'+'I.(k,r) lexp (isl"1k) , 
(r' + ro') '/' 

" 
whence 

I, ~ ~:.o h+% (k,ro) [j,+ . (k,ro) + in,+,. (k,ro) lexp (- i ; rol"1k \ 

t.k 
for (t.k/k)J »1, we get 11 ~ exp (-TJ). 

Similarly, we find that 12 ~ 11' Therefore, for I « J, 

(5.8) 
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We note the following. We have found the functions 
C 11 and C 12, taking it into account that the Bessel func­
tions change much more rapidly than Cij and the poten­
tial, and using the asymptotic representations for the 
functions nv and j v' For I ~ J, the calculations can be 
carried out in similar fashion if we seek a solution in 
the complex plane (in the upper half-plane). We can use 
here asymptotic expressions of the type (3.1) for large 
I, without limitation on the value of r. Therefore, the 
calculations for I ~ J are similar. The complication of 
the calculations lies in the fact that the singularities of 
the solution (previously for I « J), located at the points 
r1, r2 and r3, are determined now by the more complica­
ted condition of the form 

b'/4r' + (kM)'(l-I'/r') =0. 

For (31 we have here 
"I+roo bdr 

II, ~ Re S ---;;;; j'+'I, (k,r) n,+'I. (k,r). 

Then, in the case I ~' J9/8, we have r1 ~ 1- 11/3. For 
(6k/k)I 1/3 < 1, we have jl +l/2(k2r)nI +l/2(k1r) ~ J9/8, i.e., 
in the region (6k/k)J3/8 < 1 the dependence of 61 on the 
resonance defect takes on a power-law character. The 
width of this region 61 is determined by the condition 
61 ~ 11/3 ~ J3/8. 

Consequently, for I ~ J9/8 and 6k/k < 103/7 we get 

( !J.k) -I 
II,>=::: k ,-'I .. (5.9) 

We recall that this expression is valid if the resonance 
defect is such that 

(!J.k/k)l~' <1. (5.10) 

For large I (1 » 1), we get the result that ro « I/k. 
Here (31 falls off with increase in the resonance defect 
in exponential fashion (similar tol6J): 

II, - exp(- f'J.kl / k). (5.11) 

We write out the contributions to the value of the ex-, 
citation transfer cross section for I ~ J9/8, I « J9/8, 
I »J 9/8 : 

) 'I f'J.k I 'f, 1 a l~'·. k 0 ~ , 
4r1(M )-' f'J.a t J >=:::- _FI, . 
k' k ' 

(5.12) 

< 411 (!'J.k) c) I~FI', !J.at >=::: "k'exp -T' . 

It is of interest to note that for sufficiently large 10 the 
contribution of the region I ~ J9/8 determines the value 
of the cross section. Thus, for example, for 10 ~ 100 
and 6k/k ~ 5 x 10-3 , we get 

f'J.at J >=::: 3. 10'4r1 / k'; f'J. at> >=::: 5 . 10-'411 / k'; 

!J.at < >=::: 1O-'4r1 / k'. 

Up to the values of the resonance defect (6k/k)I~/7 ~ 1, 
the excitation transfer cross section falls off according 
to a power law: 

If 6k/k 

4r1 _'I. ( !'J.k) -'I. 
at>=::: k,lo T . 

> 1~3/7, then in the region II _ J 9/8 1 < Jll3, 

(5.13) 

II, - e-"/-'I,. (5.14) 

Therefore, for such 6k, the region of intermediate 
values of 1 does not give a large contribution to the ex­
citation transfer cross section. For the cross section 
in this case, we get a result which is identical with the 
result of Stuekelberg: [6J 

41t ( !'J.k) at>=::: "k'exp -T' . 

We now calculate the elastic scattering cross sec­
tion. The contribution to the elastic scattering cross 
section from the region 1 -;; J9/8 does not exceed 
47Tk-2J 9/4. As will be seen below, the region I ~ J9/8 
gives a contribution which greatly exceeds this value. 
Therefore, for calculation of the elastic scattering 
cross section, we can limit ourselves to the calculation 
of Cil for 1 ~ J. Here, all the integrations in the ex­
pression (5.1) can be made not from zero but from the 
point I/k. Then 

00 b'dr . , 1 J' 
ii, = S k'(!'J.k)'r' 11+'. (kr) >=::: 51" 

I,' 
and the elastic scattering cross section is equal to 

(J~z-lo' -l/~ 
15r1 (!J.k I ) _II, 

k' k 
(5.15) 

For the determination of the diffusion cross section, 
knowledge of Ci I for I ~ J9/8 is not sufficient. For 
I « J, the singularity of the solution satisfies the con­
dition Irol ~ l. Consequently, Cil is virtually indepen­
dent of I in this region: 

(5.16) 

where 

60= k'(::)'ro' (1+0(+,)) 
Therefore, the moments 1 « J make a contribution to 
the diffusion cross section of the order 

41t ( b' )2 4r1(!'J.k)' (tlk\'I, a<~-J'-·-- ---I lo'-.J (5.17) 
D k' k'(f'J.k)'ro' k' k k 

In the region I ~ J, but 11- JI ;;;; J1/3 , the values of Cil 
change rapidly with change in l. This is primarily as­
sociated with the strong dependence of ro on I. In the 
given case, Cil has the form (5.16) as before, but here 

I a, - a,+11 - 1, So >=::: 10' / 1'. 

Therefore, in the considered region of change of I, we 
have ICiI - Cil + 11 ~ 1, and the contribution to the diffu­
sion cross section is determined by the expression 

(5.18) 

Consequently, in the case of sufficiently large resonance 
defects, such that x2 »1, the diffusion cross section 
for 10 » 1 is much less than its own value for a reson­
ance defect equal to zero. We note that for x2 »1, the 
contribution of the inelastic scattering channel to the 
diffusion cross section is negligibly small, Le., at 
« ag (see (2.8)). 

The given results show that the calculation of the 
diffusion cross section should be more accurate than 
was the case in [7J , avoiding large errors. 
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