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A theory is constructed of the coherent intermediate state (IS) produced in an antiferromagnet (AFM) of 
finite size when the magnetic sublattices are inverted in a magnetic field. It is shown that, in the IS, an 
antiferromagnetic plate breaks up into periodically repeating domains of phases <1>11 and <1>1, the dimensions of 
which depend on the external magnetic field. The critical domain dimensions at which the IS ceases to be 
stable and goes over into a state with a uniform magnetization distribution are calculated. It is shown that 
the magnetic susceptibility in the IS is determined by the magnetic dipole interac~ion and ~ppreciably exceeds 
the magnetic susceptibility of uniform states of the AFM. The role of the magnettc dtpole mteract10n m the 
formation of the AFM domain structure is analyzed. 

1. INTRODUCTION 

IT is well known that antiferromagnets in an external 
magnetic field can be found in different ground states 
or phases, depending on the magnitude and direction of 
the magnetic field. The states of antiferromagnets 
(AFM' s) in the case when the external magnetic field is 
directed along the anisotropy axis have been investigated 
particularly thoroughly. In this case, the following 
ground states are possible: the state with the antiferro­
magnetism vector 1 parallel to the anisotropy axis and 
with the magnetic moment m equal to zero (the phase 
<1> 11 ), the state with the vector 1 perpendicular to the 
anisotropy axis and with the magnetic moment m .,. 0 
(the phase <P 1), the state with the vector 1 = 0 and with 
the magnetic moment parallel to the anisotropy axis 
(the phase <Pf) and, finally, a state in which the vectors 
1 and m are oriented at a certain angle to the anisotropy 
axis. The possibility of the existence of such phases 
follows simply from symmetry considerations and from 
the fact that a uniform state of an AFM can be described 
by the vectors 1 and m. 

The question which naturally arises concerns the 
nature of the transitions from one phase to another and 
the phase-transition curves. This question has been 
discussed repeatedly in the literaturePJ In a paper by 
the authorsC 2J, it was shown that the transition <P11 ~ iP 1 
in solids of finite size occurs via an intermediate state 
(IS), which can be represented intuitively as a state in 
which domains of the phases <P 11 and <I> 1 coexist. The 
idea of the existence of an IS in AFM's received con­
firmation in the experiments of Galkin and Kovner[3 J on 
the antiferromagnetic resonance in copper chloride di­
hydrate at low frequencies. This idea made it possible 
to develop a theoryC3 J which explains the features of the 
AFM resonance in copper chloride dihydrate during in­
version of the magnetic sublattices at both highC 4 J and 
low frequencies. The principal results, which refer to 
the static magnetic properties of an AFM in the IS, re­
ceived full confirmation in the experiments of Dudko, 

hl "d [5] Eremenko and Fridman on manganese c or1 e . 
The present paper is devoted to an account of a con­

sistent theory of the intermediate state. 

2. FORMULATION OF THE PROBLEM AND CHOICE 
OFA MODEL 

The whole set of phases mentioned in the Introduc­
tion can be obtained if we confine ourselves, in the ex-

pression for the thermodynamic potential, to terms of 
second order in the vectors m and l, i.e., represent <P 
in the form 

<11 {m,I} = J dV {(a+ a') ( am,j ax,)'+ (a- a'}<dl,j ax,)'+ 2/im' 

+ (~ + ~') m.' + (p + p')m.' + (~- ~'}l.' + (p- p')lu'- 2m,h,- m,hm,}, 
(1) 

where a, a' and 6 are exchange constants (6 ~ TN/J.J.Mo, 
a ~ a' ~ a 26, TN is the N~el temperature, J.J. is the 
Bohr magneton Mo is the magnetic moment of a sub-

' I I lattice and a is the lattice constant); 8, 8 , p and p are 
' 1 the magnetic-anisotropy constants (8 ~ p ~ 1); h =HMO , 

h = H M01 ; the antiferromagnetism vector 1 and the 
m~gnet~ation vector m are connected with the magnetic 
moments of the sublattices by the relations l = Y 

1 ~ ~ 1 = %(M1 - ~)M;; and m = 12(M1 + M2)Mo . As usual, 
we shall assume that 

I' + m' = 1, ml = 0. (2) 

The external magnetic field H is determined by given 
currents, and the fields Hm by the distribution of mag­
netization in the solid, i.e., by the magnetostatic equa­
tions and the continuity conditions for the tangential 
components of Hm and the normal components of Bm 
= M0(h + 81rm) at the interfaces. 

Var~ing the thermodynamic potential <P and using the 
magnetostatic equations 

div(h + 8nm) = 0, roth = 0, 

we can determine the possible phases of the AFM in an 
external field. This problem is far from simple for 
nonuniform distributions, since in this case the relation 
between hm and m turns out, as is well known, to be 
nonlocal. But to neglect the field hm in investigating 
the intermediate state (IS) is, in principle, impossible, 
as the domain sizes of the phases iP 11 and <P 1 in the IS 
are determined by the competition between the energy of 
the field hm and the energy associated with the forma­
tion of the domain walls. 

The problem is made easier by the fact that the mag­
netic susceptibility of an AFM is small and serves as a 
small parameter in which the quantities m and hm can 
be expanded. It is not difficult to develop a perturbation 
theory which makes it possible to calculate the distri­
bution m(r) in the IS with arbitrary exactness. If we 
assume that the distributions of l and m are uniform, 
then it is easy to find the ranges of magnetic fields in 
which one or another phase of the AFM is stable. Be­
low, we give the results for the case when the AFM is 
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ellipsoidal in shape, the anisotropy axis coincides with 
one of the axes of the ellipsoid and the external magnetic 
field is applied along this axis (the 3- axis or z- axis): 

For 0 < h < h1, the phase <1> 11 is stable and 

<I>ll = 0, m = 0, l = l, = 1, hm = 0; (3a) 

for hz < h < hf, <I> 1 is stable and 

<I> j_ = 1l2 Vxj_ (nJ- h'), m = m, = 1l2x.Lh; 
(3b) 

l = l, = (1- m')Y', hm = hm, = -8nN,1ny 

and, finally, for h > hf, the ferromagnetic state with 

<D1 =V(h1 +h.-2h), m=m,=1, l=O, (3c) 
hm = hm, = -8nN,. 

is stable. Here we have used the notation 

h1 = 26 - p + p' + 8nN,, Ji, = 26 + p + p' + 8nN2, 

h.= jJ- p', X.L = 2 I ht. h,' = Ji,h., h, = h,h, I h., 
n1: = h,h., h, = 26- P + p'; 

and N1, Nz and N3 are the demagnetization factors. It 
was assumed in the investigation of the stability of the 
phases that p + 41T(Nz- N3) > 0 and 8- 8' > p- p' 
> 0[6]. 

From the definition of the critical fields it can be 
seen that hz < h11 i.e., the regions of stability of the 
phases <I> 11 and <I> 1 overla_e. Further, it can be seen that: 
1) <1> 11 < <1>1 for hz < h < htr• i.e., the stable phase i~ 
<1> 11 and the phase <I> 1 is metastable; 2) <I> 1 < <1> 11 for htr 
< h < h1, i.e., the phase <1> 1 is stable and <1> 11 is meta­
stable. It would appear that, in a field h = ntr• a phase 
transition <I> 11 = <I> 1 should occur, in accordance with the 
expressions for <I> 11 and <I> 1 given above. However, as 
will be shown below, the transition from the phase <1> 11 to 
the phase <I> 1 and vice versa is complicated and occurs 
via the IS. The energy of the IS in a certain range of 
fields about ht turns out to be less than the energy of 
either of the p&ases <1> 11 and <I> 1 . If the dimensions of the 
sample in the direction of the anisotropy axis are ap­
preciably greater than the other dimensions, i.e., 
N3 << N1, Nz, then the IS is not formed in practice and 
the phase transition <I> 11 ~ <I> 1 occurs in the field htr· 

First we shall consider the IS in a plane- parallel 
plate whose surface is perpendicular to the anisotropy 
axis. 

3. PERIODIC DOMAIN STRUCTURE AND DOMAIN 
WALLS 

We proceed now to the determination of the nonuni­
form distribution of m and 1 in the plate. For this, we 
must vary the free energy (1) of the AFM with respect 
to the variables m and 1, or, which is the same thing, 
with respect to the variables M1 and ~- We then obtain 
the following equations: 

at..M, + a'll..M,- .SM,- f3exM,x- pe,M,,- f3'exM,.- p'e,M2, + h 
+ hm - /.,1\1, = 0, 

.all..M, +a' t..M,- .SM,- f3exM2x- pe,M,,- f3'exM1x- p'eyM,, + h 
+ hm- /.,1\1, = 0, (4) 

where A1 and ltz are Lagrange multipliers introduced to 
take into account the conditions M~ = M~ = ~' and 
ex and ey are unit vectors along the x- andy-axes. 

As we shall see below, in the interior of the plate the 
magnetic moments M1 and~ depend, to a good approxi-

mation, only on the x coordinate, and the field hm is 
uniform. We shall also examine that solution of the sys­
tem of equations (4) which describes the rotation of the 
vectors M1 and ~ in the zy-plane on passage from a 
domain of the phase <I> 11 to a domain of the phase <I> 1 . 
This choice for the plane of rotations of M1 and ~ 
corresponds to the condition 8- (3' > p- p' > 0, ac­
cording to which, less energy is required for the forma­
tion of a domain wall parallel to the zy-plane than for 
any other domain wall. So that we may disregard the 
conditions M~ = ~ = ~' it is convenient to change to the 
variables m and e, connected with the vectors m and 1 
by the relations 

m. = 0, m, = m cos e, m, = m sin e, 

l.=O, l,= (1-m')'iasin6, l,= (1-m')icose, 
(5) 

for which we obtain the equations 

d { [ ( ') ( ') m' 1 dm } ( , m ( dm )' - a+a +a-a -- - -a-a) -
dx 1-m' dx (1-m')' dx 

- 2a'm(::) 2-(26,+ p COS26+ p')m +(h + h~O) )sin 6 = 0, 

:x { (2a/m'+(a- a')]:: }-(p- p')sin6cos O+ pm2 sin26 

+(h + h~.o) )mcos a= 0. (6) 

Since we are interested in the phase- transition reg­
ion (h ~ htr), the magnetic field h satisfies the condition 
h « he. Noting also that the scale of the gradients in 
the coupled equations for m and 8 is of order 

l ~d'm I~~~~~~ P 
mdx' a dx' ' 

we obtain the following expression for m: 

h, [ 2p cos 26 1 m=-sinS 1---- , 
h, h, 

(7) 

where he = 2o - p + p' and hi = h + h~ is the uniform 
field inside the plate. Using (7), we can represent the 
equation for e in the form 

d'Sidx'- A (h, h~O) )sin a cos a- 2B (h, h~O)) sin 26 cos 26 = 0, (8) 

where 

<o> h.'- h,' B(h h <o>) = ph,' 
A(h,hm )= (a-a')h,' 'm 2(a-a')h,'' ht,= 'fh,h •. 

(8') 

In writing Eq. (8), we have confined ourselves to terms 
of order o-z. 

The first integral of Eq. (8) is easily found and is 
equal to 

(dJO I dx)' =A sin'H + B sin'2H + D, (9) 

where D is an integration constant. The distribution (9) 
will describe the coexisting domains of the phases <1> 11 

and <I> 1 only when the quantities A and D are simultane­
ously small. Putting 

D=O, A =0, (10) 

we can find the distribution B(x), and, consequently, 
m and 1, in the transitional layer between the phases 
<1> 11 and <I> 1 (at the domain boundaries): 

tg 8 = exp(-x/ x,), x,-' = 2 'I B. (11) 
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The formula (11) for B(x) is given in a coordinate frame 
in which the origin on the x-axis coincides with the mid­
dle of the domain boundary, i.e., £I = n/ 4 when X = 0. 
One of the conditions for the coexistence of the phases 
~ 11 and ~ 1 is the condition A(h, h:;i) = 0, which means 
that the internal magnetic field hi in an AFM in the IS 
remains constant and is approximately equal to htr in 
the whole range of external fields in which the IS exists. 

The distribution function (11) for B(x) has the impor­
tant defect that it is not a periodic function and, conse­
quently, cannot describe the domain structure as a 
whole. In order to obtain a periodic distribution for e (x), 
we must study the solution of Eq. (9) when A and D are 
non-zero. A rigorous treatment, naturally, shows that 
the intermediate state corresponds to small A and D, 
i.e., lA I« 1 and IDI « 1. In other words, the formulas 
(11) describe well the rotation of the antiferromagne­
tism vector at the domain boundary. Integrating Eq. (9), 
we obtain 

1 sn(xx,-' + ¢) (12) 
tgS= p cn(xx,-'+.P) 

where 1/J is a second integration constant, and 
sn(xxi1 + 1/J) and cn(xx~1 + if!) are the elliptic sine and 
cosine, 
x,-' = {tj2A + 2B +D + [ (IM + 2B +D)' -D(D +A)]'~>}"~>, (13) 

p=x,-'D'io 

and the modulus K of the elliptic functions is given by 
x' = 2x,'[ (1/.A + 2B +D)'- D(D +A) ]Y.. (14) 

The formulas (12)-(14) determine 8 (x) as a periodic 
function B(x +d) = B(x), the period d of which is propor­
tional to the period of the elliptic sine, i.e., is equal to .,. 

d = 4Kx, = 4x, J da/[1- x'sin'a]'~>. (15) 

It can be seen from the formulas (12)-(15) that the 
period d of the function d(x) is determined by the inte­
gration constant D. 

Thus, the periodic distribution (12) is determined by 
the parameters h, h:;i and the integration constant D, 
which remains undetermined for the present. In place 
of the three quantities h, h~ and D, it is convenient to 

choose h, h:ri and K. We put 1/J = K, i.e., we displace the 
coordinate origin to the point where e = 11/2. Then (12) 
takes the form 

ctg e = px' sn- en- ' )( = r 1 - )( 0 ( z/ z) , ~,, , 
Xt Xt. 

(16) 

We shall define the points x = ±a as the points at which 
cot e = ± 1 (e = 1A1r, %11). If the thickness ~s :=:::~ X1 of the 
domain boundary is much smaller than the domain 
dimensions, we can assume that the interval- a :s x::: a 
is occupied by the phase ~ 1 . It is easy to convince one­
self that there are two such intervals in the period d; 
therefore, the parameter ~ = 4a/d determines the frac­
tion of material in the phase ~ 1 . Assuming the param­
eter K to be sufficiently large, we can expand the ellip­
tic functions in series in the small parameter (K)2 
:::; e-2K. We then obtain1 > 

ctg8=px'sh(x/x,). (17) 
The expression (17) leads to a finite value of the deriva-

(><')' { 2u }] sn u = th u [ 1 +- 1 --
2 sh 2u 

t>we note that 

if e2" .;:e2K. Neglecting the quantities of order e - 2K for u::::; I and of order 
u2e- 2K for u.;: I, we can put sn u = tanh u. 

tive d£1/dx at all points in space occupied by both the 
phase ~1 and the phase ~II· At x = 0, the derivative 
d£1/dx is, in order of magnitude, equal to d£1/dx 
:::; - 2x~1e-K. We find the connection between the concen­
tration ~ and h, h:ri and K from (16) by putting x = a: 

px' = cnKs:::::: _1__ (18) 
snKs shK6 

Using the expression (7) for m(x), the formula (17) 
determining B(x) and also the condition K~ » 1, we can 
find formulas relating the magnetic fields hm and h: 

~ ( n'n ) _, 4nnx 4nnz 
hmx = 16m.l.n' .E 2Ksh 2K e-•nnot•sinnnssin-d-sh-d-, 

n=t (19) 

~ ( n'n ) _, 4nnx 4nnz 
hm, = h~•>- 16n'm.l. .E 2K sh 2K e-••nofd sin nn s cos -d- ch -d-, 

n=t 

where 

m.l. = 'f,x.l.h = (21\- p + p' + Bn)-'h, h;:> =- Bnm.l.s (20) 

and 2c is the thickness of the plate. As can be seen from 
these formulas, the nonuniform part of the field hm in 
the interior of the plate is considerably smaller than 
the uniform part. In order of magnitude, hm is hm 
~ x 1 h. The nonuniform part of the field hm leads to a 
distortion of the magnetization distribution m described 
by formulas (7) and (12) at the surface of the plate. 

This deviation is manifested in a deformation of the 
domain boundaries at the surface. The angle of deforma­
tion of a plane boundary is of order e :::; mxlmz (this 
estimate follows from the continuity of the normal com­
ponent of the induction). Further, we note that mx 
:::; x 1hmx:::; x~h and mz :::::~ x 1h, so that e ~ x 1 << 1, i.e., 
the deformation is small, and we shall not take it into 
account below,2 > since it gives no appreciable contribu­
tion to the energy of the AFM. 

To conclude this Section we again return to the eluci­
dation of the conditions for which the distribution e (x) 
corresponds to alternating domains of the phases ~ 11 
and ~ 1 , separated by narrow transitional regions. 
Analysis of formula (12) shows that this is possible 
when K » 1 and p » 1. It is not difficult to convince 
oneself (see (13)-(15)) that these two conditions are 
equivalent to the conditions, already mentioned earlier, 

IDI~ 1, lA (h, h~O)) I~ 1. (21) 

Assuming the quantities K and ~ to be independent and 
using formulas (18), (13), and (14), and also the relation 
between the elliptic modulus K and K, we obtain 

h,' e-'""-u A = ~~[e-'"1 _ e-•x<t-1>] (22) 
D=Bp h,'(a-a') ' , a.-a' h,' 

The second of the formulas (22) shows that the distri­
bution, determined by formulas (11), of material over 
the phases, is valid with exponential exactness. The 
condition hi = htr for the coexistence of the phases ~ 11 
and ~ 1 is fulfilled with the same exactness, and leads, 
if we take (20) into account, to a relation between ~ and 
the field h: 

s= (h- ht,) (4nx.l.hn)-'. (23) 

Allowance for the fact that the period d is bounded en-

2lThe problem of the shape of the interface can be solved in more detail 
for domains in metals, by the method used in[7l, 
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ables us to find the dependence of the parameter ~ on 
the internal field hi from the second formula of (22): 

•- 1 1 A h[h<~~-h,' h, "] (24) ,-2-2/( rs 16M p e 

and to determine the dependence of the internal field on 
the external field h: 

(25) 

Since the quantities D and A are exponentially small, the 
parameter x1 characterizing the width of the domain 
wall is equal to x1 ~ Y2B-112 . Using (8') for B and sub­
stituting the field htr for h, we obtainC2J 

z, = [(a- a')lllp(p- p') ]'h. (26) 

Putting o ~ x-1 ~ 103 , p ~ p' ~ 1, and (a- a')~ a2o 
(a is the lattie~ constant), we obtain 

4. ENERGY OF THE INTERMEDIATE STATE AND 
DOMAIN DIMENSIONS 

Knowing the distribution of m and 1 in the intermed­
iate state, we can find the value of the thermodynamic 
potential <I> in this state. Assuming that the formulas 
(7) and (12) describe the distributions of() and m not 
only in the interior of the plate but also near to its sur­
face, using the relations (5) and performing the integra­
tion in (1), we obtain 

where 

11115 = V{~(h.'- hh,) I h, + 2ph.' I Kh,' 
+ Bnh' Kx.{ (s) I ch.'], (27) 

/(s) = \1 n sin'(nn6) . (28) 
~ 4nK' sh' (n'ni2K) 
n=t 

In formula (27), the second term is the energy as­
sociated with the domain walls, the effective surface 
energy of whieh is given by the formula[2J 

a==ph1{h,-'x,;:;: [(a-a')p(p-p')6-']l>. (29) 

The third term in formula (27) is the energy of the non­
uniform field hm at the surface of the plate. 

Equating d<I>Is/dK to zero, we find the equilibrium 
dimensions of the domains 

d = 4Kx, = 2[ pcx, I n/(6)] "'· (30) 

The dependence of the period d on the magnetic field 
means that, with change of the magnetic field in a plate 
of length Z11 the number of domain boundaries N = l 1 /d 
first increases and then begins to decrease. The quan­
tity N attains Us maximum value in a field h = htr 
+ 21Tx 1 htr• i.e., approximately in the middle of the range 
of existence (htr « h « htr(l + 41TX 1 )) of the IS. 

In order to determine more exactly the range of ex­
istence of the IS, we substitute the value of K deter­
mined by formula (30) into the expression for <I>Is· We 
then obtain 

[ p ] 4h ' 
<l>Is=V -2n('S)'+K h> (31) 

Equating this expression to zero and using formulas 
(30) and (28), we find that value of ~ at which the 
thermodynamic potentials of the phases, <1> 11 and <I>IS• 
areequal: 6=6,=(pl2nK.)V•; (32) 

here, K1 is a solution of the equation 

K, (1.8 -In 2np +In 2nK.) = ncx,-' 

and in order of magnitude is equal to K1 ~ c/x1. Corre­
sponding to this value of~, we have the following ex­
ternal magnetic field (see (23)) and domain period: 

h = h 11 = h.[1 +x_,_(8npiK,)'h], d = d 11 =4nx,K,;:;: c. (33) 

For h > h 11 , the IS is stable, and the phase <1> 11 is meta­
stable. Equating the expressions for <I>Is from (31) and 
<I> 1 from (3b), we find the value of~ at which the thermo­
dynamic potentials of the phases, <I> 1 and <I>IS• are equal: 

(34) 

Corresponding to this value of ~ are the magnetic field 
and domain- structure period: 

h = h_,_ = h.(f + 4nx_,_) - x_,_h.(Bnp I K,) 'h, 
(35) 

For h < h 1 , the IS is stable, and the phase <I> 1 is meta­
stable. It can be seen from formulas (33) and (35) that 
the dimensions of the domains which form during the 
transition to the IS, both from the phase <1> 11 and from the 
phase <I> 1 , are the same and are determined by the thick­
ness of the plate. The number of domain boundaries 
produced in the plate in this transition is of order Z1 /c. 
In a field h ::::: %(h 11 + h 1), the number of domain walls 
considerably exceeds the value h /c. 

The range of external magnetic fields in which the IS 
is stable is determined by the inequality 

(36) 

For h = h11 and for h = h 1, the first-order phase transi­
tions <1> 11 :;:: <I>Is and <I> 1 :;:: <I>IS• respectively, occur. 
These transitions are accompanied by jumps in the 
magnetization, which are easily determined by making 
use of the formula 

(37) 

Hence, we have 

1\m, = m, = x_,_h1,(p I 2nK,)"' ~ x_,_h1,( c I x,) -v., 

1\m, = x_,_h_,_- x_,_£.h_,_ ;:;: XL (pI 2nK,)"' ~ X-Lhtr(x, I c) v., (38) 

It can be seen from this that the jumps in the magnetiza­
tion in the phase transitions <I> 1 = <I>Is and <1> 11 ;=: <I>Is are 
appreciably smaller ((x1/c} 112 « 1) than in the phase 
transition <I> 1 :;::: <1> 11 , when the jump t. m in the magne­
tization is of order t. m ~ x 1 htr· 

In conclusion, we note that if we do not use the con­
dition (23) determining the fraction ~ of material in the 
phase <I> 1 , then the expression (27) describes the non­
equilibrium thermodynamic potential, as a function of~ 
and K, of an antiferromagnet divided into regions occu­
pied by the phases <1> 11 and <I> 1 • If we omit in (27) the 
second and third terms, which take into account the en­
ergy connected with surface effects, minimization of the 
remaining first term with respect to~ again leads, as 
can easily be seen, to the condition (23) determining the 
equilibrium value of ~. 

The above study enables us to describe the behavior 
of the magnetization of an AFM in a broad interval of 
values of the external magnetic field h. The dependence 
of the magnetization on h is depicted schematically in 
the Figure. The average magnetization in the interval 
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M 

0 H 

Dependence of the magnetization M on the external magnetic field 
H in the phase transitions 4> 11 ""'<P1s and 4> 1 ""' <P1s. The quantity M = 
XIIH, ifH < H11, and M = X!H (XII ~X!~ 1), ifH > H1. 

h11 =o: h =o: h 1 is determined by the formula (37) and is 
equal to 

h-htr 
M = 2M,mav= --M,, 

4n 
(39) 

whence it can be seen that the external magnetic sus­
ceptibility x e of an AFM in the IS is equal to 1/47T. 

To conclude, we give an expression for the internal 
magnetic susceptibility Xi· Using (39) and (37), we ob­
tain 

oM i[(h,-ktr)' -K•]-'h x·=--=- -- +(8e ) . 
{)H, pK h, - htr (40) 

If lhi- htrl « lh1- htrle-K, then Xi~ eK/BpK. The 
exponentially large value of Xi in an antiferromagnet in 
the IS is entirely connected with the domain- structure 
property of being magnetized by means of displacement 

of the domain boundaries on exponentially small change 
of the external field. 

The authors thank A. I. Akhiezer and V. V. Eremenko 
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