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The absorption of high-frequency sound in dielectrics in the presence of a stationary drift of thermal phonons 
is considered. The dependence of the sound-absorption coefficient on the drift velocity is found; it is shown 
that this effect can easily be found experimentally in those crystals in which phonon hydrodynamic 
phenomena are observed. Nonlinear attenuation of high-frequency sound in dielectrics, due to drag and the 
heating of the phonons by the sound wave, is also studied. Phenomenological equations are derived which 
describe, within the limits of the hydrodynamic region, the self-consistent propagation of sound and heat flow 
for arbitrary phonon drift velocities. In addition, a nonlinear correction to the sound-wave intensity as a 
function of the coordinate is calculated. Numerical estimates are presented for crystalline He4 • In particular, 
it is shown that the nonlinear absorption should be appreciable at a temperature of 0.6'K and sound 
frequenc:y of the order of 100 MHz, provided that the intensity of the sound input to the sample is about 
0.03 W/cm2• 

1. INTRODUCTION 

AT high frequencies n, when 0Tp ;:p 1 ( Tp is the 
relaxation time of the thermal phonons), the sound ab
sorption can be regarded as the process of the scatter
ing of sound phonons by thermal phonons y-31 The 
value of the absorption coefficient r depends here 
both on the parameters of the sound wave (frequency 
and polarization), and on the state of the phonon gas in 
the crystal. In the calculation of r it is usually as-· 
sumed that the phonons are in a state of thermodynamic 
equilibrium at the temperature T ,fl• 2l or the possibility 
of heating of the sound wave of a group of phonon 
modes that are weakly connected with the remaining 
modes of the latticef3 l is taken into account. In either 
case it is assumed that the phonon gas as a whole is at 
rest relative to the crystal lattice. Such a statement of 
the problem is undoubtedly correct if the crystal has an 
effective mechanism for the dissipation of the total 
quasimomentum of the phonon system. However, in 
extremely pure dielectrics at T ~ 0.02-0.04 e, where 
e is the Debye temperature, phonon-phonon U-proces
ses and impurity scattering are too weak to produce 
any appreciable friction between the phonon gas and the 
crystallattice.r4 ' 5 l In this case, even a comparatively 
small temperature gradient can produce a phonon 
drift of V commensurate with the sound velocity. This 
should lead to a change in the sound absorption coef
ficient r, i.e., to thermo-absorption of the sound. 

In addition to the temperature gradient, drift of the 
phonon gas can also be produced by the sound wave 
itself, as a result of the drag effect.f 6• 7 l Phonons are 
dragged when the normal collisions are sufficiently 
intense;f4J the state of the phonon gas remains prac
tically in equilibrium and is described by a biased 
Bose-Einstein distribution. The local drift velocity and 
the temperature are determined in this case by the 
intensity of the sound wave and the value of the absorp
tion coefficient.f 6 ' 7 l Inasmuch as the sound absorption 
coefficient depends on the drift velocity and on the 
temperature of the phonon gas, it is clear that the drag 
and heating of phonons by the sound should lead to non
linear sound absorption, i.e., to a non-exponential de-
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pendence of the energy of the sound wave on the spatial 
coordinate. 

In the present research, we consider thermo-absorp
tion and nonlinear sound absorption in the hydrody
namic region, when two hydrodynamic parameters-the 
drift velocity V and the temperature T-completely 
characterize the state of the phonon gas. Here we 
shall assume that the dissipation of the quasimomentum 
of the phonon system takes place principally in the bulk 
of the sample, and that the effect of the boundaries can 
be neglected. Such a situation arises for d2 ;:p lN Zu, 
where d is the characteristic transverse dimension of 
the sample and ZN and zu are the free path lengths of 
phonons relative toN and U processes, respectively.rsJ 
This inequality is satisfied with a great deal to spare 
in experiments on second soundfBJ and on the measure
ment of the thermal conductivity of solid He 4 rs,loJ at 
T ~ 0.8 °K. The measurement of the velocity of ordi
nary (first) sound in solid helium has also been carried 
out on sufficiently massive samples ) 111 At the same 
time, the solution of the problem in the limit d 2 

;:p ZNlu is greatly simplified, since all the physical 
quantities in this case depend only on a single spatial 
coordinate. 

2. THERMO-ABSORPTION OF SOUND 

We now find the dependence of r on V for an iso
tropic dielectric without dispersion in the case 
tm ;:p T that is of practical interest. The coefficients 
of absorption of transverse and longitudinal sound have 
the form:fll 

r, = _ flA, s (kp)'(ke)' ON(k) {) (.::._ _ ~) dk (1) 
16:rt'p'c/p k' a k c, kp • 

r,=- flA, fp'k'ON(k)/\(t-~)dk {2) 
16:rt'p'c,'p dk kp ' 

where p and k are the wave vectors of the sound wave 
and the thermal phonon, respectively, At and Az are 
certain quadratic functions of the third-order elastic 
constants, e is the polarization vector of the sound 
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wave, cz and ct are the velocities of longitudinal and 
transverse sound, p is the density of the crystal, and 
N( k) is the phonon distribution function. In writing 
down (2), it was assumed that the longitudinal sound 
attenuates as the result of interaction with parallel 
longitudinal phonons, an assumption confirmed by ex
periment (see, for example,fl2 l). For simplicity, we 
assume that the heat flow is parallel to p. Then, sub
stituting the Bose-Einstein distribution with drift in (1) 
and (2), we get 

n'A,a'(1- a 2 ) pT' 
r,(V,T)= 60/l'p'c,' (1-aVjc,)'' (3 ) 

n'A pT' r (V T)- ' 
' ' - 30/l'p'c,' (1- Vfc,)' 

where a= ctlcz. These formulas are valid for 
1 - VIc z » T I® ; however, this condition is always 
satisfied, since V cannot exceed cz. 

Experimentally, it is most convenient to observe 
thermo-absorption of sound in those crystals where 
hydrodynamic behavior of the phonon gas has been ob
served, i.e., in solid helium and in NaF crystals .l8 • 9 • 13 l 

We shall give estimates for these materials. For 
T « e , the temperature gradient is connected with the 
drift velocity of the phonons by the relation 

dT 4n'T' V V ' -• 
dx g(, - 45AI!'c,' ~ [ 1 - ( ~) ] ' (4) 

where i\ is the thermal conductivity of the crystal. We 
have taken into account here only the contribution of 
the transverse branches of the phonon spectrum, since 
the contribution of the longitudinal branch is small. In 
solid He\ ct = 330 mlsec, a= 0.55 and i\ =50 Wlcm
deg for T = 0.9°K.r 9 • 14 l Then, at V << ct, we get for 
the relative changes of rt and rz: 

.m;r,:::::4dT/dx, llr,;r,:::::6.7dT/dx, (5) 

where the temperature gradient is measured in dey' em. 
It is seen from (5) that a 10% change in rz is already 
reached for dTidx = 0.15 dey'cm. In crystals of NaF, 
ct = 3.1 x 103 mlsec, a= 0.55 and i\ = 150 Wlcm-deg 
for T = 12°K.fl3 l For small VIet. we get 

6r, 1 r, ::::: 0,033dT i dx, 11r, 1 r, ::::: o.06dT 1 dx. (6) 

Thus the considered effect is not difficult to observe 
with currently available technology. 

As is well known, a wave interacting with a beam of 
particles (or quasiparticles) is amplified if the drift 
velocity of the particles exceeds the phase velocity of 
the wave. In principle, this effect should be observed 
even in dielectrics. For example, for a sufficiently 
high phonon drift velocity, amplification of the surface 
waves should occur in the crystal, since their phase 
velocity is always less than ct. In ferromagnets and 
antiferromagnets, sound amplification by a flux of 
magnons is evidently possible if their drift velocity is 
larger than the sound velocity. However, to assess the 
possibility of the experimental observation of these 
effects, a more detailed investigation is necessary, an 
investigation which goes beyond the bounds of this re
search. 

3. SELF-CONSISTENT SOUND PROPAGATION AND 
HEAT FLOW. FUNDAMENTAL EQUATIONS 

We now proceed to the consideration of the nonlinear 
damping of sound under the conditions of phonon hydro
dynamics. The nonlinear hydrodynamic equations de
scribing the motion of a phonon gas in a deformed die
electric crystal, valid for arbitrary (not small) veloci
ties of phonon drift, were first obtained by EfrosY5l 
Somewhat later, Nielsen and Shklovski1 r 161 derived 
these equations for the case of the absence of elastic 
deformations, but with account of the dissipation of the 
quasimomentum of the phonon gas, which was com
pletely ignored by Efros.fl5l We shall use the results 
ofr 161, generalizing them to the case of propagation of 
a high-frequency sound wave in the crystal. Thus, the 
phenomenological equations which describe the self
consistent sound propagation and heat flow in the sta
tionary case will have the form 

dq a;=- r(V,T)q, 

diT(V, T) = (!_!__) + (!_!__) ' 
dx iJt coli !Jt so 

dQ(V,T) = (!!___) . 
dx !Jt so 

(7) 

Here q is the energy flux density of the sound wave, 
II ( V, T) is the quasimomentum flux density of the pho
non gas, and Q(V, T) is the thermal flux density. The 
collision term (aPiat)coll is equal to the rate of dissi
pation of the quasimomentum per unit volume of the 
crystal P(V, T) due to U processes and impurity 
scattering. The terms (aPiat)so and (aEiat)so de
scribe the drag and heating, respectively, of the pho
nons by the sound.ra,?J The one-dimensional character 
of the problem allows us to write out Eqs. (7) in scalar 
form, although in fact the quantities q, Q, P, and V 
are the x components of the corresponding vectors and 
II represents the xx component of the tensor IIij. In 
writing down (7), we have neglected the viscous 
terms.r 4 • 5l It can be shown that account of the viscosity 
of the phonon gas would have led in the given case to 
the appearance in the final formula of inconsequentially 
small corrections of the order of lN r. 

For the solution of the set of Eqs. (7) we need to 
express all the quantities entering into (7) in terms of 
q, V, and T, which can be done only for some specific 
model of the crystal. The functions P(V, T), Q(V, T), 
and II(V, T) have been calculated previouslyr 1aJ for 
the case of a spectrum consisting of a single acoustic 
branch without dispersion. We also restrict ourselves 
to the consideration of this simple model, claiming -only 
qualitative results and correction estimates. Thus, 

BT'v BT' 1 + 3v' B _ 2n' (B) 
P Q = c'P II= 

c(1- v')' ' ' 4 (1- v')' - 45(/lc)' 

where c is the sound velocity and v =VIc. The colli
sion term in the limits of the hydrodynamic region can 
depend explicitly only on V and T. Without loss of 
generality we can represent it in the form 

( IJP) P(V,T) (9) 
at co;;= - ,;( V, T) ' 

The expressions for (aPiat)so and (aEiat)so in the 
considered mode are easily found from the correspond
ing conservation laws: 

( iJP) __ __!_~ ( iJE) dq (10) 
!Jt so- c dx' at so= -d;:, 
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The absorption coefficient r ( V, T) was calculated 
above for the Debye model. In the case of a spectrum 
consisting of a single branch, the expression for 
r(V, T) can be easily shown to take the form 

r. ( T )' r(V,T)= (1-v)' f. , (11) 

where ro = r(O, To). 
We now turn to the set of equations (7). Substituting 

the second relation (10) in the third equation of (7) and 
then integrating it, we get 

q = Q.- Q(V, T), (12) 

where Q0 is the integration constant and is equal to 
the density of the total (acoustic and thermal) energy 
flux in the sample. Replacing V by v everywhere, and 
substituting (8)-(12) in the first two equations of (7), 
we find 

1+5v'~+~~= r. [v (1-v')'-v(!_)'] 
1-v' th T dz (1-v)' ' T ' 

3v(1 + v') dv -l- 1 + 3v' !:!.._ 
1-v' dz · T dz 

= (1~·v)' [v.(1-v')'-v(~J]- l(:.T) (13) 

Here l(v, T) = CT(V, T), Vo = 3Qo/cToCo and Co 
= 3BT~ is the heat capacity per unit volume of the 
crystal at v = 0 and T =To. The constant v0 has the 
meaning of the drift velocity (referred to the sound 
velocity) corresponding to the thermal flux density 
Q = Q0 at the temperature T = T0 • 

The function l ( v, T) remains undetermined in Eqs. 
(13). The specific form of l( v, T) can be established 
only by using some approximations for the collision 
integral in the kinetic equation. We shall not compute 
l(v, T) here, especially since the expressions obtained 
in this fashion would be rather difficult to estimate. 
Instead, we represent l( v, T) in the form of a power 
series in v and () = ( T - T 0)/T 0 and then find the 
energy flux density of the sound wave as a function of 
the coordinates in first nonlinear approximation, with 
the help of (8) and (12). This allows us to determine 
the character of the developing nonlinearity, and to 
estimate the value of the sound intensity for which the 
nonlinear effects become appreciable. 

4. CALCULATION OF THE SOUND-WAVE INTENSITY 
IN THE FIRST NONLINEAR APPROXIMATION 

Assuming v « 1 and () « 1, we expand v and () 
in terms of increasing smallness: 

v=v<0 +v1'>+ ••• , a =61ll+e<•>+.... (14) 

We further express q in terms of v and () with ac
curacy to terms of second order : 

q = q!ll + q1'l, q<0 = 1/ 3cT .Co(Vo- v 1' 1), 

q<•> = - 1/ 3cT0C0 (v<•> + 4vu>au1). 
(15) 

It is clearly seen from (15) that it suffices to know only 
the drift velocity v in second approximation to find the 
nonlinear correction q< 21 • In order to obtain equations 
for v< 11 , () < 11 , and v< 21 , it is necessary to expand the 
coefficients before the derivatives and the right sides 
of Eq. (13) in two-dimensional Taylor series. We con
sider separately the expansion of the dissipative term 

v/l(v, T). It is clear from general considerations that 
Z(v, T) should be an even function of v. We can there
fore write 

_v_=~(1+ae+ ... )+v'/(8)+ ... , (16) 
l(v, T) l, 

where Zo = Z(O, T0 ), a is a constant, and f( e) is some 
function of temperature. Thus the dissipative term re
mains proportional to v in the first nonlinear (quad
ratic) approximation in v. Further, substituting (14) 
in (13), with account of the expansions given above, and 
equating terms of the same order of smallness, we ob
tain 

dv<•> 
--= r,(v,- v<tl), 

d:t: 
ae<ll ( 1) --= r,v,- r.+- v<0 ; 

d:t: l, 

av<•> ( 1 ae<n ) -.- + r,v<ll = 4r,vUl Vo- v<tl- 8(1)---- . 
th r, dz 

(17) 

(18) 

The character of the solutions of Eqs. (17) and (18) 
is determined by the form of the boundary conditions 
for v01 , e<l>, and v121 • We consider the case Qo = 0, 
which is not difficult to realize experimentally. Here 
Q(x) = -q(x) in any transverse cross section of the 
sample; consequently, 

v<t> (0) = -3q,/ cT.C, = -v,, 

where q0 = q( 0) is the sound intensity at the input to the 
crystal (for x = 0). This regime results if the output 
face of the sample is thermally isolated and the sound 
is practically entirely damped over the length of the 
crystal. For e<l>, we assume the condition e<l> = 0, 
i.e., we assume that the input face is maintained at a 
constant temperature To. The constant of integration 
in the expression for v< 21 will be determined from the 
condition q< 21 ( 0) = 0, which reduces to the equality 
v< 21 ( 0) = 0, as is not difficult to see. 

The solution of the set of equations (17) and (18) 
does not present any difficulty. However, the expres
sions thus obtained for v< 21 and q< 21 will contain 
secular terms. To eliminate the secular terms, it is 
necessary, as in the case of nonlinear mechanics/ 17' 181 
to take into account the "renormalization" of the ab
sorption coefficient ro due to nonlinear effects, i.e., 
to replace ro in (17) and (18) by y = ro + r' 11 , where 
r< 11/ y ~ v< 11 « 1. Here, an additional term appears in 
Eq. (18) proportional to the correction r< 11 , which al
lows us to eliminate the secular terms by suitable 
choice of r< 11 • Thus, recognizing that v0 = 0 in the 
case under discussion, we get 

dv<•> 
--+yv10 =0, 

d:t: 

aa<•> 
-+y(1+A)v10 =0; 

d:t: 
(19) 

dv 1' 1 ( 1 d810 ) --+yv<•> =-4yv<' 1 v<' 1+au> +--- +ru>v<ll, (20) 
th y dz 

where A = (l 0 y / 1 • Integrating the set of equations (19) 
and (20) with account of the boundary conditions, and 
substituting the result in (15), we find: 

"u>=-v,e-••, a<o=v,(1+A)(1-e-'"), r 10 =4v,y(1+A),(21) 

q<•> = q,e-••, q<•> = (12q,' I cT,C,)e-'"(2 +A) (1- e-••). (22) 

Equations (21) and (22)are evidently valid for any 
values of x if the inequality 4vs( 1 +A)<< 1 is satis
fied. 
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Plots of the x dependence of the drift velocity v OJ, of the tempera
ture of the heating 0 OJ (in first approximation) and of the ratio l'i q/qL 

for three values of/\.: 1-0.3, 2-1.0 and 3-3.0. The dashed curve on 
the upper drawing is the plot of vOl (x). 

The investigated nonlinear effect is characterized 
by the difference q(x)- qL(x} = Oq(x}, ·.,lich repre
sents the nonlinear correction to the sound intensity 
qL(x} = q0 exp ( -r0 x), calculated without account of the 
drag and heating of the thermal phonons by the sound 
wave. By means of (15), (21) and (22}, we get 

6q (x) =qL{x){[ 1 + 4v, (2 + /\.)( 1 - e-'") )exp [ -4v, ( 1 + 1\.)"y )- 1}. (23) 

The figure shows plots of v< 1>, e < 1>, and the ratio 
5q/qL against x for the three values of 1\.: 0.3, l.O, 
and 3.0. These quantities are obtained if we take the 
three values of l 0 , equal to 1, 3, and 10 em, which 
c01respond to solid He 4 for To= 0.8, 0.7, 0.6°K, and 
)' = 0.33 cm- 1• Such a value of y should be observed 
in solid He 4 for the same temperatures and for sound 
frequencies of the order of 100 MHz.r6 J The parameter 
Vs is taken to be equal to 5 x 10-3 • 

The results have a clear physical meaning. In the 
case considered, the phonon drift is directed counter to 
the direction of propagation of sound and the region of 
developed drift extends to the input face of the same 
(see the figure). Inasmuch as the heating of the crystal 
near this face is small, the principal effect on the local 
sound absorption coefficient here is exerted precisely 
the drift of the thermal phonons. This leads to local 
acoustic "clearing" of the crystal (the correction 
5q(x) is positive). As the coordinate x increases, the 

drift velocity decreases and the heating increases, 
which brings about a change in the sign of oq(x}, i.e., 
the crystal "darkens." We estimate the value of qo 
for which the nonlinear sound damping becomes ap
preciable in crystalline He 4 • For definiteness, we set 
yx = 2 and A = 1.0. It is natural to take c to be equal 
to the velocity of transverse sound ct, since the trans
verse branches of the spectrum in the real crystal 
give the principal contribution to the thermal flux and 
the quasimomentum per unit volume. Then, calculating 
the heat capacity C0 , it is not difficult to find, by use 
of (23), that Oq amounts to 10% of qL for To = 0.6°K 
if q0 = 0.03 W/cm2 • For To= 0.8°K, Oq is equal to 
0.1 qL, for q0 = 0.1 W/cm2 • Thus the nonlinear absorp
tion of sound can be found without any difficulty with 
existing experimental technology. Further, inasmuch 
as the values of q0 , for which nonlinear damping begins 
to appear, are small and decrease with decrease in 
the temperature, this effect should be kept in mind in 
the measurement of ordinary linear damping of high 
frequency sound in pure crystals of solid helium. 

In conclusion, I want to thank 0. G. Vendik for a 
discussion of the results of the research. 
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