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It is shown that the motion of particles in strong fields is characterized by a correlation radius Rc, which is 
related to the electric field intensity E(r) by the equation R;(r) = 1/eE(r). In very strong fields Rc becomes 
much smaller than the distance over which the field varies, and this permits one to regard the field as 
homogenous even at small distances from a Coulomb center. This property of localizability enables us to 
determine the dielectric constant of the vacuum and the distribution of the vacuum polarization charge near 
an external charge of arbitrarily small radius R0. The relation between the true charge Z0 and the observable 
charge Z is derived. It is shown that, for a given value of Z, the charge Z0 remains finite as R0 -> 0. A 
possible mechanism for the removal of electrodynamic divergences is discussed. 

1. THE PHYSICAL PICTURE 

IN the presence of sufficiently strong static (or slowly 
varying) fields single-particle bound states may appear 
with their energy levels so deep-lying that pair produc­
tion becomes possible, and thus arises the question of 
the stability of the vacuum. We shall call such fields 
critical. A very well known example of this type is the 
nucleus with charge Z = Zc such that the energy of the 
K-electron reaches the value -1 (m = l'i = c = 1). In the 
case of a point nucleus the critical value of the nuclear 
charge is given by Zc = 137 ,c1J and for a nucleus having 
the usual radius R = roA113 (with r 0 = 1.2 x 10-13 em) it is 
given by Zc = 17oP-7J When Z = Z<; the energy of the 
nucleus with a vacant K- shell coincides with the energy 
of the state having two electrons in the K- shell and two 
positrons in the continuum with energy + 1, that is, it is 
energetically possible to produce two pairs from the 
vacuum. If the K- shell is filled, then pair production is 
impossible due to the Pauli exclusion principle, and the 
vacuum is stable. Thus, in the case of fermions the 
stability of the vacuum is guaranteed by the Pauli ex­
clusion principle even without taking the interaction be­
tween the particles into account. 

The Dirac equation does not have a bound state in the 
K- shell for Z > Z c; however, simultaneously with the 
disappearance of the K- state there is a change in the 
distribution of the vacuum polarization charge, that is, 
an additional negative charge density appears near the 
nucleus in the region r ~ 1. The volume integral of this 
additional charge density is equal to two electron char­
ges.CSJ Let us illustrate this phenomenon by another 
example, one which will play an important role in the 
following investigation. 

Below an equation will be derived (formula (3.5)) be­
tween the true charge Z0 of a nucleus having a small 
radius Ro (the radius Ro can be arbitrarily smaller than 
the radius of real nuclei) and the observable charge Z. 
The difference between Z0 and Z is due to vacuum 
polarization. It follows from this formula that a nega­
tive charge, equal to Z0 - Z, is distributed in the region 
Ro < r < 1. For sufficiently small values of Ro, Z « Z0 , 

that is, the polarization charge almost completely 
screens the true charge of the nucleus. This polariza­
tion charge can be interpreted in the following way. 
Pairs appear in connection with the introduction of a 
nucleus into the vacuum; the positrons escape to infin­
ity, but the electrons are distributed near the nucleus 
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and screen its charge, thus reducing the observable 
charge (for r <: 1) to the value Z. This problem is a 
manifestation of the screening of the bare charge, 
which is a well-known effect in quantum electrodynam­
ics. 

Thus, the appearance of additional charges in a 
Coulomb field for Z > Zc is of exactly the same nature 
as the screening of the bare charge, the only difference 
being that for small Z the screening occurs over dis­
tances of the order of Ro whereas for Z > Zc the addi­
tional screening charges are distributed in the region 
r ~ 1. 

Let us return to the question of the stability of the 
vacuum. As has already been mentioned, in the case of 
fermions the stability of the vacuum is guaranteed by 
the Pauli exclusion principle, and taking the interaction 
between the electrons into account leads to unimportant 
changes in the value of the critical charge (o Zc ~ 1) 
and to a small change in the distribution of the polariza­
tion charge for Z > Zc (a change of the order of 1/137). 
Since arguments to the contrary have appeared in the 
literature ,c 6 ' 7J this point should be discussed. 

The interaction between the electrons can be taken 
into consideration with a high degree of accuracy by 
utilizing the fact that the only states which play an im­
portant role are the states of an electron in the K- shell 
plus a positron of small energy in the continuum. In 
addition, one should take into consideration that the 
wave function of a positron with small momentum k can 
be represented in the form[aJ 

'l',(r) = !lY.(k)'l'o(r), 

where \}/0(r) denotes the wave function of the bound state 
with energy E = -1, and t:.(k) is expressed in terms of 
the amplitude for the scattering of a positron in a 
Coulomb field. Then it is possible to determine the 
change of the effective potential acting on the electron 
and to demonstrate that the associated corrections are 
unimportant. We shall limit ourselves to these sketchy 
remarks. A more detailed account will be presented in 
a separate article. 

Much more important changes in the vacuum polar­
ization arise in those fields which are critical for the 
production of bosons, for example, in fields in which the 
production of pion pairs is possible. In the case of 
bosons the Pauli exclusion principle does not prevent 
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the particles from accumulating in "dangerous" states, 
and the only factor leading to stability of the vacuum is 
the interaction between the mesons. The question of the 
stability of the vacuum with respect to boson production 
in the presence of a field has been treated in detail 
in[ 9J. The basic results of this work reduce to the fol­
lowing: 

1. It is shown that in an electric field, having the 
shape of a potential well for negatively charged particles 
{V(r) < 0 for r < R), a bound state also appears for 
positively charged particles, for which V(r) > 0, when 

the depth of the well reaches a certain value which is 
smaller than the critical value. Upon a further increase 
in the depth of the well, both levels deepen, and when 
V = V c the sum of the energies of the positive and nega­
tive particles vanishes, that is, the vacuum becomes 
unstable within the framework of the single-particle 
problem. 

2. The quantum field theory problem including the 
external field V{r) (for V close to V c) and with an inter­
action of the form A.(j/ between the mesons (here cjJ is 
the meson field operator and A > 0) is solved. The 
problem can be solved because the production of meson 
pairs in the "dangerous state" plays the major role, 
and for this state the sum of the energies of the two 
kinds of mesons (positive and negative) is close to zero. 

3. It is found that the energy of a pair does not van­
ish at any value of the external field, that is, taking the 
interaction between the mesons into account makes the 
vacuum stable. Polarization of the meson vacuum 
creates a screening field such that the effective field 
acting on a particle never reaches its critical value. 
Thus, an upper limit exists for the effective field. It is 
clear from the nature of the derivation that such limit­
ing fields also emerge in the case of nonelectrical ex­
ternal fields. 

4. The behavior of the mesons in the field created by 
the nucleons is investigated, and it is shown that a phase 
transition involving the formation of a meson condensate 
occurs at a definite value of the nucleon density. In ad­
dition to its usual equilibrium state having the usual den­
density, nuclear matter should have a metastable state 
with a density which is two to four times larger. Per­
haps such superdense nuclei exist, together with ordin­
ary nuclei, in the heavy component of cosmic rays. 

The present article will investigate the polarization 
of the electron- positron vacuum in strong and inhomo­
geneous electric fields. It is found that a localization 
of the particle's Green's function arises in strong 
fields, that is, in the presence of the field the Green's 
function G(r, r', w) oscillates rapidly for R2 = I r- r' 12 

» 1/eE, where E denotes the electric field intensity. 
Thanks to this localizability property the polarization 
operator ll(r, r', w)- 0 for R2 » 1/eE. This property 
permits one to determine the dielectric constant of the 
vacuum in strong and inhomogeneous fields. 

The problem of the distribution of the polarization 
charge around a nucleus of radius Ro is solved, and the 
relation between the true charge Z0 of the nucleus and 
the observable charge Z is determined for arbitrarily 
small values of Ro. In this connection, it is found that 
the true charge Zo associated with a fixed value of Z 
remains finite in the limit Ro- 0. In other words, tak­
ing the localizability of the Green's function into con-

sideration eliminates the divergence in the renormaliza­
tion of a static point charge. Arguments are presented 
concerning an analogous mechanism for eliminating the 
divergence in the D-function. 

2. VACUUM POLARIZATION IN AN INHOMOGENEOUS 
FIELD 

2.1 The Dielectric Constant of the Vacuum in a Strong 
Field 

Let us derive the expression relating the dielectric 
constant to the polarization operator. For simplicity we 
consider the case of a static field. The generalization to 
nonstatic fields is obvious. 

As usual the dielectric constant is defined in terms 
of the polarization P: 

The polarization satisfies the relation 

divP = -p., (2.1) 

where p1 denotes the density of the charges which are 
induced by the external field. In order to obtain Eik it 
will be sufficient to express p 1 in terms of the polariza­
tion operator. In order to do this, let us determine the 
potential acting on the electron in the presence of the 
external charges. We obtain the potential V{r) in the 
form of a series in powers of e2 , without assuming the 
external field to be weak. In the zero-order approxima­
tion in e2 we have 

p (r')dr' 
V(r)=ef l:-r'l =V,(r), (2.2) 

Vg(r)=: ~ 

Here po(r) is the density of the external charges, and 
V0(r) is the potential of the external field (more pre­
cisely, the potential multiplied by the charge e). Form­
ula (2.2) can be symbolically written in the form V0{r) 
= eDopo, where Do = I r- r' l-1 • 

To the first approximation in e 2 , the field due to the 
induced charges is given by the graph 

~=D0n;v, 
The heavy line in the loop indicates that one of the 
Green's functions must include the effect of the field 
V(r), that is, all of the photon lines running from the 
external charges must be taken into consideration. A 
more detailed representation of this graph would be the 
following: 

The graphs 

~+~ 
= D,IID,II,'V, + D,II.'V,. 

appear in the next order in e2 • In the first loop of the 
first one of these graphs, the photon lines running from 
the external charges are joined to each of the lines in 
the loop, that is, both of the Green's functions of this 
loop are evaluated with the presence of the field V(r) 
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taken into account. The complete series in powers of e2 

is written in the following way: 

V = V, + D,TI'Vo + D,TID,TI'V, + ... , (2.3) 

where 

n'=~· 0=~(2.3') 

One can write the expression for V in the form 
V = V, + D,(TI'- TI) V, + D,TI{Vo + D,TI'Vo + D,TID,TI'V, + ... } 

= V, + D, (TI'- TI) V, + D,TIV, (2.4) 

or, by multiplying by D(/ = -6./ 4w we obtain 

~V=-4Jt[ep,(r) + (ll'-ll)V,+TIV]. (2.5) 

Since we have introduced the observable charge e, 
the polarization operator n must be regularized, that is, 
the expression nv stands for 

ll"''V = Jn(r, r') V(r')dr'- f J ll'(r- r') (r- r')' dr'~V. (2.6) 

where n° is the polarization operator without any ex­
ternal field. Formula (2.6) is analogous to the well­
known expression in the momentum representation 

nR,,(k') = n (k') - k'(an 1 dk').·=·· 

By changing to the coordinate representation with 
respect tor-r', we obtain Eq. (2.6). However, charge 
renormalization can be carried out directly in expres­
sion (2.5). In order to do this, let us rewrite (2.5) in the 
form 

~ V = -4:rteo'(n,(r) + n, (r) ), (2.5') 

where e~ is the bare charge, no(r) is the density of ex­
ternal particles, and n1(r) is the density of polarization 
electrons. By definition the observable charge, i.e., the 
renormalized charge, is the charge in a weak, slowly 
varying field. Then according to Eq. (2.5) we have 

eo'n, = ll'V = J ll'(R)dR V(r) 

+ Jn'(R)RdRVV++Jn'(R)R'dR~V+ ... 
where R = r- r'. The first term vanishes due to gauge 
invariance, and the second vanishes because n° is iso­
tropic. Transferring the term containing 6. V to the left­
hand side and dividing by the factor associated with 6. V, 
we obtain 

~V = -4ne'n,(r), e' =eo'/[ 1 + !:n; Jn'R'dR]. 

Consequently, by adding and subtracting the quantity 
(4/6)w Jn° R2 dR to the right-hand side of (2.5) and by 
changmg to the charge e instead of eo, we obtain (2. 5) 
with the operator II Reg appearing instead of n. The 
quantity e 2 appears everywhere inn Reg instead of e~. 
From Eq. (2.5) it follows that 

ep, = (ll'- TI) V, + TI8 , 8 V. (2.7) 

In the next section it will be shown that the polariza­
tion operator n has the property of localizability in the 
presence of a strong electric field E, that is 

TI'(R) 
TI(r,R)={ O 

for R' « 1/eE. 
for R' ~ 1leE' 

(2.8) 

here 11° is the polarization operator without any field. 
n' also possesses the same property. Similar results 
are also obtained in the presence of a magnetic field. 

Let E(r) vary noticeably over a distance l satisfying 
the condition 

l'>1 I eE. (2.9) 

Then one can neglect the variation of the field over the 
distance (eEr112 which is characteristic for the polar­
ization operator, and thus the polarization operator and 
consequently the dielectric constant as well can be cal­
culated in a homogeneous field. But for a strong homo­
geneous field there exists the expression for the 
Lagrangian density~· which was derived as long aBo as 
1936 (by Heisenberg and Euler, and by Weisskopf): 10- 12] 

e'E' 
~' = ---lneE lneE ~ 1, 

24:rt' ' 
(2.10) 

and from this expression we obtain 
a~' e' e' 

P=--= ---ElneE---E aE 12n' 24n' · 

Correct to within logarithmic terms, the dielectric con­
stant is given by 

e;, = 8;, ( 1 - ~:In eE) . (2.11) 

Thus, the criterion for the applicability of formulas 
(2.10) and (2.11) is by no means the condition E'/E « 1 
which was assumed during the derivation of (2.10), but 
rather it is the condition (2.9) which can be written in 
the form 

(E' I E)'~ eE. (2.9') 

From Eqs. (2.11) and (2.1) we obtain 
e2 e2 E 

ep, = --ln(eE)div E + --- V E. 
12:rt' 12:rt' E 

(2.12) 

Expression (2.10) is obtained to first order in e 2 • 

Meanwhile, as is clear from Eq. (2.11), the expansion is 
in powers of the quantity e 2 lneE, which becomes of the 
order of unity at small distances from a point charge 
(see below). In order to obtain more general results, it 
is necessary to return to expression ( 2. 7). In the follow­
ing calculations we shall discard the terms which do not 
contain ln eE >> 1 as a factor. 

First of all let us simplify expression (2. 7). Under 
condition (2.9) one can expand V(r') in the first term of 
(2.6) in a series around the point rand restrict our 
attention to the first nonvanishing term. We obtain the 
following result: 

TIR,,V=_i_{Jn(r,R)R,R,dR-~ Jrr'(R)R'dR}~. (2.13) 
2 3 a~a~ 

Here the equations 
JII(r,R)dR=O, Jn(r,R)RdR=O. 

have been used. The first follows from gauge invariance, 
and the second follows from the symmetry of II(r, r') 
with respect to the interchange r - r'. The tensor 
inside the curly brackets in (2.13) can be referred to 
its principal axes (z II E). Introducing the notation 
p 2 = (x- x') 2 + (y- y') 2 and e = (z- z') 2 , instead of 
expression (2.13) we obtain 
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Due to the isotropic nature of II 0 we have 
JII 0 ( 1; 2 - p 2/2)dR = 0; therefore it follows from (2.8) 
that the coefficient associated with il 2V ;az2 in the second 
term of (2 .14) does not contain In eE as a factor, just as 
is true for the second term on the right-hand side of 
(2.12). 

In similar fashion, by using (2.8) we can verify that 
to within logarithmic accuracy the coefficient associated 
with t.V in (2.14) can be reduced to the form 

1J 1r 1J· 4 (TI-TI')p'dR~-4 J, TI'p'dR=-B TI'R'dR. (2.15) 
R2>!/eE R!>i/eB 

The region of integration with R2 ~ 1/eE introduces a 
contribution which does not contain any dependence on 
In eE. Finally, for the same reasons the first term in 
(2.7) also does not contain any dependence on In eE. 
These assertions will be discussed in more detail below. 

Thus, to within logarithmic accuracy it follows from 
expressions (2.14), (2.15), and (2.7) that 

ep,= 6~ J TI'R'dRi\V- Jn(~·--21 p')dRa'~. 
R2>!/eE az 

By comparing this expression with the expression for 
div P we find that, to the approximation we are using, 
the dielectric permittivity tensor reduces to the identity 
tensor and is given by 

e;•=(1-~ J TI'R'dR)I\"'. (2.16) 
6 m>tfeE 

Formula (2.16) is a generalization of expression (2.11) 
and, as will be shown below, it goes over into (2.11) for 
1- (e2/31T)lneE » e 2 • 

2.2. The Localizability of the Green's Functions in 
Strong Fields 

In this section it will be shown that, in the presence 
of strong fields the Green's function G(r, r', w) of a p 
particle is localizable, that is, it falls off abruptly for 
lr- r'l 2 = R2 » 1/eE. This property of the Green's 
functions is very important in connection with deducing 
the asymptotic behavior of electrodynamical quantities 
at small distances, and it seems to us that this property 
may lead to the elimination of the divergences. For 
simplicity we shall assume that the external field has a 
frequency wo << I r- r' l-1 • Since the frequency 
w ~ I r- r' l-1 of the Green's function turns out to be 
important in all of the calculations, one can regard the 
field as static. 

Let us write down the equation for the Green's func­
tion in a mixed representation, that is, in a spatial 
representation with respect to the spatial coordinates 
and in a Fourier representation with respect to t- t': 

G = G(r, r', w). 

The Green's function has a simpler form in this repre­
sentation. In addition we shall utilize the fact that spin 
effects are unimportant at sufficiently high energies 
(w » 1), and so all the results can be derived by using 
the Klein- Gordon- Fock equation instead of the Dirac 
equation. This assertion is clarified in the Appendix. 
The equation for the Green's function of bosons in an 
electric field has the form 

i\G+[(w-V)'-1]G=6(r"'-r'). (2.17) 

The Green's function of a free particle is given by 

G, = -exp [i(w' -1)\'>R] llmR. (2.17') 

The choice of the plus sign in the argument of the ex­
potential replaces the usual condition for going around 
singular points in the momentum representation. 

If w » 1 then G0 oscillates rapidly for R » 1/w. 
Let us consider G for R « l, where l is the distance 
characterizing a substantial variation of the field. Then 
in Eq. (2.17) one can replace V(r) by 

dV r' 
V (r) = V (r')+ -r' -(r- r') = eE~. 

d r' 

We have measured the potential V(r) from the point r', 
and the problem thus reduces to determining the Green's 
function in a homogeneous field. As we shall demon­
strate, distances R2 -;:;, 1/eE are important in the Green's 
function, and the condition R2 << l 2 is equivalent to con­
dition (2.9) (or (2.9')), which is satisfied in the case we 
are interested in, namely, the case of rather strong 
fields. The solution of Eq. (2.17) in a homogeneous field 
reduces to the solution of the Schrodinger equation for 
an oscillator potential, and is determined by parabolic 
cylinder functions. This solution is given in the Appen­
dix. Here we shall confine our attention to making a 
simple estimate of the significant distances which are 
adequate in order to calculate the polarization operator 
correct to terms of logarithmic order. In connection 
with our choice of the reference point of the potential, 
the Green's function G(r, r') depends on the difference 
vector R, but the vector r only enters as a parameter 
due to the dependence of E on r. 

It follows from Eq. (2.17) that if eER « w, then the 
function G(R) goes over into G0(R). But, as is quite 
clear from Eq. (2.17) and from the subsequent integra­
tion over w, the important values of w are determined 
by the relation w ~ R-1 • Therefore we obtain 

G(R)-+G,(R), R'<,f,lleE. (2.18) 

On the other hand, for w « eE p, eE!; it follows from 
(2.17) that Go oscillates strongly for R2 >> 1/eE, that is, 
G- 0 for R2 » 1/eE, where the bar indicates the aver­
age over an interval t.R, 

1 I eE<,f, (1\R)'<,f, R'. 

It follows from the solution of Eq. (2.17) with V = eE!; 
that 

G-+ -exp {iCR'eE} I 4nR. R' ~ 1 I eE, 

where Cis a number of the order of unity, which con­
firms our qualitative estimate. 

Since in what follows G appears in the integrals of 
smooth functions over R, in practice one can get 

G(R) -+0 for R' ~ 1 I eE. (2.19) 

In order to clarify this important assertion, let us con­
sider G in the quasiclassical approximation: 

G ~ exp {i(S(r) -S(r'))}, 

where the action S satisfies the Hamilton-Jacobi equa­
tion 

(aS I a~)'+ (aS I ap)' = (w- V)' -1. (2.20) 

The argument of the exponential will be minimal if a 
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classical trajectory exists connecting the points r and 
I r. 

Let us demonstrate that the classical trajectory ex­
ists only under the condition w >> eER, and consequently 
in the opposite case the difference S(r) - S(r') is large 
and the Green's function oscillates strongly. Let us de­
note the transverse momentum by aS/ap = K. Then, 
neglecting the one on the right-hand side of Eq. (2.20), 
we obtain 

(aS/as)'= (w- V)'-x'. (2.21) 

The classical action function is obtained from (2.21) 
with the additional condition 

aS(s, x) I ax= 0. (2.22) 

Since we are interested in values of w ;?; eE {;, then 
in our estimates we can neglect the term V2 on the 
right-hand side of (2.21), and the problem reduces to 
the classical problem of the motion of a particle with 
energy w2 in a gravitational field with acceleration 
g = eEw. Let us consider points r and r' located at the 
same height ( {; = 0, p = R). Then we obtain the following 
result from the formulas for the distance of flight 
(range) in a gravitational field: 

w' sin 2<p 
p= 

2g 
from here it follows that 

w' sin 2<p 

2weE 

w>eEp. 

For p = 0 and R = t; we obtain the condition 

w' > g~ = eEwr,. 

Thus, the condition for the existence of a classical 
trajectory joining the points r and r' is given by 

w>eER. 

We note that in the quasiclassical approximation, by 
using Eqs. (2.21) and (2.22) the Green's function can be 
determined for an arbitrary V(r) without making the 
restriction (2.9). In our case the criterion for the 
validity of the quasiclassical treatment, dp-1/dt; « 1, 
has the form 

d(w-v)-' 

d~ 

V' eE 
-.,...------,::::-:-- ~ - ~ eER'-<. 1. 

(w-V)' w' 

while the important values of R are determined by the 
condition 

R'eE ~ 1. 

Nevertheless, it can be anticipated that, as usually 
happens,C 13J the quasiclassical approximation gives a 
good quantitative estimate. 

Thus, the Green's function G possesses the proper­
ties of localizability (2.18) and (2.19). From Eqs. (2.21) 
and (2.22) one can estimate the characteristic values of 
R which are suitable even in the case when E varies 
abruptly in some region, that is 

w > IV(r)- V(r') I= e li,Em~ I· 
Together with the condition w < 1/R, we obtain the 

result 

G(r R)= {G,(r,R), R~IV(r')-V(r)l-'. 
' 0, R~IV(r')-V(r)l-'· 

(2.23) 

2.3. The Polarization Operator in the Coordinate 
Representation 

First let us determine the polarization operator when 
no field is present. To the lowest order approximation 
in e 2 we have w-w 

ll 0(r-r',w)= ~ 
r~' 

J dw, (2.24) = e' r,G,(r-r',w-w,)r,G,(r-r',w,)~. 
2m 

Since we are interested in the case of a static electric 
field (w « w 1), it is sufficient to confine our attention 
to the calculation of ll~4· Therefore, one should take the 
matrix y 0 as the vertex ro if the calculation is done with 
the aid of Dirac Green's functions. As we have already 
mentioned, the same result is obtained to within logar­
ithmic accuracy when the calculation is carried out with 
the aid of the Green's functions for bosons, but in this 
case as usual the fourth component of the difference of 
the particle's momenta should be taken as the vertex in 
the graph (2.24), that is, ro = 2 w1 - w. Neglecting w and 
using (2.17') we obtain the following result for R « 1 

II'(R) = 4e' J G,'(R, w,)w,' ~:~ 
2 • +oo 

= ;n' ~,Lexp(2ilwdR)w,'dw,. 
In order to make the integrals convergent, it is neces­
sary to assume that R has a small, positive, imaginary 
part. Then, by omitting the integral over the infinite 
semicircle in the upper half-plane of w1 and by intro­
ducing a branch cut along the positive imaginary axis, 
we obtain 

00 

ez ez 
II' (R) = --J e-'"'s'd£ = --. 

n'R', 4n'R' 
(2.25) 

Expression (2.25) is valid for R « 1; for R » 1 one 
will obtain TI 0 ~ e- 2R. Substituting (2.25) into formula 
(2.16) we obtain 

that is, a result which is identical to expression (2.11), 
which was obtained from the Lagrangian (2.10). 

Now let us demonstrate that the polarization operator 
in the presence of the field actually does·satisfy rela­
tions (2.8), which we utilized in order to obtain expres­
sion (2.16) for the dielectric constant. To first-order 
in e2, the validity of these relations follows at once from 
the localizability of the Green's functions in the field. 
In fact, one finds 

+~ dw 
II(r R,w) = 4e' J G(r,R,w,)G(r,R,w- w,)w,'-1

-. 

' -oo 2nz 

and therefore expressions (2.18) and (2.19) lead to (2.8). 
It is not difficult to verify that the properties (2.8) are 
preserved to any order in e 2. 

As an example, let us consider the graph mwwz 
r 'i r' 

'i 
w-w1 w-w1 

Here the heavy lines indicate that the Green's functions 
are to include the presence of the external field. With 
regard to the integrals over r 1 and r2, it is easy to see 
that the only regions of integration which are important 
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are those in which all coordinate differences are smaller 
than R = I r- r' J. One can also easily verify this point in 
the momentum representation, with which the readers of 
this article are probably more accustomed. In the mo­
mentum representation, only the momenta Pint :.G PRof 
the internal lines are important, where pR is the Fourier 
transform of R. Therefore, if R2 «: 1/eE then one also 
has Rfnt « 1/eE for all internal lines, and according to 
(2.18) all of the Green's functions are replaced by free­
particle Green's functions; hence 

ll(r,R)-+ll'(R), R'«f;1leE. 

In the opposite case, when R2 >> 1/eE, there necessarily 
exist at least two Green's functions with distances 
Rint » 1/eE and according to (2.19) we see that 

ll(r, R) -+0, R' > 1 I eE. 

One can also utilize the more general conditions for R 
from expression (2.23). 

Let us introduce the logarithmic variable ~ = ln r-2 • 

The quantity 

X = 4n j ll'R'dR 
6 " 

can be represented in the form 

' I 
x=-e Jasrp(s). (2.26) 

3:rt 0 

To first order in e 2 the function cp(~) is identical to unity. 
According to Eq. (2.16) the dielectric constant has the 

form 

e = 1 - y (In eE). (2.27) 

Expression (2.27) determines the polarizability in an 
external field to all orders in e2 • It is necessary, how­
ever, to remember that (2.27) has been derived in the 
logarithmic approximation. Therefore this expression 
becomes incorrect in regions where 1- x ~ e2 • 

3. THE ELECTRIC FIELD AT SMALL DISTANCES 
FROM A CHARGE 

3.1. Distortion of the Coulomb Field at Small Distances 

The expression derived above for the dielectric con­
stant immediately enables us to solve the problem of 
the distribution of the charge density near an arbitrarily 
small nucleus. Let us represent the electric field at the 
point r in the form 

eE = Q(r) lr'. 

Then Q(r) is the charge inside a sphere of radius r, 
multiplied by e. Let the observable charge of the 
nucleus, i.e., the charge at large distances, be equal to 
Ze; or alternatively 

Q(r) -+Ze', r-+oo. (3.1) 

The screening charge due to vacuum polarization de­
creases at small distances, and Q(r) >> Ze2 • We shall 
be interested in those distances where Q(r) » 1. Then 
the characteristic length R~ = 1/eE satisfies the local­
izability condition (2. 9): 

Rc'lr'=11Q(r)«f;1 (3.2) 

and the variation of the field over the distance Rc can 

be neglected. The problem reduces to the problem of a 
homogeneous field. 

From formula (2.27) for the dielectric constant E in a 
homogeneous field, we obtain the following result in the 
region where there are no external charges (outside the 
nucleus): 

D=eE=E[1-x(IneE)] =C,Ir'. (3.3) 

The constant C1 is determined from condition (3.1) for 
r ~ oo, where x ~ 0. As a result we find 

eE = Ze' I r' [ 1 - X ( In eE) ], (3.4) 

where x(O is given by formula (2.26) and lneE = ~ 
+ ln Q(~). Formula (3.4) determines the field outside the 
nucleus. Let us assume for simplicity that the nucleus 
has its charge distributed over the surface of a sphere 
of radius Ro. Then we have E = 0 for r < Ro, that is, the 
solution is determined for all values of r. The true 
charge of the nucleus, Z0 , is related to the observable 
charge Z by the equation 

Z=Z,[1-x(In ;~,')]. (3.5) 

Formulas (3.4) and (3.5) cease to be correct for small 
values of Ro, when (1- x(lnZoe2 R;;2)]/e2 approaches 
unity. The case of arbitrarily small values of Ro is con­
sidered in the next section. 

From Eqs. (2.26) and (3.5) we obtain the result 
e' Z e' , 

1--ln-'->e' (3.5) 
3n R,' ' 

for values of ~ satisfying the condition 

( e' Z,e') 
Z, 1-~ln R,' =Z. 

The following relation is obtained for the determination 
of Q(r): 

Ze' 
Q(s)= 1-x(s+InQ(s)) (3.6) 

At large values of r 
· e' Q(r) 

x(lneE)-+-In--
3n r' 

and Eq. (3.4) gives 

Ze' [ e' Q(.r)] _, Ze' ( e' Q(.r)) (3.4') 
eE=--;::- 1-3;-ln--;:;:- ~T 1+s;;-ln~, 

This expression differs from the well-known formula 
describing the distortion of the Coulomb interactionC17 ' 18J 
only by the appearance of Q(r) inside the logarithm in­
stead of unity. One can obtain a simple interpolation 
formula by replacing Q(r) inside the logarithm sign by 
1 + Q(r). Then expression (3.4') will have the correct 
limit for Q « 1. For real nuclei having a radius 
Ro = r 0A11\ Q(r)::::! Ze 2 , and formula (3.4') with Q(r) re­
placed by 1 + Q(r) differs from the well-known result 
noticeably only for Z > 137. 

3.2. The Distribution of the Polarization Charge at 
Ultra- small Distances and a Possible Mechanism 
for the Elimination of Divergences 

By ultra- small distances we mean those distances at 
which [1- x(~ + ln(1 + Q(0])]/e2 -;; 1. In this region 
the charge distribution is determined by the properties 
of electrodynamics at small distances, and in order to 
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determine Q(O it is necessary to make a conjecture 
about the nature of the function x (~). Let us introduce 
the quantity 

e'(~) = e' I [1- x(s) ]. 

This quantity deter~nl~ the electrons' interaction 
over distances r = e ~ in the absence of an external 
field. By virtue of the renormalizability of quantum 
electrodynamics,C14 ' 15J the function cp(O, which appears 
in the expression for x (see formula (2.26)), only de­
pends on ~ through its dependence on the quantity e 2(~). 
We note that e 2(0 differs from the "invariant charge" 
einv (ln k2 ) which is usually introduced in quantum elec­
trodynamics. The two expressions coincide for 1 - x 
» e 2 • We have the following expression for Q(~) 

Q(£)=Z 1 _~·(1'J) Ze'(11 ), 11 =6+ln(1+Q). (3.7), 

Let us consider the two possibilities: 1) e2(~) tends 
to infinity as ~ approaches a certain value~ 1, and 
2) e 2(0- e~ as ~ - oo, The first possibility corre­
sponds to the case of "zero- charge" (i.e., the vanishing 
of the renormalized charge in field theories with a point 
interaction), a situation which has been discussed in a 
number of articlesP9 ' 20J If instead of starting from the 
observable charge e we had started from the bare 
charge eo, then in case 1) the observable charge would 
vanish for any finite value of eo. This possibility means 
that quantum electrodynamics is not a logically closed 
theory, and in order to eliminate the infinity in e 2( 0 
which appears as ~ - ~ 1 nonelectrodynamic interactions 
must be included (for example, the gravitational inter­
action). The second possibility- corresponding to a 
finite bare charge-implies that the apparent divergence 
of the charge is the result of an incorrect use of the 
formula x(O = e 2~/31T for e 2(;} ~ 1, and it also indi­
cates that the intuitive arguments which were made in 
favor of "zero- charge" are not confirmed. 

Let us consider possibility 1). Let us assume for 
simplicity that e2(~) has a pole at ~ = ~ 1 : 

e' (s) = a I (6, - 6), a > 0. (3.8) 

Substitution into (3.4) gives 

[ Q(r)] _, 
Q(r') = Za 1;, -In-;:;- . (3.9) 

From Eq. (3.9) we find 
1 Za 

s=ln-= ---lnQ+s •. 
r' Q 

(3.9') 

It follows from this expression that, as a function of Q 
r 2 has a minimum at Q = Qm = Za. The minimum value 
is determined by the relation 

;, -ln Q~ = 1, { d~ ) =- oo. (3.10) 
rm dr r=rm 

This relation only determines the order of magnitude of 
rm. Thus, to within the accuracy of our determination 
of x, the quantity Q inside the logarithm sign can be 
multiplied by a quantity ~ 1, which is a functional of E. 

Thus, Eq. (3.9) has a solution only for r > rm. If the 
radius Roof the nucleus is greater than rm, then we 
have E = 0 for r < Ro, and the solution is determined 
from Eq. (3.9) for r > Ro. 

Let us consider the case when Ro < rm. As before 
we have E = 0 for r < Ro. For Ro < r < r m the field E 

is determined by expression (3.3) with a constant c1 
which can easily be expressed in terms of the true 
charge of the nucleus 

Z,e' e' (ln eE) Z,e' 
eE=- , eE,=·-. 

r' e' (ln eE,) R,' 
(3.11) 

The quantity Q(r) is determined by the relation 

Q(r')=Z,e' ln(Q,fR,')-6, . (3.12) 
· ln(Q/r')- (;, 

A solution is possible for r < r m only under the condi­
tions 

Q Q 
ln R,' > £,, ln--;;: > (;,. 

The solution (3.12) is shown in the accompanying figure 
(r < rm)· In order to relate Z0 to Z, it is necessary to 
equate the solution (3.12) and the solution (3.9) at the 
point rm. However, to within the accuracy of our calcu­
lation of x, this matching C<!-n be achieved only in order 
of magnitude, because for r = rm we have 1- X ~ e2 • 

Therefore we obtain 

Z '{ Z,e' ) ,e ln R,' - !;, = yZa, (3.13) 

where y denotes a number of the order of unity. For 
r > rm the field E and the quantity Q are determined as 
usual by specifying the observable charge Z. The dis­
continuous behavior of the derivative dQ/dr2 is a conse­
quence of our approximate representation of the char­
acteristic length by the formula R~ = 1/eE. It is not 
difficult to verify that the more exact criterion 

,, 
R) eEdl-1 

which follows from (2.23), leads to a smoothing- out of 
the curve Q(r) over an interval or~ Rc ~ Q-112 • An 
important result follows from formula (3.13): As Ro 
- 0 the true charge Z0 not only does not tend to infinity, 
but it becomes arbitrarily smaller than the observable 
charge. (For Zoe2 .;::;_ 1 one should replace Zoe2 in Eq. 
( 3 .13) by 1 + Zoe2 .) Thus, the localizability of the polar­
ization operator eliminates the divergence in the vac­
uum polarization near an external, fixed, point charge 
even under the assumption that e 2 ( 0 tends to infinity. 

Now let us consider the second possibility, when 
e 2 ( ~) tends to a finite limit as ~ - oo. In this case the 
relation between the charge Z0 and the charge Z is de­
termined from Eq. (3.7): 

Z,e' = Ze' ( ln Z,e'R, -'). (3. 7') 

Finally, let us make a few remarks about a possible 
mechanism for the elimination of the divergence in e\ O· 
The possibility of a finite limit for e 2 ( ~) has been dis­
cussed in detail in a number of articlesP6 ' 21 ' 22J Such a 
possibility is still attractive in one respect: Here the 
entire mass of the electron is electromagnetic in 
origin. [23 ] In fact, the following relation existsC24 J for 

Qlr') 
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the mass contained inside a sphere of radius r or, 
alternatively, the mass inside the region~ > ln r-2 : 

1 dm(6) 3 , 
~~=--;;;e (6) 

or 
m(s) 3 s~ ' In--=-- e (!=,)d!',. 

m 4:n 0 

If e2(~)- e~ as~- oo, then m(oo)- 0 or m(r2)- 0 as 
r- 0, that is, the entire mass is electrodynamic. 

In the case when e 2 ( 0 is finite, the quantity x defined 
in Eq. (2.26), 

' ~ 
x(s)=-3e Jdsq>(q(6)), 

:It 0 

must also tend to a finite limit. This implies that the 
function cp(q) must vanish as ~ - oo or cp(qo) = 0, where 
qo = e~/37T. However, by starting from the expansion of 
cp(q) for small q it has not been possible to prove the 
existence of a zero for q.>(q).c 22 J The localizability of the 
polarization operator and the finiteness of the vacuum 
polarization, which have been proved above for an ex­
ternal, fixed, point charge, suggest that it may be possi­
ble to find a new method of grouping the diagrams, thus 
taking the localizability of the Green's functions in the 
presence of a strong field into account; this new method 
will lead to expressions similar to the ones cited above. 
In this connection an expression may be obtained for 
.p(q) which is valid not only for small q, and from this 
expression it will follow that cp(q0) = 0. 

The author expresses his gratitude to V. N. Gribov, 
A. A. Migdal, L. B. Okun', and A. M. Polyakov for inter­
esting discussions, and also to his colleagues N. A. · 
Kirichenko, 0. A. Markin, and I. N. Mishustin for their 
help and interest in this work. 

APPENDIX 

A. The Connection Between the Dirac Equation and the 
Klein- Gordon- Fock Equation 

At large energies, when spin effects are unimportant, 
the solution of the Dirac equation in an external field 
can be expressed in terms of the solution of the Klein­
Gordon- Fock equation. For simplicity we shall confine 
our attention to the case of a spherically symmetric 
electric field. 

Let us write down the lj;-function of the Dirac equa­
tion in terms of two- component radial functions u(r) and 
v(r): 

1 { u,(r) } 
'¥ftm•=-;;-Q;lm v,(r) · 

From the Dirac equation we have 

u' + xr-'u- (e + 1- V)v = 0, 

v'- xr-'v+ (e-1- V)u = 0. 

By eliminating the function v(r) we find 

u"+ (u'+xu!r)V' +((e-V)'- 1 - x(x+1) ]u=O, 
e+1-V r' 

The analogous equation for v can be obtained by making 
the substitutions 

V-+-V, e-+-e, x-+-x. 

The substitution cp = u(E- V + 1r112 now givesC4 ' 5J 

q>"+{[ (e-V)'-1- x(x:1)] 

3 (V')' V"- 2xV'/r 
- 4 (e- V + 1)'- 2(e- V + 1)} q> = O. 

In the case E ~ V » 1, K » 1 which we are interested 
in, the last two terms inside the curly brackets can be 
neglected, and the equation for cp goes over into the 
Klein- Gordon- Fock equation. In addition, u ~ v, and 
therefore 

u = v = (e- V)Y•cp. 

If 'II is normalized to unity, that is -J (u' + v')dr = 1, 
e-

then the normalization of cp corresponds to a single 
boson. 

B. The Green's Function and the Polarization Operator 
in the Coordinate Representation 

For x2 « 1 the Green's function of a free, spin-zero 
particle has the form 

e'•" d'p 1 1 
G'"(x)= J----=----p' (at)' 4:n'i x' · 

in the coordinate representation. For spin-1/2 particles 
the Green's function is given by 

p d'p aG<o> ; 
G<Y•'(x)= J-e'•"--= -iy.--=--. 

p' (2:n). ax. 2:n'x' 

In the mixed representation, we obtain the following ex­
pression, which was utilized above: 

G''' (R, w) = f G<o> (R, t) e'•'dt = - 4:Re'l•l•. 

To first order in e2 the polarization operator for spin-
1/2 particles is given by 

n ( '/o) ( ) - 4 's y,;y.;; - 4e' 2x.x. - x'6 •• 
ww x- ne p~-~ x8 • 

It is not difficult to verify that, in contrast to the mo­
mentum representation, n~~'(x) has a gauge-invariant 
form, that is, 

In the case of spin-zero particles the vertices are 
2p/l - k/l and 2p 11 - k 11 , and by Fourier transformation 

of n :~(k) one can easily obtain 

e' 2x.x - x'{j 
ll~~' = 2{G10' (x)o.a,G 10'(x)- a.G<o> (x)a,G<o> (x) }4:ne' = , • , •• , 

:It X 

that is, we again obtain a gauge-invariant expression, 
which differs from the polarization operator for spin-
1/2 particles by a multiplicative factor of 4. In the 
mixed representation we obtain 

<o> e' (t' + R') e'"' e' 1 n .. =-J dt=-- w-+0 
n' (t+R)'(t-R)' 4n'R'' ' 

which agrees with the expression obtained in the text. 

C. The Green's Function in a Homogeneous Electric 
Field 

Let us consider the Green's function of the equation 
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~'¥ + (w- eEz)''l" = 0 

in the two limiting cases: R2 eE » 1 and R2 eE « 1 
(where R = 1 r- r' 1). After making the substitution 

, \' d'x 1xoG ( ') G(r, r) = ~ (2n)' e ,. z, z . 

where p = { x- x', y- y'} and changing the variable 
z tot= (eE) 112z- w/(eE) 1 /2, the equation for the Green's 
function takes the form of the differential equation for 
parabolic cylinder functions: 

d'G. x' ---;uz + (t'- A.)G. = 6(t- t'), A.= --;e· (A.1) 

The properties of the correspondin~homogeneous 
equation are investigated in detail in[25 • The solution 
of Eq. (A.1) can be written down in terms of the two 
independent solutions of the homogeneous equation: 

where 
t>= 1/2(t + t') ± 1/dt- t'l, 
< 

j,,,= (1=t=i)'h±""D-'/."'"'''((1=t=i)t) ~ 
~ t-'h exp{± 1M(t'-J,1nt)}, t > P·l, 

and Dp(z) is the parabolic cylinder function. Thus, 
1 m 

G(r,r') = -J dxlo(xp)xG.(z,z') 
2n o 

(A.2) 

2'1 m 

= ~J dxlo(xp)xe""'D-~.,_,,,,[(1- i)t>]D-'h+"'''[(1 + i)t<], 
4mE" 0 

where Jo is thl Bessel function. Due to the presence of 
the factor e7TA 4 in the last integral, large values of A 
are important in the functions D. In addition, we shall 
be interested in the region e » 1. (For R2eE >> 1, e 
is very large compared to unity since z ~ R in Eq. 
(A.1), but in the case when R2eE « 1, e is still large 
due to the additive term w2/eE). 

Thus, we need to know the asymptotic form of the 
parabolic cylinder function D (z) for IPI » 1 and 
lzl » 1. In our case this asfmptotic behavior is des­
cribed by the following expression:C 25 J 

( iA. ) ±"''' e'1''t D_., . ((1 ± i)t) = 2-'1.±"1' +- e'1''M''I'ilf'-:-::---:--:-c-
"±''l' - 4 (t'- A.).,, ' 

£ =•!_,(t'- A.)'/,- ~ln [t +(t'- A.)V•]' 
2 4 A. 

By substituting this asymptotic expression into Eq. 
(A.2), we obtain the following result for GK(t, t'): 

G (t t') = _ 1 exp {i(s (t>)- S(t<))} (eE) -•;, 
• ' 2i (t>'- A.) 'l•(t<'- A.).,, . 

With the aid of the mean-value theorem we obtain 
G( ') iexp{i(eEt,'-x')'hlz-z'l} 

• z.z =-2i (t'eE- x') ''•(t"eE- x') ''•; 

t1 E [b; t<J, (eE) Y•t, = eEz,- (tl = CeER- w, C ~ 1 

or 
. ') _ exp {iiCR'Ee- wRI} 

G{r,r -- 4nR 

both for R2eE « 1 and for R2eE » 1, which therefore 
confirms the localizability property of Gin a strong 
field-the property which has been utilized in the main 
text of this article. 
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