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The probability f, of the Mi:issbauer effect in metallic tin is investigated at pressures ranging from 0 to 110 
kbar. A discontinuity of the probability f is observed in the region of the first-order phase transition at 100 
kbar. The discontinuity of f is compared (by means of the Debye approximation) with the known value of 
the phase-transition heat. The dependence of f on pressure up to the phase-transition point is discussed 
within the framework of the quasiharmonic model of a solid with allowance for the volume dependence of 
the Gruneisen constant y. The volume dependence of y is determined from the experimental data. In the 
immediate neighborhood of the phase transition, y:::::O; this suggests the presence in /3-Sn of anomalous 
lattice modes whose frequency drops with pressure. On basis of the results some ideas are considered, 
wherein the phase transition under pressure is ascribed to peculiarities of the dynamics of the /3-Sn lattice. 

1. INTRODUCTION 

THE properties of metallic tin (j3-Sn) under pressure 
have been investigated sufficiently well. The compres
sibility of j3-Sn in a wide pressure interval was inves
tigated by BridgmanP,2 l. The PT phase diagram of tin 
was established in main outline by investigations of the 
melting curve of tinf3 l under pressure and subsequent 
measurements of the electric resistancef 4 l as well as 
experiments by the method of differential thermal 
analysisf 5l, and a new crystalline modification Sn II 
was observed. The phase-transition point at room tem
perature is 100 ± 6 kbar (in the 1968 pressure scalef 6l). 
X-ray diffraction investigations of j3-Sn under pressure 
were also mader7- 91. These have established the phase 
diagram, the heat of the j3-Sn - Sn II transition, and 
the structure of the new phase of tin. It turned out that 
Sn II has a simple tetragonal body-centered lattice 
(one atom per unit cell) with parameters a = 3. 70 A, 
c = 3.37 A, and c/a = 0.91. The phase p-Sn (Sn I) has, 
as is well known[lol, a tetragonal body-centered lattice 
with two atoms per unit cell; its parameters are 
a= 5.83 A, c = 3.18 A, and c/a;;:;; 0.55. 

The present work was undertaken for the purpose of 
studying the influence of pressure on the probability of 
the Mossbauer effect in tin up to pressures at which 
the phase Sn II already exists. 

2. THEORY 

A detailed quantum-mechanical study of the Moss
bauer effect in the harmonic approximation was re
ported in a number of papers, for examplef 11 ' 12 l. In the 
case of a regular monatomic crystal with several 
atoms per unit cell, the fraction f of recoilless radia
tion is expressed in the following manner: 

j = e-z, 

z-R u ~Jd'tlqv(f,all' -
- (2n)'~ hw(f,a) [2n(f,a)+1] 

(1) 

(2) 

(the notation here is the same as inr 11 l). A theoretical 
investigation of the influence of pressure on the proba
bility f was made in two studiesr 13 • 14 l. The Debye ap
proximation was used in the first, and a more general 
case was considered in the second. In both papers, a 
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quasiharmonic model of a solid was used[lsJ, based on 
the harmonic model, as well as the assumption that the 
frequencies of the normal oscillations vary with the 
lattice parameters. The latter makes it possible to take 
into account the anharmonicity of the thermal oscilla
tions of the atoms in the lattice and leads to the well 
knownf 16l Gruneisen parameter. Using an expression 
given in fl 7 l for the free energy of a solid in the har
monic approximation, we can obtain the Gruneisen 
formula (4) which will be used subsequently. 

It is known that the volume coefficient of thermal 
expansion j3 is expressed in terms of the fre.e energy 
F in the following mannerfl7l: {3 = -xa 2 F/aTo V, where 
X is the isothermal compressibility, while T and V 
are the temperature and the volume. This yields for 
j3 the expression 

Here N is the number of atoms in the crystal, V is 
the volume of the crystal, E a is the energy of the a-th 
normal lattice vibration, and 

y.~ -din w./dln V. (3) 

The quantity Ya is a measure characterizing the influ
ence of the change of volume on the frequency wa (for 
a harmonic oscillator, Ya = 0 and thus, Ya is a certain 
measure of the anharmonicity of a-th normal vibration 
of the lattice). Further, following Gruneisen r 161, we 
can assume that all Ya are equal to one another, and 
take Ya = y outside the summation sign. Then, 
recognizing that aEa/oT is the Einstein specific 
heatr 19 l ca of mode a, we have 

~ = XY ~ Ca = xyC, 
v~ v (4) 

where Cv is the specific heat of the crystal at constant 
volume. From (4) we can calculate the experimental 
Gruneisen parameter y, if all the remaining quantities 
in this formula are known from experiment. If we now 
write the expression for j3 in the form 

X \"1 xC, ( ~ )-• ~ B =.-./...J Va.Ca. =- i.. Ca. ~ '\'a.Ca, v v . 

then we see that 
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'I= ( ,Eco) -i.E \'aCo, (5) 

i.e., the Gruneisen parameter can be regarded as the 
mean value of all the individual Ya with "weights" 
ca. At high temperatures, when the law of equiparti
tion of the thermal energy over all degrees of freedom 
of the crystal is valid, all the ca are equal and 

'i = 3~l:,v., (6) 

i.e., it is simply the average of y over all the lattice 
modes. It is important that formulas (5) and (6) intro
duce the parameter y without the assumption that all 
the Ya are equal to one another and to y. 

In the analysis of the influence of the pressure on 
the Mossbauer-effect probabilityf 13 ' 14 l, the Gruneisen 
approximation was actually used as a certain approxi
mation to reality in order to take into account in the 
theory the change of the frequencies of the normal 
vibrations with pressure. It was assumed that all 
Ya = y = const, and then it follows from (3) that when 
the volume decreases from V0 to V any frequency wo 
of the phonon spectrum becomes equal to 

w = w,(V IV,)-', (7) 

i.e., it increases with pressure. Since y can be calcu
lated by the Gruneisen formula (4), it becomes possible 
to estimate the probability f at different values of v 
from the known value f0 at atmospheric pressure. 
Expanding in (2) the quantity [2n + 1] = coth (nw/2kT) 
in a series r2oJ in fiw/ 2kT, we obtain for T > ® an 
approximate expression for f (with an error not 
larger than 1%) 

where zl is given by 

Z, = 2RkTii-'( w-'). 

Here ( w-2 ), according tof 11l, is averaged over all 
lattice vibration modes. Finally, using (7), we obtain 

Z,(V) = (V/V,)''Z,(V,). 

Formula (8) is the basis for the discussion of the ex
perimental results obtained under pressure. 

3. PROCEDURE AND RESULTS 

(8) 

As follows from an analysis (see [211) of the charac
teristics of Mossbauer spectra in absorption experi
ments, the area under the resonant Mossbauer curve 
is directly proportional to the value of f for the Moss
bauer source and does not depend on the parasitic 
vibrations. Therefore, in the present experiments, a 
{3-Sn source (foil 20 or 65 !l thick) was placed in the 
pressure chamber, and the influence of the pressure 
on f was investigated by the relative method of com
paring the areas under the experimental curves at dif
ferent pressures, with the area at atmospheric pres
sure. Control experiments without pressure yielded 
the corrections that must be introduced into the values 
of f to allow for certain changes in the geometry of 
the experiment and the density of the materials with 
increasing pressure, and also to take into account the 
change of the self-absorption in the source as the re-

sult of the variation of f with pressure. 
Pressure was produced with a flat anvil of the 

Bridgman typef 2 l, with a boron pellet ensuring hydro
static support for the working plungers, similar to that 
realized inr221 • This has made it possible to obtain a 
chamber with a large working volume and rather uni
form pressure, producing no changes whatever in the 
shape of the investigated sample in the entire interval 
0 - 110 kbar. The chamber was calibrated beforehand 
against the jumps of the electric resistance of standard 
substances during the phase transitions [GJ and the 
pressure in the chamber was monitored d~ring the 
course of the experiments against the electric resist
ance of Bi or {3-Sn f4l, 

The Mossbauer spectra were plotted with a setup 
containing an electrodynamic vibrator in the constant
velocity mode. The resonance spectrum consisted of 
a single line at all pressures. The experimental data 
were reduced with electronic computer by least squares 
relative to a single Lorentz curve, the result being the 
ratios Sp/So of the areas under the experimental 
spectra. These results, the summary correction D., 
and the final values of fp/fo as functions of the pres
sure P are listed in the table. The errors in the values 
of the areas S, resulting from certain differences be
tween the experimental resonance line and the Lorentz 
line, turned out to be negligible because the relative 
quantities Sp/S0 were used. 

When the pressure was removed, the probability of 
the effect resumed its initial value within ±10%. The 
source and absorber temperature in the experiments 
was 18 ± 2°C. 

4. DISCUSSION OF RESULTS 

From the known dependence of fp/f 0 on the pressure, 
it is possible to obta.in the absolute values of fp if one 
uses for fo the prevwusly measured value. According 
tof 23 l, f0 = 0.046 ± 0.010 at T = 291°K. The values of 
fp at different pressures are given in the table. Certain 
deviations from the earlier dataf 24l are connected 
mainly with the use of different values of f0 , Let us 
examine the results in light of the theory developed 
above. Assuming initially that the Debye approxima
tion. is valid for tin r25l, we estimate from fp the ef
fect! ve De bye temperature ® at different pressures. 
Since the value of ® at P = 1 atm is ~130 - 140°K it 
is permissible to use at room temperatures the ap~ 
proximate expressionfl21 for f in the Debye model: 

! = e-•, z _ 6RT + R 
- k8' GkT 

(R is the recoil energy of the free tin nucleus and k 
is Boltzmann's constant). The effective Debye temper
ature ® determined from this, as a function of the 
pressure, is shown in Fig. 1. Starting with the point 

p 

1 atm I 0 I 0.046 
42 kbar 1.69±0.06 9 1.84±0.06 0.085±0.003 
79 » 1.96±0.07 15 2.26±0.08 0.104±0.004 
96 » 1.98±0.10 18 2.33±0.12 0.107±0.006 

100 » 1.47±0.12 18 1.75±0.15 0.081 ±0.007 
105 » 1.58±0.12 18 .1.88±0.15 0.087 ±0.007 
110 » 1.68±0.12 18 2.00±0.15 0.092±0.007 
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FIG. I. Effective Debye tem
perature e as a function of the 
pressure (circles); the diamond 
represents the value of e for the 
Sn II phase, calculated from the 
fl-Sn-Sn II transition. 
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FIG. 2. Probability of the 
Moss bauer effect fp in fl-Sn as a func
tion of the pressure: 1-theory, form
ula (8); 2-experiment. 
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100 kbar, e already assumes the values for the Sn II 
phase. These Mossbauer-effect results can be com
pared with the thermodynamic data. According tof26J, 
the ratio of the Debye temperatures of two phases at 
the transition point is ®I/ en= exp ( L/3BT), where L 
is the heat of transition and B is the gas constant. 
Assuming for e 1 the value of e at 96 kbar, we obtain 
from the knownf9 l value L = 225 ± 45 cal/ g-at the 
value of e II near the transition point. This value of 
®II, with the spread resulting from the inaccuracy in 
the determination of L, is shown in Fig. 1. We see 
that the agreement between the presented data is good. 
We note that these data are the results of two independ
ent experiments treated in the Debye approximation. 

We consider now the results of the influence of 
pressure on f in the interval 0 - 96 kbar, without 
representing the phonon spectrum with the aid of a 
model. To this end, we use formula (8), in which we 
put y = 2.22 r27 l. We can then estimate from the known 
function V = V( p) for tin the predicted course of f as 
a function of P in j3-Sn. It is shown in Fig. 2 together 
with the experimental values of fp· 

The discrepancy between theory and experiment be
comes quite appreciable when P is increased. The 
reason lies apparently in the fact that the employed 
theoryf14 l assumes that y is independent of the pres
sure. According to experiment r28 l, however, y varies 
with pressure. Then, assuming that y = y ( V) and 
modifying correspondingly the conclusions of the 
theory, let us discuss the results of our experiments 
in terms of a variable Gruneisen parameter. We obtain 
in place of (7) 

{ vJ 'Y(v) ) 
w = Woexp\- -u-dv , (9) 

v, 

and in place of (8) 

r· "s'Y(v) ] Z,(V) = Zt(V,)exp~ 2 -v-dv . (10) 
v, 

As seen from (10), to calculate Z1(V) it is neces
sary to know the function y = y ( V). It is known from 
experiments f 2 J only up to 12 kbar. Therefore, instead 
of calculating Z1 = Z1 ( V) from these data, we use our 

l 
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FIG. 3. Variation of the Gruneisen parameter 'Y with decreasing 
volume. 0, D-Mossbauer-effect data, .6-data obtained from (4) and 
from the dependence of the bulk expansion coefficient of fl-Sn on the 
pressure. 

experiments and expression (10) to determine the 
parameter y as a function of the pressure (volume). 
We assume here that y varies linearly with V in the 
intervals between the points at which f is measured. 
This is reasonable, if account is taken of the estimates 
of the course of y = y(V) given inf29 ' 28 l. We can then 
write for each interval 

'Y(V) =a+b(1-V/V,), (11) 

where a = y at P equal to the initial pressure in the 
corresponding interval, and b is a constant to be de
termined. We can then obtain an analytic expression 
for the integral in (10), substitute this expression in 
(10), and determine b from the experimentally known 
Z(V) for each of the intervals 0 - 42, 42- 79, and 
79 - 96 kbar. The results of this calculation of 
y = y ( V) are shown in Fig. 3 (circles). The same 
figure shows a continuous line which is the result of 
the calculation for the entire interval 0 - 96 kbar, 
assuming the linear dependence (11) to be valid in the 
entire interval. We see that in both cases, taking into 
account the measurement errors, the results can be 
regarded to be the same and that the last method of 
calculating y = y ( V) can be used henceforth. We use 
this method to estimate the possible deviations of y 
from the straight line as a result of the presence of 
uncertainties in the initial value f0 = 0.046 ± 0.010 and 
as a result of the experimental errors in the determina
tion of fp from the pressure. These deviations lie 
within the area bounded by the dashed lines. Figure 3 
shows also the plot of y = y(V) obtained on the basis 
of formula (4) and of f3 = {3( V) calculated from meas
urements of the compressibility of j3-Sn at different 
temperatures up to 12 kbar(2l, The agreement between 
the two experiments is quite adequate. 

We have used so far the assumption that all Ya = y 
= const. In real bodies, however, this may not hold rsoJ. 
In this case the mean value y is determined from 
formula (6), and since y = y at T > e, it is legitimate 
to assume that the dependence of y on P will be simi
lar to y = y(P). It is seen from Fig. 3 that at V/Vo 
= 0.872 ( P = 96 kbar ), in the immediate vicinity of the 
Sn I - Sn II phase transition, the value of y is close to 
zero. Assuming that an increase of the elastic con
stants with pressuref31J constitutes the normal behav
ior, then the tendency )I - 0 may indicate the presence 
of certain frequencies Wf3 with Yj3 < 0 in the phonon 
spectrum of j3-Sn; these frequencies, consequently, de-
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FIG: 4. Components ')'1 and "Yu of the Gruneisen-parameter tensor 
as functwns of the temperature (0 'K). Their values at room temperature 
are 2.16 and 2.68, respectively. 

crease with pressure. The presence of such anomalous 
frequencies in the phonon spectrum of {3-Sn even at at
mospheric pressure is indicated by data on the depend
ence of the coefficients of linear expansion of {3-Sn 
single crystals on the temperature[32l in the interval 
4-100oK. The components y 11 and y 1 (parallel and 
perpendicular to the c axis) of the Gruneisen-parame
ter tensorr331 , calculated on their basis, are shown in 
Fig. 4. We see that y 1 decreases at T ~ 10°K, when 
the bulk of the high-frequency lattice modes has al
ready been "quenched" and the relative fraction of the 
anomalous low-lying frequencies of the phonon spec
trum has increased (formula (5)). At T ~ 4 oK the 
anomalous modes also begin to be "quenched" and y 1 
increases. 

The facts listed above have a direct bearing on the 
ideas advanced in [34 241 , where the Sn I - Sn II phase 
transition was discussed from the point of view of the 
dynamics of the {3-Sn lattice. It was indicated there 
that certain soft lattice modes of {3-Sn can exhibit an 
instability that increases with pressure and is manifest 
in a lowering of their frequencies with increasing 
pressure. It was assumed that this instability might 
be the cause of the phase transition. A detailed mecha
nism of the Sn I - Sn II transition, based on the as
sumption that a decisive role in the instability of the 
{3-Sn lattice is played by two low-frequency transverse 
optical moments with wave vectors along the [100] 
directions, with values zero and 21r/a and with dis
placements parallel to the c axis, has also been con
sidered. Under the condition that the maximum dis
placements of the atoms in these unstable modes reach 
co/8 and coo/4, respectively, with increasing pressure 
(Co = 3.18 A), it was possible to obtain from {3-Sn a 
structure similar to Sn II (ratio c/a = 0.83). 

Our experiments indeed point to the presence in 
{3-Sn of certain lattice modes whose frequencies de
crease with pressure. It is also seen from the results 
of the experiments that this instability progresses when 
the phase transition is approached. 

According tor36l, such a progressive decrease of the 
frequencies of a number of lattice modes can lead to a 
phase transition since, starting with a certain pressure 
(transition point), the thermodynamic potential of the 
initial phase may be so increased by the presence of 
the unstable modes, that this phase turns out to be less 
favored in comparison with the other possible crystal
line modification. 

Furthermore, a comparison of the data on the de-

pendence of y 1 and y 11 on T (Fig. 4) and the data on 
the anisotropy of the Mossbauer effect in {3-Sn single 
crystals at different temperaturesr37l (all at atmos
pheric pressure) does not contradict the idea of the 
instability of low-lying transverse optical (or acoustic) 
modes with polarization vectors parallel to the c axis 
since the anomaly in the temperature behavior of y 1 ' 
corresponds to a decreased probability of the effect in 
the direction of the c axis, and since the anisotropy of 
the Mossbauer effect vanishes at temperatures close 
to absolute zero, when the low-lying modes begin to 
be "quenched". 

No definite conclusion can be drawn as yet from the 
existing experiments concerning the role of the two 
particular optical modes mentioned above and concern
ing the values of their amplitudes. 

5. CONCLUSIONS 

1. The employed theory, which takes into account 
the influence of the pressure on the probability of the 
Mossbauer effect, describes satisfactorily the results 
of experiments on {3-Sn only when account is taken of 
the dependence of the Gruneisen parameter y on the 
pressure. 

2. An investigation of the change (jump) of the 
Mossbauer-effect probability in a first-order phase 
transition makes it possible to estimate the heat of the 
phase transition, provided the Debye approximation 
can be used for both phases. 

3. Measurement of the probability of the Mossbauer 
effect under pressure can be used to determine the de
pendence of the Gruneisen parameter on the volume· 
this is important for problems connected with the e~ua
tion of state of solids at high pressures. 

4. The results of the experiments confirm the 
previously advanced hypothesis that the instability of 
certain low-lying lattice modes of {3-Sn increases with 
increasing pressure. This instability may be the cause 
of the phase transition in tin under pressure. 
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