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The Fokker-Planck equation for scattering of channeled ions by electrons or thermal vibrations of lattice atoms is derived. 
Solutions of the equations for a number of cases of interest are obtained. An analysis of dechanneling experiments is carried 
out. 

1. INTRODUCTION 

THE channeling effect is finding increasing applica­
tions in solid state, nuclear, and atomic physics P,2l. 
The classical theory of channeling was developed by 
Lindhardl3 l and by Erginsoy et al.l 4 l. Kagan and 
Kononets rsJ used the density-matrix formalism to de­
scribe the channeling effect and, in particular, to eluci­
date the quantum and classical aspects of this phenom­
enon. Kalashnikov, Ryazanov, and ChukhnovskiirsJ in­
vestigated the spatial regrouping of particles in chan­
neling. It follows from the listed references that chan­
neled ions do not pass close to the atomic nuclei. 
Therefore the cross sections of the different physical 
reactions are significantly altered by channeling of the 
ions. Owing to the scattering of the ions by electrons, 
thermal vibrations, de"fects, etc., the transverse energy 
of the ion increases and the ion leaves the channel. 
Experiments have shown that the dechanneling is quite 
intense. For a large group of problems connected with 
the use of the channeling effect, it is necessary to know 
the rate of departure of the ions from the channel. The 
purpose of the present paper is to consider this prob­
lem. 

We shall consider mainly multiple scattering of 
heavy charged particles (protons, a particles, ions) 
by electrons and in part also by thermal vibrations of 
atoms. As is well known[7l, classical theory makes it 
possible in this case to explain all the experiments 
performed to date. We shall therefore use the classi­
cal description of the motion of particles in a crystal. 
We consider axial channeling. The distribution of the 
electron density in the channel is described on the 
basis of the Thomas-Fermi model of the atom and of 
the free-electron model. 

2. ION DECHANNELING IN THE THOMAS-FERMI 
MODEL 

Since the increment oE1 of the transverse energy 
is small in comparison with E 1 in Coulomb scattering 
described by the Rutherford formula, we shall use the 
Fokker-Planck formula to study the behavior of chan­
neled ions scattered by crystal atoms. We assume also 
that the crystal is thick enough to be able to average 
over all the impact parameters of the collision between 
the ion and a chain of atoms, or, in other words, to 
establish an equilibrium microcanonical distribution in 
the transverse planer4\ when the ion can be observed 
with equal probability at any point of the accessible 
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region U(r) :S E1, where E1 = Y2Mvi + U(r) is the 
total energy of transverse motion and U(r) is the 
potential energy of the ion in the field of the chain of 
atoms. The Fokker-Planck equation for the distribu­
tion function f(E, E1, x) takes the following form 
( E is the total energy of the ion and x is the depth of 
penetration): 

of iJ (( !1E"- > ) 1 iJ' (( !1E"-' > ) iJ (( !1E \ ) 
ox=- iJE"- !1x I +ZoE"-' ~ f -iJE ""b"/1 ' 

where the averaging ( ... ) is carried out over the 
accessible region. 

(1) 

Let us consider, for example, scattering by elec­
trons. Since E 1 = E e 2 + U( r) at small angles between 
the velocity v and the channel axis x, it follows that 

(2) 

In scattering through an angle t: we have 

cos B' = cos B cos e + sin e sin e cos rp, (3) 

where rp is the angle between the scattering plane and 
the plane passing through the directions of v and x; 
e' is the angle between the new position of the velocity 
vector v' and the x axis. This yields for small e and 

and 

(8')'- 8' = e'- 2Be cos rp 

!1E"- = E(e'- 2ee cos rp) 

!1E "-' = E'48'e2 cos' rp 

(4) 

(5) 
(6) 

accurate to quantities of order t: 2. Averaging over the 
probability of scattering along the path ~x: 

dW = 2ncr(e) sin edepl1x, 

where a ( t:) is the differential scattering cross section, 
we obtain, at a density p of the scattering centers 
(electrons), the average increment of the transverse 
energy per unit length 

!1E"- I !1x = E!1e' f.!1x (7) 

and the mean squared increment of the transverse 
energy 

or, after substituting the kinetic energy of the trans­
verse motion Ee 2 =E1 - U(r), 

!1E"-' I !1x = 2E(EL- U(r) )!1e' I !1x, (8) 

where 
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M = 2np~x J e'cr(e)sinede (9) 

is the mean squared scattering angle. 
Averaging over the admissible region (which is 

equivalent to averaging over a Ax containing ~1000 
atomic layers) is carried out by means of the formula 

1 ,, 
(~Ej_)= ( 2 2 J ~Ej_2nrdr (10) 

n ro - rt ) r 1 

and similarly for AE~ and AE, where r 0 = 11 1rNd, N 
is the density of the atoms, d is the distance between 
the atoms of the given chain, and r 1 is determined 
from the condition E1 = U(rl)- U(r 0), i.e., r1 is the 
distance of the shortest approach of the ion to the atom 
chain. It is seen from (7) and (8) that 

+< ~::'> = < ~~~j_[Ej_- U(r)]) . (11) 

From this we have at r 0 ->> r h when the dimension of 
the averaging region is constant, 

< ~Ej_) 1 a < Mj_') (12) 
M ~ 2aEj_ ~ . 

Thus, without taking into account the deceleration at 
ro >> rh the Fokker-Planck equation goes over into 
the diffusion equation 

(13) 

and a more general expression, when we cannot as­
sume that r 0 ->> r 1, is (it is derived in the Appendix): 

:: = 2S~Ej_) a;j_ ( S(Ej_) < ~::') a~J' (13,) 

where S(E1 ) is the area of the accessible region. 
For a standard Thomas-Fermi potentialf3 l 

Z,Z,e' ( 3a' ) 
U(r)=-d-!n 1+--;;:-

where a is the screening constant and Z1 and Z2 are 
the atomic numbers of the particle and of the lattice 
atom, we have 

E _ Z,Z,e' I 1 + 3a'lr,' 
j_ - -- n -:-c'--:o--.:':--'::­

d 1+3a'lr,' 

We shall henceforth replace E1 by the dimensionless 
transverse energy 

eJ_ = Ed(Z,Z,e')-' = 2Ej_(EijJ,'}-', 

where ljl1 is Lindhard's critical channeling angle. By 
using the mean squared scattering angle for scattering 
of fast ions by atomic electrons 

- m 
~"' = 2ME S,p~x, 

where Se is the decelerating ability of one atomic 
electron: 

S _ 4nZ,'e'L, 
e- mv2 ' 

2mv' 
L,=!n~1 -, 

(14) 

I is the average ionization potential, and the electron 
density p is given by 

d(rU') 
p = 4nZ,e ---;:a;:-' 

we obtain from (10) 

(15) 

(16) 

where 
A = 1 + 3a' I r,', B = Z,ne'NdL, IE, . 

F = 1- A-• exp (-ej_), 

'i=.!__[1+~( e1_( 1 -F) -1)] (17) 
A 2ej_ 1 -A + AF ' 

According to Lindhardf3l, the average change of the 
transverse energy (A~ 1 I Ax )th ( th stands for thermal) 
due to scattering by the vibrating atoms is 

<~) = BxF [F'(~ _1_)-( 1 -~)'( 2 ) 
M ,. 1 -A t- AF 3 + 1 - F A 3 +A ] • 

(18) 

where K = Z2p~ ( 3a2Let1 and p1 is the rms transverse 
displacement of the atom for thermal vibrations. 

We consider now the change of the transverse energy 
due to deceleration of the particles. Assuming that 

dE 
d;: = S,[ (1- a.)NZ, + a.p], (19) 

where a is the coefficient for the separation of the 
energy losses into losses due to short-range and long­
range collisions, and averaging over the accessible 
region, we obtain 

< ~ej_) M "Tx'"' dec = - -;;;-B¢,'e, { ( 1- a.)~ + a.cy}, (20) 

~ = 1- F(A- 1) [A -Jn(A -1) 
ej_(1-A +AF) 

-(F-'-1) (ej_ +InA)+ lnF]. (21) 

From (20) and (15) we find that the increase of the 
transverse energy (A~ 1 1 Ax) e exceeds its decrease 
due to deceleration, (A~ 1 I Ax) dec, when 

(22) 

It is obvious that the lower limit of the right-hand side 
is equal to two, since the upper limit of the curly 
bracket is unity, and A ~ 1. We see therefore that for 
fast ions, when Mlf!ilm S 2, the decrease of E1 due 
to deceleration can be neglected. In the opposite case, 
when the condition (22) is not satisfied, pulling of the 
atoms towards the channel axis is possible. 

Averaging (19) over the accessible region, we ob­
tain 

< ~E> M [ a.F] ~x =--;;;BE¢,' 1- a.+A . (23) 

We see that the Fokker-Planck equation (1) cannot be 
solved analytically with the obtained coefficients. We 
shall, however, make a number of estimates in Sec. 
4 on the basis of the Thomas-Fermi model of the atom. 

3. DECHANNELING OF IONS BY SCATTERING BY 
ELECTRONS 

When the ion beam is directed along the channel 
axis, most ions are localized in the central part of the 
channel. The electron density in the central part of the 
channel is produced in the case of metals by free 
electrons. As shown by Appleton et al.f4l, even in the 
case of silicon the electron density is due mainly to 
the four valence electrons and is homogeneous with 
high accuracy ( ~ 5-10% ). Moreover, the energy losses 
of the channeled ions are due mainly to deceleration by 
the free and valence electrons [4 • 81. It is therefore 
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reasonable to consider dechanneling of the ions as a 
result of the scattering by electrons at a constant 
electron density. In the case of scattering by electrons 
we obtain from (7) and (14) 

(24) 
D.x 2M dx 

From this we get in accordance with (8) 

~( D.E.J.') =_!!!:__dE ((E.J.- U(r))). 
2 D.x 2Mdx 

(25) 

The expression ( E 1 - U( r)) is obviously the average 
kinetic energy. If the potential is approximated by a 
square well, then (E1 - U(r)) ~ E1. 

In the calculation of (~E 1 / ~x)e in the free-electron 
model, it should be borne in mind that only short-range 
collisions contribute to ~E1 . Without taking into ac­
count the contribution of the internal electrons to ~ E 1 , 
we have here 

( D.E.J.) = __!!!__ 4nZ,e:Pv In 12mvvF I , 
D.x , M mv nwp 

where fiwp is the plasmon energy, pv = NZv, Zv is the 
number of valence electrons participating in the plasma 
oscillations, and VF is the Fermi velocity. 

Substituting (25) in (13), we obt"ain the diffusion 
equation 

of m dE o of 
-=----E.J.-, 
ox 2M dx oE.J. oE.1. 

(26) 

or in terms of the momentum defined by p~ /2M = E 1 , 

of m dE a ( of ) (27) 
a;;=;;-;;;- p.J.oPJ. PJ.apJ. · 

Finally, changing over from the particle coordinates to 
the particle energy with the aid of the relation 

Eo dE -1 

x = J (a;-) dE, 
E 

we obtain 
of m a ( of ) 

fiE= 4 P.1. opJ. PL aPJ. · (28) 

We seek a solution of this equation by separating the 
variables under the boundary condition F( E, Ecr) = 0, 
where E 1cr is Lindhard 's critical trans verse energy. 
This condition means that we neglect completely the 
flux of channeled ions per unit solid angle for angles 
close to the critical Lindhard angle, assuming it to be 
much smaller than the corresponding density for the 
channeled particles. Such an abrupt boundary is ob­
served experimentally in the registration of the angular 
distribution of a beam passing through a thick crystal 
along the crystallographic axis. We then obtain the 
following solution: 

~~ { [L.'m E,- E} ( PL ) f = a. exp - --~-"-- lo - [!n , 
11=1 BM E .l.CI p _l_Cl 

where J 0 is a Bessel function, IJ.n is its n-th zero, 
P1cr =,; 2ME1cr. and 

(29) 

P _icr 

a,.= 2 
2

2 ~ f(E,,E,JJo(f!n~) P1dP1· (30) 
Pj_crJ, \f!n) 0 P1cr 

For normal incidence of the ion beam on the crystal we 
have f(E 0 , E1) = O(E1 ) if the particle flux trapped in 
the channel is normalized to unity. Then 

(31) 

At m(E 0 - E)/8ME1 cr :2::1 we can obviously confine 
ourselves to several harmonics in the expansion (29). 

The ion flux in the channel is 

l=".J.scrjdEj_= ~,a.pgr./,(f!.)exp{- [!.' m (E,-E) }• (32) 
.l... M[!n 8 M EJ.cr 

0 n=l 

or, after substituting (31 ), 

1= t 2 exp{-~~ (E,-E)} 
[!J, (f!n) 8 M El. cr . 

ll=l 

(32') 

4. COMPARISON WITH EXPERIMENT AND DISCUS­
SION OF RESULTS 

Let us consider the dechanneling of protons with 
E = 3 MeV in tungsten in the Thomas-Fermi model. 
This case was investigated experimentally by Foti et 
al.r 9J. In the Thomas-Fermi model, the electron 
density decreases rapidly with increasing distance 
from the atomic chain. The distribution of the lattice 
atoms with respect to the amplitudes of the thermal 
vibrations can be regarded as Gaussian, with an rms 
displacement p1 which is much smaller than the 
channel dimensions. In this case the ion scattering 
occurs mainly at the shortest approach of the ions to 
the atomic chain, when the angle is e ~ 0. This entails 
a monotonic increase of E1, so that the spreading of 
the ions with respect to E1 can be neglected. Such an 
approximation was proposed by Lindhard rsJ and was 
used by a number of authorsr9 ' 12l; it can apparently be 
used for estimates. To simplify the calculations we 
assume that the average ion energy loss in the channel 
(dE/ dx)k is proportional to the loss in amorphous 
matter (dE/ dx )n [ aJ 

(dE I dx). =/..(dE I dx)n. (33) 

In tungsten we have X = 0.44 at E ~ 3 MeV. For fast 
particles dE/dx is proportional to 1/E, and conse­
quently E = E 0(1 - 2x/L)112 , where L = m(A.BMl/J~t\ 
B and l/! 1 are taken at E = E 0 , L = 25 IJ. at A. = 1 and 
a= 3.14A. 

From (15) and (18) we obtain the connection between 
the range to dechanneling and the initial transverse 
energy E 1 : 

' ( l'ie ) _, :c: 2x -~12 .J fj.: E=Eo deL=~ ( 1-L) dx 
j_ 

(34) 

or _, j_ 

L [1 - (1- ~)'/.l - A ' \ dt 
L j - xB ), 1- tJA 

x u~.+t'(3~,- !)+t(3~·- .! -1++)+A'r (35) 

The denominator of the integrand has four roots: t 0 

=A, t 1 = -1.39, and t2,3 = 0.963 ± i0.394 for channeling 
in the ( 100) direction at a temperature 25°C. The 
fraction of particles having an initial transverse energy 
larger than E 1 is obviously 

r,' A -1 
X=-=>-::-----

r,' A expeL- 1 · 
(36) 

The dependence of the fraction of the dechanneled 
particles on the depth of penetration is obtained by 
calculating the integral (35) and substituting the E1 (x) 
relation determined by formula (36). The pole t1 
= -1.39 makes a very small contribution, since it is 



608 V. V. BELOSHITSKII and M. A. KUMAKHOV 

Depth of penetration, I' 

.! /8 S/J 118 "'-particles 

J 

Q.l 1/,Z Q.J fl.,f 11,5 
4£/£0 

Dependence of the relative flux of channeled ions on the depth of 
penetration into the crystal (or on the relative energy loss lili/E0 ). Curves L 

To ascertain the influence of the potential, we also 
performed calculations with a harmonic potential. In 
this case the solution of (13') for normal incidence of 
the beam on the crystal is 

~, 2(1-J0 (J.Ln)) { fln2 m Eo-E} 
fo = ,.-:1 flnlo2 (J.Ln) exp -16 M E.l.cr 

X /1 [fin(~)'''] ~"J. • 
BJ.cr Blcr 

where fo is the number of particles in the channel, 
normalized to unity, IJ. n is the zero of the function J 1, 
and 

•.J.. cr 

J f,deJ. = 1. 
0 

The fraction of the dechanneled particles is in this 
case 

x= .t(:J[1-J,-'(J.L.)] [1-exp{- ~~·; E;~~}] · 
•=• 

2-square-well approximation of the potential for protons penetrating in The figure shows the results of the calculation by this 
the ( 100) direction at 3 MeV into Wand for a particles penetrating into formula for protons and a particles in tungsten and in 
Si in the (I 10) direction at 7 MeV, respectively; curves 3 and 4-the silicon. 
same for the oscillator-potential model; dash-dot curve-approximation 

The dechanneling of a particles passing through of monotonic increase of transverse energy for protons in W at 3 MeV 
(absence of diffusion); dashed curve-results of experiment on back- single crystals of silicon was investigated by Bulgakov 
ward scattering; dash with two dots-results of transmission experiment. and the authors [IoJ. The depth X1/2 obtained in this case 

located far from the integration region. The poles t2,s 
do not occur if scattering by thermal vibrations is not 
included. Their influence, however, is appreciable, 
since x depends nonlinearly on 6€1 and a strong inter­
ference occurs between the electronic contribution and 
the contribution due to thermal vibrations. The princi­
pal pole is t 0 = A, which remains also when the scat­
tering is only by electrons. The depth x1;2 at which 
half the ions leave the channel is then equal to 28 and 
38 IJ., if we disregard the thermal vibrations. The de­
pendence of the depth on the fraction of the dechan­
neled ions at x ~ 0.1 turns out to be 

L[1·- (1- 2x I L)V•] ~ 15{ln [1 +x(A -1)]- 0.3} 

or 
X.~ - 1-{1..3 exp[L(1-(1- 2x/L)''•) ]-1}. 

44 
From this we obtain a much smaller value of x than 
obtained by Foti et al.f9 l (see the figure). This is 
caused by the fact that 3a2/rg = 1/44, and 1/15 as 
given inf9 l, This result indicates that in the present 
case the principal term is the electronic rather than 
nuclear scattering. It is, however, too sensitive to the 
value of the potential at the center of the channel. The 
reason for this is that the density at the center of the 
channel is chosen to be very low in the single-chain 
approximation, and since most particles begin to ac­
quire transverse energy € 1 with small values of € 1 , 
this results in larger depths of dechanneling. 

The diffusion approximation considered in Sec. 3 is 
free of this shortcoming, since it is less sensitive to 
the details of the electron distribution. This approxi­
mation should therefore give better results at x ~ 0.1-
0.5.than the approximation in which the transverse 
energy increases continuously. The result of the calcu­
lation by means of formula (32') is shown in the figure. 

was 40 IJ.· It is seen from the figure that the value of 
x1;2 obtained theoretically by solving the diffusion 
equation in which only electron scattering is taken into 
account is 44 IJ. in the square-well potential approxi­
mation. We also calculated x1;2 for this case in the 
approximation wherein E1 increases continuously in 
accordance with formula (35). This yielded for x1;2 
the values 43 IJ. in scattering by electrons and 32 IJ. 
when scattering by thermal vibrations is added. In 
this case the agreement with experiment is better than 
for protons in tungsten, and the value of the main con­
tribution of the electrons to the dechanneling is also 
confirmed. 

In the present study we obtained the Fokker-Planck 
equation with allowance for the diffusion of the parti­
cles with respect to the transverse energy. The prev­
iously employed approachr9 • 11• 12 l is approximate when 
compared with ours, since no account was taken of the 
diffusionre,nJ or of the inhomogeneity of the particle 
flux in the channelr 121 . 

The calculations show that the classical theory of 
multiple scattering, based on the solution of the Fokker­
Planck equation, gives satisfactory agreement with 
experiment. In many cases, for example when ions 
pass through silicon and tungsten, the scattering by elec­
trons is the dominant factor leading to the dechanneling. 
This makes it possible to neglect the contribution of 
the thermal vibrations to multiple scattering and to 
solve the diffusion approximation analytically with suf­
ficient accuracy. 

In conclusion, the authors are sincerely grateful to 
0. B. Firsov for constant interest in the work and for 
a useful discussion. 

APPENDIX 

The Fokker-Planck equation for the distribution 
function f( p, r, t) is 
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_!}_+ pVf- VU gradpf + div I= 0, at 
where I is the flux due to the collisions. According to 
LandauP3l, in Coulomb interaction, this flux is equal to 

l!J.p Ia = _..!._ !J.P.L' _!!_ 
1p = Tt1• 4 at p ae 

(we have used here a spherical coordinate system; e 
is the angle between p and the chosen polar axis, which 
in our case is the x axis of the channel; in addition, 
azimuthal symmetry is assumed). 

Let us calculate divi integrated over the entire 
accessible region. It is convenient here to change over 
to the variables Px and E1 . We have 

. 1 a , t:J.p 1 1 a . !:J.P.L' a1 
d1vl=--p -1-----smO----. 

p' a p !:J. t 4 p' sino a p fl.t a o 

We make the substitution 

p, 0-+ Px, EJ.; px';:::::; p'(1-lf I 2);:::::; p'; 

E J. ;:::::; p'O' I 2M + U ( r) . 

We obtain 
1 a t:J. o' a t:J. 

div I=-- (Px' __!_I)+ ---Px__!_ f 
px' iJpx !:J.t M iJEJ. fl.t 

- ~M-iJ- ( [EJ.- U(r)] !:J.pJ.' !J._). 
2 iJEJ. !:J.t iJEJ. 

We have retained here the second term ~ 8 2 , for when 
ions are scattered by electrons the value of .6. Pi I .6. t 
is smaller by a factor miM than Px.6.PI.6.t. We shall 
no longer distinguish between p and Px: 

divl=~~(p' !:J.pt)+ 2(EJ.-U(r)) a (~t) 
p' ap i!J.t p iJEJ. !:J.t 

1 iJ ( !:J.pJ.' iJf \ 
-2 iJE: [EJ.- U(r)]M!:J.t iJEJ. 

The distribution function f(p, E1 , r, t), after statistical 
equilibrium is attained in the accessible region, corre­
sponds to the microcanonical ensemble 

_ {F(p,EJ.,t) for EJ.;;:. U(r), 
f(p,EJ.,r,t)- 0 for EJ.<U(r). 

F(p, E1, t)dE1dp is the number of particles per unit 
volume in the interval dE1 dp. Integration of div I 
leads to the following expression: 

f div 12nr dr = -~- !!__ { [p' s'• !:J.p 2nr dr] F} 
p' iJp l~t ,., 

2 { J': !:J.p } iJ F iJ +- --;:-(EJ.- U(r))2nrdr -----
p u.t rJE, rJEJ. ., 

{[ f'• !:J.pJ.' ] iJF } 
X (EJ.-U(r))--2:rtrdr --

2Mfl.t iJEJ. ' ,., 

where r, is determined from the condition E 1 == U( r ,) . 
Let us write down the particle energy balance equa­
tion'>: 

aF 
n(ro'- r,')- + f div 12nr dr = 0. 

iJt 

From this we obtain ultimately 

ll A similar method was used by TverskoJ:Il•l in the problem of particle 
scattering in a geomagnetic trap. 

1 •• 
(x) =--Jx2nrdr 

S(EJ.) ' 
'• 

and .6. E 1 == .6. Pi I 2M is the increment of the transverse 
energy; S(E1 ) == 1r(r~- r~). The fluctuation term is 

Hence 

if S does not depend on E 1 . Thus, without account of 
deceleration and when S(E1 ) == const (at r 0 » rJ, the 
Fokker-Planck equation goes over into a diffusion 
equation in the form 

aF I iit = div D grad F. 

The obtained Fokker-Planck equation can be trans­
formed after changing over to the distribution function 
f(E, E1 , t) in accordance with the relation 

F(p, EJ., t)dEJ.dp = f(E, EJ., t)dEJ.dE 

to the traditional form 

at a [( t:J.E.1. ) at ] a -=- -(E.1.-U(r)) - --
iJt iJEJ. M iJEJ. iJEJ. 

X [ ( ( !:J.~J.) + ( ·!:J.:;) dec )t]- iJ~ [ ( ~:) f] 
where 
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