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The problem is discussed of the interaction between a plasma and a direct magnetosonic wave of sufficiently large amplitude 
with frequency wHi<!l<wHe and n -wHi· It is shows that such a wave can parametrically excite in the plasma short-wave 
potential oscillations with frequency w- !l; in this case the threshold buildup velocity u (u is the velocity of the electrons in 
the field of the magnetosonic wave) can be much smaller than the velocity of sound. Interaction of the short-wave potential 
oscillations with the plasma leads to efficient heating of the plasma as the result of resonance absorption of the waves by particles; 
the Q of such a system turns out to be very low and does not exceed about 10 because of the large damping of the potential 
waves. 

1, INTRODUCTION 

T the present time a large number of papers have 
been published on investigation of parametric excitation 
of various types of plasma oscillations by external high
frequency electromagnetic fields of rather large ampli
tude. Silin and co-workers 0 • 2 l in a series of papers 
have studied excitation of ion-acoustic and plasma oscil
lations by an external high-frequency electric field with 
frequency S1 .2: Wpe (Wpe iS the plasma electronic fre
quency), 

Zyunder and Gradov l3 J have discussed the paramet
ric buildup of ion-acoustic oscillations under the influ
ence of an external electric field with frequency n 
~ WHe (WHe = eH0/mc is the electron cyclotron fre
quency). In all of these studies the frequency of the ex
ternal electric field was assumed to be rather high, 
namely: n .2: Wpe• WHe· On the other hand, interest has 
recently increased substantially in the problem of plas
ma heating by an external magnetosonic wave of large 
amplitude with frequency n << WHe· Thus, Kovan and 
Spektor c4 l have considered the question of interaction 
with a plasma of slow magnetosonic wave of large am
plitude with frequency n >> WHi· Stepanov and co
workersl5-7 l have studied both theoretically and experi
mentally the interaction with a plasma of a fast mag
netosonic wave (waves of the atmospheric whistler type) 
of large amplitude with frequency WHi << n << WHe· It 
turns out that for a sufficiently large amplitude (elec
tron velocity in the electric field of the wave u .2: vTi) 
such a wave can excite efficiently small-scale potential 
oscillations with frequency n << w << WHe which inter
act with the plasma, and thus give up its energy to heat
ing of the plasma. Recently papers have appeared (see, 
for example, Vdovin et al.l 8 l) in which it is shown ex
perimentally that the Q of a plasma interacting with a 
magnetosonic wave depends weakly on the amplitude of 
the wave and remains rather low even when the inequal
ity u << VTi is satisfied. It therefore seems interesting 
to study the possibility of parametric excitation of low
frequency oscillations in a plasma by external magneto
sonic waves, since such instabilities, as a rule, have a 
rather low threshold. 

494 

In the present work we investigate the possibility of 
parametric excitation of short-wave potential waves in 
a plasma by an external magnetosonic wave of suffi
ciently large amplitude propagating transverse to the 
external magnetic field H0 with a frequency n 
< v'wHiWHe· It is knownl 9 J that in such a wave when 
the condition n > wm is satisfied the electric field is 
directed mainly along the direction of propagation of 
the wave; the frequency itself is related to the magni
tude of the wave vector by the following dispersion re
lation: 

(1) 

In derivation of Eq. (1) it was assumed that the wave is 
propagated strictly transverse to the external magnetic 
field H0 , i.e., kz = 0. In what follows we will assume 
that the magnitude of the wave vector k in the magneto
sonic wave is much smaller than the magnitudes of the 
wave vectors of the excited oscillations. 

It is not difficult to show that in this case in deriva
tion of the dispersion laws for the excited oscillations 
we can assume that in the plasma there exists only the 
external electric field Ex = E0 cos nt (in what follows 
we will assume that the magnetosonic wave is propa
gated along the x axis) which does not depend on x. 
Below we will discuss two cases separately: n >> WHi 
and n ~ WHi> since both the decay threshold and the 
types of oscillations excited are substantially different 
for the cases n >> WHi and n ~ WHi· 

1. INTERACTION WITH A PLASMA OF A 
MAGNETOSONIC WAVE WITH FREQUENCY 
WHi << U < v'WHiWHe 

a. Derivation of the dispersion laws. In a plasma 
located in a magnetic field H0 directed along the z 
axis, let a direct magnetosonic wave of sufficiently 
large amplitude be propagated with frequency 

The plasma is assumed to be weakly inhomogeneous 
along the x axis. 
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In solution of this problem we used the collisionless 
kinetic equations for the particle distribution functions 

Of~+ v~ at~ +..!!::.._(E +~(v~HJ) iJf~ = 0 (2)* 
at ar m~ c iJv~ 

and the Poisson equatl._on 

Aq> = 4n L, e~ J f~dv~ (3) 

The index a designates electrons and ions. 
Since the frequencies of the oscillations considered 

are much less than the electron cyclotron frequency 
WHe• in order to find the corrections to the unperturbed 
electron distribution function we can use the drift ap
proximation: 

df,<u . eq><•> -- = ~~ (k,v,- ro.)f,,, (4 ) 
dt T, . 

where w* = kyKcTe/eH0; 1/K is the characteristic size 
of the inhomogeneity; in derivation of Eq. (4) the func
tion foe was assumed Maxwellian. 

In what follows we will assume the inequalities kz 
<< ky, 0 << kzVTe1 and k 1 VTe << WHe to be satisfied. 
Expanding the correction to the equilibrium electron 
distribution function f:J 1 and the intrinsic potential of 
the wave in a Floquet series in harmonics of the fre
quency 0 of the external electric field, we obtain . 

q><tl = e-"'' L, q>. e••••. (5) 
p=-<» 

From the equation of motion in the drift approxima
tion we find that under the action of an external electric 
field Ex = E0 cos Ot the electrons move along the y 
axis with a velocity vy = u cos Ot = cEaH;1 cos Ot. Sub
stituting the expansion (5) into Eq. (4), we obtain 

(I) • 8n,q>, r' [ . ku . ·. f, (v,)= ~ 1--, (k,v,-ro.)exp 1-(smQt-smQt) (6) 
i..J mv.. Q 

+ tqQt- trot + tk,v,t- v,•fv.,•] dT, 

(I) J (I) f, (v,) = f, dvJ.. 

To find the correction to the equilibrium electron 
density we will integrate Eq. (6) over Vz: 

• ' k 
n<•> = ~ t en,q>: J dv, J (k,v,- ro.)exp [t : (sin Q"l"- sin Qt) 

~ mvr. . Zllll 
11 -oo -m 

(7) 

Integration over Vz is carried out by elementary means 
and after substitution of T = t- r' and expansion of 
sin 0 (t- r') in the vicinity of the point r' = 0 (kzVTe 
>> O), we obtain 

, ) ... r en,k, E s· d ( . k.v.. w. ) n' =&rn-- ,; 1---r---
mvr.' 2 k,vr. 

• 0 

X exp [ k,' :._• r + ikll"t"COS Qt- tro(t- "1")+ tqQ(t- "1") ]cp •. 

Integration of Eq. (8) over T is easily performed by 
substitution of the variable 

k,v.. + . • ku cos nt + ro - qQ 
't"t = --"1" 1---;--'--::....... 

2 k,v •• 

(8) 

and subsequent separate integration over the real and 

imaginary regions. Substitut~ also in the left-hand 
portion of Eq. (8) instead of n1 > its expansion in a Flo
quet series from (5 ), we obtain finally 

(9) 

The correction to the unperturbed ion density can be 
found similarly; it is simpler, however, to proceed as 
follows. Since 0 > WHi, we can assume that the elec
tric field of the magnetosonic wave does not act on the 
ions (ui = 0) and since, furthermore, the inequality 
Te > Ti is assumed satisfied, we can neglect the ionic 
LlJ.rmor current and in obtaining the expression for 
n4_11 assume the plasma is homogeneous. Then integra
tion of the kinetic equation for the ions gives 

<•> _ _ en, [ 1 + ~ .,1- w - qQ y ( w - nroH,- qQ } 
n'l - Tcpq ~~,n k,vTi n k,VTt 

n=-oo (10) 

where . 
Yn(x) = 2e-" J e"dt- tine-", r.(x) = e-•I.(x), 

0 

In is a Bessel function of imaginary argument <;>f order 
n. Substituting the expressions for n~fl and n~> respec
tively from (9) and (10) into Eq. (3), we obtain an infinite 
homogeneous system of algebraic equations for cpp. 
Since, as we have already said above, we are discussing 
oscillations with w ...... 0 >> WHh the frequency w - 0 
can be close to one of the harmonics of the ion cyclotron 
frequency WHi (just this case will b~ discussed below), 
and therefore the expressions for n~> will be substan
tially different for the cases p = 1 and p ::/= 1, and the 
system of equations can conveniently be written sepa
rately for each of these cases: 

__ w,,• (t+·,,-ro-pQ-ro,)+· in ro,,• 
q>. - k'c.' <p, lrn k,v., 1 2 k'c.' 

k~ ro,,• (11) 
x -k-(cp.+l + q>._,) + ( _ Q)'cp. for p =F 1, 

zVTe (I) P 

ro,,• ( - w- Q- ro, ) jir. ro,,• 
cp, = k'c.' <p, I+ tin k,v.. -IT k'c.' 

ku ro,,• ' ro - Q ) 
x--(cp.+cp,)+-, -, t- r. q>, for p= 1.(12) 

k,v., k v., w- Q - nroH, 

In derivation of Eq. (12) we have assumed that the in
equality Lw - 0- IJWHi I > kzVTi is satisfied. (Note 
that in the second equation (11) the harmonic number 
n is fixed; it is chosen from a condition which will be 
obtained below.) The dispersion relation for the oscil
lations considered can be obtained by equating to zero 
the determinant of the system (11). It is simpler, how
ever, to use again the smallness of O, ku << kzVTe and 
to expand all quantities in a series in the parameter 
0/kzVTe: 

(0) Q Jtl IP•='P• +--'1'.+ ... , ro=w<'> +tv+··· 
k,Vre · 

(13) 

(as will be shown below, y ...... 0/kzVTe>· Here it turns 
out that in the expansion (13) it is sufficient to limit our
selves to terms of first order. Since we are interested 
in oscillations with w ...... il, in the zeroth approximation 
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only the potentials with p = 0, + 1 will be different from 
zero, and from (11) and (12) we obtain 

w''l = w.,(1 + w • .' I k'c,')-~', 
(i)(O)- Q = nWm(1 + r,) 

(14) 

(15) 

(in derivation of (15) it is important that the inequality 
rn << 1 be satisfied). 

From Eqs. (11) and (12), written down for p = 0 +1 
f . d ' ' we m in the first approximation 

(16) 

From Eq. (16) it is easy to find the threshold buildup 
rate, when r = 0: 

k'ulli = 4(w''l- w,) (nww- w.). (17) 

If nwHi >> w* , then it follows from (17) that 

(18) 

We will consider first rather long-wave oscillations 
with k << Wpi/c8 , where w<o) = kc8 • We will investigate 
first of all on what quantities the harmonic number n 
depends. Previously fulfillment was assumed of the con
dition 

I w ''l - Q - nwH, I ';i> k,vr,. (19) 

It follows from (15) that in order that w<o)- n be 
close to one of the cyclotron harmonics, it is necessary 
that the inequality kvTi> WHi be satisfied. These two 
conditions with use of Eq. ( 18) give 

Q' T, 
n~ 

WHJfWHi WHe T, 
(20) 

Then for the buildup threshold instead of ( 18) we can 
write 

(21) 

From Eq. (21) it follows that the buildup threshold can 
b_e much smaller than the velocity of sound. Investiga
tion of the case k > wp/Cs is carried out in just the 
same way; it turns out that the buildup threshold in this 
case is still smaller than that calculated from Eq. (21), 
and for kmax ~ Wpi/VTi (for k > kmax the oscillations 
begin to be strongly absorbed by ions and the buildup 
threshold rises rapidly) it turns out to be 

However, in order that this case be realized it is neces
sary that the frequency of the magnetosonic wave be 
close to Wpi> and in hydrogen plasma this is possible 
only if the inequality Wpi < v'wHi Wf!e is satisfied. 

As can be seen from Eq. (17), the buildup threshold 
is strongly influenced by the inhomogeneity of the plas
ma: when the condition w* = nWHi is satisfied the 
buildup has no threshold, and if w* > nwHi> then Eq. (20) 
loses its formal meaning. This is due to the fact that 
when the inequality w* > nwHi is satisfied the drift
cyclotron oscillations become unstable even in the ab
sence of an external magnetosonic wave. The quasilin
ear relaxation of these oscillations leads in the last 

analysis to suppression of the instabilityC10 l (this cor
responds to the fact that even for w* > nwHi in the 
second parentheses of the left-hand portion of equality 
(16) the difference nWHi- w* must be equated to 
zero) and, thus, we can say that on fulfillment of the 
condition 

the buildup of the oscillations discussed has no thresh
old. 

b. Inclusion of nonlinear effects. If the electron ve
locity in the field of the magnetosonic wave exceeds the 
threshold value determined by Eq. (25), ion-acoustic 
and ion-cyclotron oscillations will build up in the plas
ma with frequencies determined respectively by Eqs. 
(14) and (15). When the level of the oscillation energy 
becomes sufficiently large, nonlinear effects leading to 
limitation of the noise amplitude begin to play an im
portant role. It is known that both for ion-acoustic [UJ 

and ion-cyclotron oscillations [12 J the principal effects 
leading to suppression of the instability is nonlinear 
scattering of waves by the ions. However in the case 
being considered here of a parametric bulldup of the 
oscillations, there is an additional nonlinear mechanism 
which suppresses instability. It turns out that the para
metric instability being discussed is no different from 
decay in the plasma of an external monochromatic wave 
of.large amplitude. Furthermore, as is well known, c 13l 

!h~s. decay can be considered as an instability only in the 
m1t.Ial stage of the process when the level of noise ener
gy produced as the result of decay of the waves is small 
in c.omparison with the level of energy of the magneto
some wave. When the energy densities of the unstable 
oscillations are comparable with the magnetosonic en
ergy density, the inverse pumping process begins to 
play an important role. 

It is well known [ 13 J that oscillations in a finite fre
quency interval are produced as the result of decay of a 
monochromatic wave. For a sufficiently large level of 
energy in the packets (the value of which will be esti
mated below) the waves in them can be considered sto
chastic, so that the inverse pumping process will lead 
in the final analysis to establishment in the system of 
some quasistationary state in which the decrease in the 
number of quanta of ion-acoustic and ion-cyclotron 
waves as the result of their strong absorption by elec
trons and ions (the nonlinear effect!) is compensated by 
the increase of the number of quanta of these waves re
sulting from the decay of the magnetosonic wave (here it 
is assumed, of course, that the magnetosonic wave en
ergy level does not change as the result of operation of 
the external source). 

We will show now that in the case considered by us 
nonlinear scattering of oscillations by ions is practic;l
ly always small and stabilization of the instability can 
occur only as the result of the effects of inverse pump
ing of the waves. 

An expression for the nonlinear damping decrement 
of ion-acoustic waves in ions has been obtained by 
Petviashvilic 11 J: in order of magnitude it is 

, T, k W, 
'Yn-l:=::::{J),---

T, !1k nT, ' 
(22) 
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where W s is the energy density of ion-acoustic noise. 
The process of absorption of ion-cyclotron oscilla

tions in nonlinear scattering by ions has been discussed 
by Petviashvili and by Karpman. [121 However, those 
papers discuss oscillations with k 1 VTi ~ WJ:li, and in 
our case k1 VTi >> WHi· Using the results of Petviash
vili, [llJ it is easy to show that when the strong inequal
ity klVTi>> WHi is satisfied the nonlinear damping dec
decrement is exponentially small (A~-1 
~ exp [-k\•h/wiuJ) and can be neglected in compari
son with the linear damping decrement. When all that 
has been said above is taken into account it is easy to 
write the buildup condition, similar to Eq. (16): 

( 2y ,/ w, ,/ T, k W,) ( 2 T, __ nw--'n"-'r_. __ -+ ,n-+ ,n--- y-~ 
•w, k,vr. T, l'lk nT T, (w- Q- nwn,)' 

,,- nwn,- w. ) n k'u' 
+rn =--,-,. 

k:VTe 4 kr, Vre 

Since Ws /kzVTe .S 1 and Ti/Te < 1, it follows from 
(22) that even for kW s/AknT .S 1 the nonlinear damping 
decrement of ion-acoustic waves is smaller than the 
linear decrement. (Usually in experiments on plasma 
heating by a magnetosonic wave Ws/nT << 1, and k/Ak 
;5 10.) It is evident that if the electron velocity in the 
field of a magnetosonic wave differs by any appreciable 
amount from its threshold value determined by Eq. (21), 
then the nonlinear effects of scattering of waves by ions 
cannot suppress the instability of the oscillations dis
cussed. It is clear that, in the case discussed, suppres
sion of the instability can occur only as the result of in
verse pumping of waves over the spectrum. 

We will now show that the packets of ion-acoustic and 
ion-cyclotron waves formed as the result of decay can 
be discussed stochastically. According to Zaslavskil [14 1 

the condition of stochasticity for the decay processes 
has the following form: 

(24) 

where Awk is the change in frequency as the result of 
resonance perturbation, ANk is the maximal change in 
number of quanta produced by a resonance, and ~k is 
the characteristic distance between harmonics in the 
spectrum. Calculations similar to those carried out 
previously[ 151 show that the oscillations can be dis
cussed stochastically on fulfillment of the condition 

W,W,Wm.a.~ _im_/M_ 
---,-(n_T_)..,..,- k'Lj_' (25) 

where L1 is the transverse dimension of the system. 
Since the decay process and reverse fusion of the waves 
leads to a Rayleigh-Jeans distribution, we will 'finally 
have Ws ~We ~ Wm.a. and condition (25) can be re
written in the following form: 

W ( m)'t, , ( m )'t•(c.'4nnM)'t, -~ - (kLj_)-'•=- «:1 
nT M M H,' ' 

which is satisfied in practically all experiments on 
plasma heating by a magnetosonic wave. 

c. Plasma heating. Since wave packets formed as 
the result of decay can be considered stochastically, 
the inverse process of their fusion will lead to an ef
fective broadening of the spectrum of the initially mono
chromatic magnetosonic wave and after a certain time 

three rather wide wave packets are formed in the plas
ma, which efficiently give up their energy to heating as 
the result of scattering of the waves by particles. Here, 
naturally, the energy of the packets should decrease. 
However, as we have already mentioned above, it is as
sumed that the power of the source of magnetosonic 
waves is sufficiently high to maintain the noise energy 
in the plasma at one level. When this fact is taken into 
account it is easy to estimate the rate of heating of the 
plasma particles; for this purpose it is sufficient to use 
the energy balance equation 

dnT. J --=- y.•w,dk 
dt ' (26) 

where y~ is the combined (linear and nonlinear) damp
ing decrement of waves by particles of type a. 

Since heating of the electron component occurs main
ly as the result of the linear damping of waves by parti-
cles, and Yk >> Yk , Yk , heating of the electrons s c m.a. 
is determined by damping of ion-acoustic noise and can 
be written 

dn.T, J k.'c.' 
--~- dk--W •. 

Ot kzsVre 8 
(27) 

Heating of the ion component occurs as the result of 
nonlinear damping of waves by ions (the linear damping 
in all three packets is exponentially small). We have al
ready shown above that the nonlinear damping of cyclo
tron waves by ions is also exponentially small and can
not play an appreciable role in the heating mechanism. 
Thus it remains for us to deduce whether or not it is 
necessary in the equation for ion heating to take into ac
count the contribution from the magnetosonic wave 
(since as the result of fusion of the waves the packet of 
magnetosonic oscillations was broadened, it also can be 
nonlinearly scattered by ions). The value of the nonlin
ear damping decrement of magnetoacoustic waves by 
ions can be estimated in the following ways: [ 16 l 

vn'.~~.~ Q~ (kv~/Q)', 

where !3 = nT/H~, v_ ~ eEm.s/M~ is the velocity of the 
ion oscillations in the field of the wave. Since 

we finally obtain 

(28) 

The quantity on the left-hand side of Eq. (28) is, as a 
rule, much smaller than unity, i.e., the heating of the 
ion component is also determined by damping of ion
acoustic oscillations 

dnT, T, W, 
-,-:=::::k,cs--. 

at T, nT 
(29) 

As has already been remarked above, y~e> > y<i>, and 
therefore the electron temperature should increase 
more rapidly than the ion temperature, which will lead 
to a still greater separation in the temperatures. Heat
ing will continue until the condition of existence of 
short-wave ion-cyclotron waves kvTi > WHi is de
stroyed; since k l'::j ~/cs, this condition reduces to the 
following: Ti/Te ~ (wHi/~)2 • In the heating process, 
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according to Eq. (20), the harmonic number n of the 
unstable ion-cyclotron waves will also decrease. 

The Q of the system can be determined from the 
formula Q = n /2 y' where y is the decrement of the 
magnetosonic wave in the absence of an external source, 
i.e., that part of the wave energy which is dissipated 
per unit time in the plasma and goes into heating it. The 
size of this decrement is determined both by the intrin
sic damping of the magnetosonic wave on resonance par
ticles and by the amount of energy lost by it in excitation 
of short-wave potential oscillations and, in the last 
analysis, also in heating of the plasma. In order to find 
y, we can make use of the law of conservation of energy, 
which follows from the equations for decay of waves 
with random phases (see, for example, Tsytovich c13 l) 

and in the absence of an external source has the form 

d 
dt(Wm.a.+ W, + W,) = y,W, + y,W, + Ym.a.Wm.a,, {30) 

where Ya is the decrement of a wave of type a in reso
nance particles. From this it follows that in a stationary 
state when dW s /dt = dW c /dt = 0 and W s ~ W c 
~ Wm.a.• 

dWm.a. 
Wm.a.dt = Y= y, + y, + y .. ,. 

(we recall that Eq. (30) was written in the absence of an 
external source and therefore for dWc /dt = dWs /dt = 0 
dWm.a./dt * 0). Thus, the Q value is actually deter
mined by the sum of the decrements of all types of 
waves, and not only by the decrement of the magneto
sonic wave (which would determine the Q of the system 
in the absence of decay). Since Ys >> Yc, Ym.a.• we can 
finally write: Q ::::J n/2 Ys = kzVTe/:?n and, since kcs 
~ n, it follows from this formula that the Q does not 
exceed the order of 10. 

2. INTERACTION WITH A PLASMA OF A 
MAGNETOSONIC WAVE WITH FREQUENCY 
0 "'WHi 

Interaction with a plasma of a magnetosonic wave 
with frequen<:y n ~ WHi differs substantially from the 
case n >> WHi discussed above. It turns out that decay 
of such a wave into short-wave potential oscillations 
(and for plasma heating just such decay is interesting) 
is possible only in an inhomogeneous plasma since, as 
will be shown below, one of the decaying waves is a 
drift wave with kvTi > wm. 

The approximations in which the dispersion law is 
obtained for unstable oscillations remain practically 
the same as in Sec. 1; specifically, we will assume be
low the following inequalities to be satisfied: Te > TiJ 
kvTi > wm, kzVTe > WHi· The magnitude of the wave 
vector of the magnetosonic wave is assumed much 
smaller than the wave vectors of the waves building up, 
one of which is an ion-cyclotron wave with We ~ WHi 
~ n, and the other a drift wave with frequency 

and 

I I w., 
w,- Q ~ -1--r, ~ wn, -r, 

I!J-w,l >k,vT, (w.,=w.T,jT,). 

The results obtained up to the present time on the inter
action with a plasma of a magnetosonic wave with fre-

quency n ~ WHi c8 J apply to experiments in apparatus 
of the Tokamak type with the following characteristic 
parameters: Te/Ti ~ 3, Te ~ 50-70 eV, r ~ 7 em, H0 

~ 15 kOe. For these parameters actually w* << WHi 
(w* ~ 10-2 WHi) and the approximation chosen by us is 
valid. 

An expression for perturbation of the electron and 
ion densities can be obtained by a means completely 
similar to the derivation of Eqs. (9) and (10), except 
that now the Larmor current must be taken into account 
also in the ion co!pponent, so that the perturbation of 
the ion density nh1) can be written in the following form: 

(i) en,_ [ 1 ~ w - pQ - •W 0 ; 

Ttp =-<j)p + .i...J 
T, k,vT, 

(31) 

Substituting Eqs. (31) and (9) into the Poisson equation 
(2), we obtain 

( 
(J) - pQ - (J) . (J) - pQ - (J) . ) 

<j)p 1- ··r.- •· r, 
W - pQ W - Wm - pQ (32) 

Equation (32) is written down on the a.ssumption of 
quasineutrality of the oscillations, n~) = nhe), and in ad
dition there remain in the ion component of the density 
perturbation only the main terms of the expansion in 
harmonics of the cyclotron frequency WHi. Investiga
tion of Eq. (32) is carried out exactly in the same way 
as in the case n >> WHit by expansion of the intrinsic 
potentials 'Pp in the small parameter n/kzVTe < 1. In 
the zeroth approximation we obtain 

( 1 r, ) w.,r, 
w=wm + 1+T,jT,-r, ' w-Q=- 1+TJT,-r, (33) 

In the first approximation it follows from the system 
(32) that oscillations with frequencies determined by 
Eqs. (33) become unstable on fulfillment of the condition 

(34) 

Since in the approximation considered by us w* << wHi 
and kvTi >WHit it follows from (34) that the threshold 
buildup rate can be much lower than the thermal veloc
ity of the electrons and for the experimental data given 
above amounts to u ~ 10-1 VTi• which corresponds to an 
intensity of the variable magnetic field of the magneto
sonic wave H ~ 10 Oe. The further discussions ones
tablishment in the system of a quasistationary state as 
the result of the effects of broadening of the packets and 
their reverse fusion, given in the first part of the arti
cle, remain valid also for the case being discussed in 
the limit Wm.s/nT << 1 (which corresponds to the ex
perimental conditions of Vdovin et al.C 8 l), The Q of 
the system, evaluated from the formula Q = n/2y, has a 
value Q s 10 and is in good agreement with the experi
mental value obtained by Vdovin et al. c8 J 

CONCLUSIONS 

We have discussed the interaction with a plasma of 
an external magnetosonic wave of large amplitude with 
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frequency WHi << Q << WHe and Q ~ WHi• It is shown 
that when the condition WHi << n << WHe is satisfied 
the magnetosonic wave can, as the result of a decay 
process, excite in a plasma with Ti < T e ion-acoustic 
oscillations (with frequency Ws ~ n) and ion-cyclotron 
oscillations (with frequency We<< n), in which the 
threshold buildup rate can be much less than the veloc
ity of sound, and when the condition w* > We is satis
fied the buildup has no threshold. It turns out that sup
pression of the instability occurs not as the result of 
nonlinear scattering of waves by ions, but as the result 
of the effective inverse pumping of waves over the 
spectrum. Since wave packets produced as the result of 
decay can be considered stochastically, the inverse 
pumping process leads to the fact that a quasistationary 
state is formed in the system, for which the decrease in 
energy of the wave packets as a result of scattering of 
waves by plasma particles is compensated by the influx 
of energy from an external source of magnetosonic 
waves of sufficient power. Here the electron component 
of the plasma is heated more rapidly than the ion com
ponent, which should lead to still greater separation in 
the temperatures. It is shown that the Q of such a sys
tem is determined by the value of the decrement of a 
potential wave with frequency w ~ n and does not ex
ceed a value of the order of 10. 

In the second part of the article we have discussed 
the interaction with a plasma of magnetosonic waves 
with frequency n ~ WHi· In this case decay of such a 
wave is possible into two short-wave potential oscilla
tions: ion-cyclotron oscillations with frequency We 
~ WHi ~ n and drift oscillations with frequency wdr 
<< WHi! where on fulfillment of the inequality w* << WHi 
(and just this case is realized in the presently known 
experimental apparatus for heating of a plasma by a 
wave with frequency n ~ WHi (Bl) the threshold buildup 
rate is much smaller than the thermal velocity of the 

ions. The Q of such a system also does not exceed a 
value of the order of 10. 
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