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Depolarization effects due to scattering of the trajectories of particles moving in an electromagnetic field are investigated. The 
source of stochastic perturbation of the orbital motion of the particles may be quantum fluctuations in radiation, collisions 
with the residual gas, and so forth. Formulas are obtained for the rate of diffusion of spins of particles in a storage ring with 
an arbitrary field. 

1. INTRODUCTION 

IT is well known [1-41 that in the classical motion of a 
particle the spin l;(t) satisfies the equation 

;=[WLt;], 

WL= (1+v~) [vv] __ _!1_ (Hv)v -.2--[vE], (1.1)* 
q, v' y v' y'v' 

where q = q0 + q' = e/m + q' is the gyromagnetic ratio, 
q' is its anomalous part, y = ( 1 - v2 t 1/ 2 (c = 1), and 
v and v are the velocity and acceleration of the parti­
cle in an electromagnetic field E, H. 

In the absence of diffusion of the particle trajectory, 
WL is a regular function of time determined by the 
momentum and coordinate values of the particle at the 
initial moment. In this case a beam of particles mov­
ing near an equilibrium orbit can be depolarized only 
near spin resonances, when the spin motion is particu­
larly sensitive to the parameters of the particle trajec­
tory. [s,sJ 

When scattering of the particles by external sources 
is taken into account, WL undergoes a chaotic varia­
tion. Directly in collision events the spin l;( t) remains 
continuous, and the deflection l>l;(t) is chosen 
''integrally'' in the following moments as the result of 
change in the particle trajectory. The chaotic nature 
of the jumps leads to diffusion of the spins and a de­
crease in the initial degree of polarization of the beam. 

This depolarization meehanism was studied for the 
first time by Baier and OrlovPl who showed that, on 
deviation of the equilibrium orbit from a plane, the en­
ergy jumps arising as the result of quantum fluctua­
tions in the synchrotron radiation can lead to depolari­
zation of the electron (positron) beam. 

In this article we have developed a general approach 
to the problem of spin diffusion, this approach which 
does not depend on the specific nature of the source of 
momentum fluctuations and the structure of the electro­
magnetic field of the storage ring. Formulas have been 
obtained for the depolarization time far from spin 
resonances, and estimates are given of the rate of dif­
fusion in a resonance situation. As an illustration we 
discuss the important case of motion close to ideal (by 
ideal motion we mean motion with separated vertical 
and radial oscillations about a plane closed orbit). In 
the ideal approximation the spin diffusion is due to 
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vertical fluctuations of momentum. If they are small 
in comparison with the longitudinal fluctuations, the 
latter can become predominant as the result of de­
partures from an ideal situation. Depolarization ef­
fects due to energy fluctuations depend strongly on the 
specific form of the perturbations and are not listed to 
those indicated in ref. 7. 

It should be noted that far from spin resonances the 
depolarization mechanism being considered can be 
important only for systems with friction (damping) in 
the orbital motion (more accurately, under conditions 
where the lifetime of the beam is large in comparison 
with the damping times); in systems without "friction", 
scattering processes cannot depolarize the beam during 
the lifetime. 

In the present work we do not take into account the 
direct interaction of the spin with the "scatterer." 
Effects associated with this are sensitive to a consid­
erably smaller degree to the properties of the dynamic 
spin motion in an external field than the effects studied 
in the present work. In order to construct the kinetics 
of polarization in the region of dominance of various 
effects, it is sufficient to consider the effects inde­
pendently without taking into account possible correla­
tions between them. In refs. 8-10 and 3 the effect of 
radiative polarization of light particles has been stud­
ied for motion in a magnetic field. It is shown that in 
the case of a plane orbit in a time 

( 15l'3 X ) -• (1.2) -r.= ~v·R.s,.. 

(here .:t is the Compton wavelength, R- 1 is the radius 
of curvature of the orbit, and l>rad = -;s· - 1 d 0/ dt is the 
decrement of radiation loss) an equilibrium degree of 
polarization 8/ ( 5 ../3) R: 92% is established. 

This conclusion is valid only for T d >> Tp ( T d is 
the depolarization time obtained without inclusion of 
the interaction of the spin with the scatterer ). In the 
opposite case the beam is completely depolarized in 
a time Td. 

2. THE MAIN DIFFUSION EQUATION 

The kinetics of polarization for the diffusion mecha­
nism considered obviously depend substantially on the 
properties of the spin motion in an external field. The 
general nature of the dynamic motion of the spins of an 
ensemble of particles (without inclusion of diffusion 
and frictional processes) can be represented in the 
following way. The spin precession frequency WL can 
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be written as a function of the dynamic variables of the 
particle in the form 

Wt(/, '!',, O)=WL(I, '¥,+2n, 8) =Wt(/;, '!',, e+zn), (2.1) 

where Ii and 'lli are the action variables and the 
phases of synchrotron and betatron motions, and e is 
the generalized azimuth of the particle in the storage 
ring. 

We will assume that the motion of the spin in the 
equilibrium trajectory where WL = Ws(e) is known. 
Following ref. 4 we will introduce a periodic system of 
unit vectors 

(2.2) 

where n and 11 are orthogonal solutions of the equation 

( Ws is the equilibrium frequency of rotation of the 
particle), which have properties 

(2.3) 

n(8) = n(8 + 2n), 1')(8 + 2n) = e-'"'"1')(8), (2.4) 
n' = 1, '1'1' = 2, v = const, 

and the quantity 21Tll has the meaning of the angle of 
rotation of the spin about n during the period of motion 
of the particle. In the system of the unit vectors (2.2) 
the spin of a non-equilibrium particle satisfies the 
equation 

~' = [Wi;J, 

W = vn + W=vn + WL/e- W,j,w,, 
(2.5) 

w( Ii, 'lli, e) is due to deviation of the particle trajec­
tory from the equilibrium trajectory. 

In analogy to the case of a singly periodic depend­
ence, in a fixed non-equilibrium trajectory there is a 
solution m( Ii, 'lli, e) of Eq. (2.5) having the properties 
(2.1 ): 

m(I,, '¥,, H)=m(/,, 1I',+2n, 8) =m(l;, '¥,, 0+2n). (2.6) 

For our purpose there is no need of proving this 
statement here. All remaining solutions rotate about 
m with a single angular velocity. Thus, the general 
solution can be written in the form 

(2. 7) 

where l:m = !; • m = const; .p is the phase of spin pre­
cession about m; 1 = 11 + il2 is the complex unit vector 
transverse to m, satisfying the property (2.6). 

The choice of 1 uniquely determines the angular 
velocity .p'. Taking into account that m is the solution 
of (2.5), we obtain from (2.7) 

'ljJ' = Wm- '/,il'l', 

and we will choose 1 so that .p' does not depend on the 
phases 'lli, e. In the system of the unit vectors 1 and 
m the spin moves in a constant "field" lf!' = .p'm; in 
the equilibrium trajectory we have 

m,=n(8), l,=e(H), ¢.'=v. 

The sensitivity of m to the trajectory parameters 
depends substantially on the closeness to spin reso­
nances. 

For a small variation of w (w- w +ow), when the 
property (2 .6) is taken into account we obtain in the 
first approximation 

~ (l'llw). 
llm =Rei ..::_.-,--exp(- i'¥,), 

• "' - v. 

l'llw = .E: (l'llw), exp(- i'¥,), '¥,' = v •. (2.8) 

Let ljJ' not be equal to any combination of frequen­
cies of the orbital motion: 

3 

1jJ'- k-1: k,'¥;' == ljl'- ,,. == <D' =I= 0 (2 .9) 

( k, ki are integers). Then the particle spin value 
averaged for time t > 1 <I> l- 1 at a given azimuth e will 
be 

(2.10) 

where ( ... ) 'lli indicates averaging over the phases 'lli. 
If there is a spread ~<I>' in the frequencies <1>', the 
average spin for a group of particles with close-to­
gether values of Ii and l:m will be determined by a 
similar formula after mixing in the phases .p and 1/Ji 
for a time t > 1 ws~<I>' l- 1 • 

At the moment of the collision the spin projection 
!;m and the phase 1/J change discontinuously. In those 
cases in which in a time 1 <i>l- 1 the quantities m and 
<1>' change only slightly as a result of collisions, it is 
sufficient for description of the depolarization process 
to find the average rate of change of tm: 

(2.11) 

where 6/;m is the increase per unit time, averaged 
over the collisions. Using the continuity of !; in the 
collision event, we obtain for the increment 6/;m from 
Eq. (2.7) 

liS...=;Ilm =-'/,\,mom'+ Vi- \;m2 Rellimexp (-iljJ). (2.12) 

The right-hand part of (2 .11) can be averaged over 
all phases 1/J, 'l!i, and e if the following conditions are 
satisfied: 

1. The relaxation time Tm of the distribution in m 
(the characteristic time for change of m as the result 
of diffusion and damping processes) is large in com­
parison with the times of the dynamical motion of the 
spin: 

(2.13a) 

2. The change of the "field" ~m as a result of 
collisions during a time 1 ~ l- 1 is small: 

(2 .13b) 

On averaging over the phases, the second term in 
(2.12), which takes into account to first order in the 
momentum jumps op the action of dissipative forces 
(frictional forces), goes to zero. As a result we obtain 

(2.14) 

where ( om2 )I designates the variation, averaged over 
the phases 'lli and e, of the square of the scattering 
angle m per unit time om2 • Considering m as a func­
tion of coordinates and momenta ( r, p ), we can ex­
press om2 in terms of the momentum scattering tensor 

d.~ = '/,llp. 6p~ 

1,- ilm ilm 
--llm' =,---d ~ 
2 ilp. ilp, ". 

(2 .15) 
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As should be the case, i:n the region of applicability 
of Eq. (2.14) ( om2 )J « 1 if. 1. The value ( om2 )I in­
creases as spin resonances are approached (see Eq. 
(2.8)). Here the maximum rate of depolarization is 
limited by the conditions (2:.13). Far from resonances 
the spread in m is small ( 1 ~m I « 1) and the dom­
inant condition is (2.13a) (I .j, I » I~~ I), where 

(2.16) 

( .•. ) includes averaging al.so over Ii. 
Near a resonance, where rotation of m is possible 

as the result of diffusion, the dominant condition is 
(2.13b). 

For a complete description of the kinetic process it 
is necessary, strictly speaking, to include the equation 
describing the diffusion (or mixing) of the phase IJI. 
When the conditions (2.13) are satisfied there is no 
practical need of this, since the mixing time 1;1 
= ..; 1 - !;2 Re 1 exp ( -ilJI cannot be greater than the 
damping frme of /;m: even with neglect of the spread 
in frequencies ri>, as we can satisfy ourselves, a uni­
form distribution in 1;1 is established in a time less 
than < om2 )]:1 • 

The conditions (2.13) can be violated near reso­
nances. Here the use of Eq. (2.11) becomes ineffective, 
since, as the result of the rapid change in m due to 
diffusion and damping processes, tm is not an integral 
of the motion in times ~I ci• l-1• 

When condition (2.13) is violated, we can estimate 
the depolarization time from simple physical consider­
ations (see Sec. 5 and 6 ). 

3. DEPOLARIZATION TIME IN THE NONRESONANT 
CASE 

Let us find the depolarization time far from spin 
resonances where the deviation of m from n is small 
(I m - n I « 1 ). 

It is easy to see that in this case in system without 
friction in the orbital motion, TT:iJ_ ~ ( om2 ) and during 
the lifetime of the beam T max the initial degree of 
polarization is preserved. Actually, from (2 .14) 

16-I;mlmu ~ (6m')T.,,. ~I ~ml! .. ~ 1. (3.1) 

In systems with damping, 

(3.2) 

where I ~m I is the equilibrium spread in m in the 
beam. From (3.2) it follows that during the time of a 
small change in polarization, repeated mixing of the 
particle trajectories occurs. Averaging (2.14) over the 
equilibrium distribution of Ii> we obtain 

(3.3) 

As we can see, the average value (at a given azi­
muth) of the spin ( l;) e is damped exponentially with a 
decrement T;{ 

((;), = (S.,m), ~ (~)n(a) = ({;n),=on(e)e-'1'd. (3.4) 

Using the smallness of the deviation of m from n, 
we will write the solution m in the form 

m ~ n +RaCe. (3.5) 

Substituting (3 .5) into (2 .5 ), with inclusion of (2 .6) we 

obtain in the first approximation 

• 
C = ie-••• J (we').• eM' dEY_== Lwe•. (3.6) 

(The integration is carried out with a negative imagi­
nary addition to 11.) From (3.3) and (3.6) we obtain a 
formula for T(i: 

(3.7) 

where w · e* can be represented by a Fourier series: 

Then 

we• = L, (we').e-'•• == L,w •. 
• 

4. DEPOLARIZATION EFFECTS IN THE LINEAR 
APPROXIMATION 

(3.8) 

(3.9) 

Let us consider the main effects arising in an ap­
proximation linear in the deviation of the particle 
trajectory from the equilibrium orbit. The following 
corrections can be important only when 11 is in the 
immediate vicinity of the frequencies of the higher 
order terms. In the linear approximation we have 

• awl. awl. (4 1) we ""'wl.~~{} (y-y,)+-qm, • 
'\' {}qm 

where <Ja (a = 1, 2, 3, 4) are the transverse deviations 
of the coordinates and momenta of the particles from 
the equilibrium trajectory. 

The solution for qa has the form(UJ 

q.= (y-y,)pm(6) + U.,(a)A,, A,=const, (4.2) 

where (y - Ys)pa(e) determines a closed trajectory as 
a function of energy, and U aiAi describes the betatron 
oscillations. The quantity Uai is a 4 x 4 matrix of 
the normal solutions (the Floquet solutions): 

u •• = (Q~, Q,·, Q,, Q2), 

Q,(e + 2n) = exp(-2niv,)Q,(9); v, = -v~, v, = -v, 

( 11 1 and lis are the frequencies of betatron oscillations). 
In view of the low value of the synchrotron fre­

quency, far from spin resonances 

'V ~ k, k± v •.• (4.3) 

the energy oscillations can be taken into account 
adiabatically, setting y = const in determination of m. 
The effects of synchrotron modulation near resonances 
with high frequencies (4.3) have been discussed in Sec. 
6. 

The solution m can be written in the form 

m ~ n(y, 8) + ~m,, 
where n(y, ()) = n( y, () + 21T) is the solution m 
closed trajectory (n(Ys, ()) = n( () )), and ~mb 
to betatron oscillations. 

By means of Eq. (3 .6) we obtain 

n(y, 8) = n(8) + Re C,e, 

C i(y- y,) 'sn (awl. awl. ) .,= -+--P ei'Y'fd"C· 
exp(2niv) -1 oy oq. • 0+< ' 

0 

~m, = ReC,e, 

(4.4) 

for a 
is due 

(4.5) 
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A, '"(aw.L ) ( ) c.= i --U., e'" d-r. 4.6 ~exp[2ni(v-v,)]-1 s aq. •+< 
i,a. 0 

For functions F( e + 21T) = exp ( -21TiJ..L) F(e) the action 
of the operator 1 is: .. 

iF= i(e'"''•-•>- 1) _, J F(e + -r) e'" d-r. 
0 

Thus, 

1 1. ( I ac, ac. I') ( ) ,.-'=z-<llln(v,e)+llm.l'>=z- ay-llv+ aA, M, . 4.7 

The expression for the jump in betatron oscillation 
amplitudes we obtain from (4.2): 

llA, = U,. -• (llq. - p.lly) (4.8) 

( liqa >" 0, of course, only for the momentum compon­
ents). 

As can be seen, energy fluctuations lead to jumps 
not only in n(y, e), but also in the betatron part Amb, 
as the result of coupling of the transverse and longi­
tudinal motions of the particle about the equilibrium 
trajectory. Equation (4.7) takes into account also the 
correlation of these effects. 

Let us apply Eq. (4.7) to the common situation in 
which both the coupling of the vertical motion with the 
radial and longitudinal motions and the departure of n 
from the vertical direction are small. 

1) The case of ideal geometry (complete separation 
of vertical and radial oscillations about a plane closed 
orbit). As usual, [llJ we will represent the radius vec­
tor r of the particle in the form 

r = r,(e) + xe,(8) + ze,, (4.9) 

where x and z are the radial and vertical deviations 
from the plane equilibrium orbit rs. Here 

ev = r,', e/ =Key, e/ = -Kex, n(S) = ez = const, 

q' . v = ·y,-, W, = (1 + v)Ke,ro,, 
qo (4.10) 

r, rs, x, and z are measured in units of the reciprocal 
of the average radius of curvature of the equilibrium 
orbit 

1 •• 
( (K) = 2n s Kde = 1) . 

0 

In the linear approximation we obtain from (1.1) and 
(2.5) 

• 
w.L =[(1 +v)z" +tvKz'- iK'z]exp [iv J (K-1)d8 J. (4.11) 

(Since at the present time the systems with damping 
are storage rings for light particles, we will make use 
of the fact that q' / q0 is small.) As can be seen, the 
spin diffusion in this case is due only to scattering in 
the z direction. The formula for Td_1 has the form 

t.-' = __!_ ( llz"lt + _!__ •+s•· (K'- ivg,J [ t: (Slt:Wl 
2 2 1-exp2m(v+v,) 

• (4 .12) 

where fz( e + 21T) = e 211 illzfz( e) is the normal solution 
of the Floquet equation for z oscillations 

z" + g,z = 0, Im f,'f,' = 1. 

In the azimuthally uniform case 
K = 1, g, = v.', f,(e) = v;"' e••,•, 

(4.13) 
1 ( 'I'V 

2 
)' T.-• =- 1- ' (llz"). 

2 'V2-'Vz2 

For ll «liz the effect is due to the radial field 
which appears in the z oscillations. On the other hand, 
for ll » liz the decisive contribution is from the longi­
tudinal magnetic field H • v ~ Hzz'. The latter effect is 
not associated with nonuniformity of the magnetic field. 
At the point ~~~ = 11 2/ ( 1 + 11) the interference of these 
two effects leads to independence of the direction of 
m on z'. This explains the disappearance of diffusion 
in this case ( Td1 = 0). 

In the general case the result (4.12) depends to a 
significant degree on the structure of the magnetic 
system. Here an increase of Td_1 occurs near the 
resonances possible in the linear approximation, 

v ~ v,, = ±v, + kN, k = 0, 1..., (4.14) 

in proportion to ( 11 - llkt2, where N is the number of 
elements of periodicity in the orbit. 

Let us estimate the depolarization time (for elec­
trons, positrons) due to quantum fluctuations of syn­
chrotron radiation, which give 

(llz")~-li-~ 
mR 2 

( Y2 1irad is the radiative damping decrement). Com­
paring Td_1 near resonances (4.14) 

v'(g.') l\ (4.15) '_, ~ ll d 
d vzz(v- v,.)a R ra 

with (1.2), we see that, in the approximation of ideal 
geometry, quantum fluctuations of the radiation lead 
to depolarization only rather close to resonance: 

IY-v•l< v<lc.l> =.1_ <lc.l> ~ 10_, <lc.l>. (4.16) 
VVz: qo Vz 'Vz 

2) Effects of energy fluctuation for small departures 
from idealness. In the linear approximation the effect 
on the polarization of a scatter in energy appears in 
taking into account deviations from idealness and can 
become determining if the momentum spread in the 
transverse direction is sufficiently small. 

Inclusion of the nonideal part of the field leads to a 
dependence of the periodic part of m on y 
(an( y, () )/ ay >" 0) and of the betatron part A fib on the 
radial betatron oscillations. Here the amplitudes of 
betatron oscillations, as a result of coupling of trans­
verse and longitudinal motions, are in turn functions of 
energy. Let us consider typical examples. 

a) Effect of radial field gradient. Assume that in 
the equilibrium orbit 

{) 
H,- E, =H.= 0, g ==(H,)-' h(H,- E,) =I= 0 . (4 .17) 

(The dependence of Td_1 on Ex(rs) and Ey(rs) is not 
important in the linear approximation.) The equations 
of the z and x motion have the form 

Llv 
z" +g,z = gx, x" +c.x =-K, Llv =v-v.. (4.18) 

'\' 
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In this case the equilibrium motion of the particle 
and the spin are not distorted: n( 9) = ez. Therefore 
w 1 as before is due to vertical departures from the 
equilibrium orbit and has the form (4.11). The depend­
ence of m on energy is duE! to coupling of the vertical 
and radial motions for motion of the particle about the 
equilibrium orbit. 

Having determined p and U in (4.2) from (4.18), we 
can reduce (4.7) to the form 

1 <lly' ~ ~ A ~ ,.-• = 32 ---:;;-ILKJ;Lgj,(f,*Laf,- f,Laf.") 

-lt.KLgf;(f:Laf,- f,Laf:) I'). (4.19) 

' a= [i(v' -1)K'- '''K']exp [iv J (K -1)d6], 

where fx and fz are ideal Floquet solutions. It is 
evident from (4.19) that resonances are possible at 
v ~ilk= k, ±liz+ k, ±vx + k with a (v- Vkt2 depend­
ence near resonance. 

The resulting Td1 is the sum of (4.19) and (4.12). In 
particular, in the azimuthally uniform case K' = g~ 
= g~ = 0 we have 

_,_ 1 ( lly') v' ~ IK•I' 
'• -2 7 (v'-v,')' L, (v-k)'[('v-k)'-v.']' 

11•-0D 

(4.20) 
1 • • 

+-z<llz")(1- v':·v,'). 

Note that near a resonance v ~ Vz in the azimuthally 
uniform case the spin diffusion is determined by the 
mean-square amplitude A~ of free z oscillations. 
Actually '' 

A '=~(IIA ') . Z· ? I -

~ (4.21) 
't, {<II")+< lly') ~~ IK•I' } 

= 2v.' z 7 .l...~ (v,-k)'[(•v,-k)'-v.']' ' • 
where Tz1 is the total damping decrement of z oscilla­
tions. For v ~ vz we obtain 

v,' A.' (4 .22) 't -I,_ 't -1 • ~ 40•- v,)' • . 

b) Equilibrium motion distortion effects. Appear­
ance of Hx, Hy, and Ez, in addition to the obvious 
change in the perturbation w, leads to a direct depend­
ence of w 1 on Wz, associated with the inclination of 
n to the plane of the ideal equilibrium trajectory 
(n ( ())"" ez). The formula for Td in the general case 
is unwieldy and we will not present it completely. 

Let us consider the n distortion effect in an 
azimuthally uniform stora:ge ring for v ~ k >> 1, where 
k is the azimuthal harmonic of the perturbation Hx. 
(This case has been discussed in ref. 7). Here 

(4.23) 

The solution for n can be found by means of (4 .11 ), 
substituting z - zs ( zs a:re the vertical distortions of 
the equilibrium orbit) and retaining the leading term 
in v: 

(4.24) 

From (4.23) and (4.24) we find 

'_, = (v,v)' / lly' I !:._zx Lz "I') 
d 2 \ dy • 

_ 1 ( lly') (v,vk)'lz."l' 
-2 Y' (v-k)'(('v-k)'-v.']'' 

(4.25) 

where z~ ~ -k-2 H~/( Hz) is the harmonic of number 
k of the vertical distortion of the equilibrium orbit. 

In ref. 7 where the depolarization effect due to 
energy jumps was first discussed, Baler et al., de­
rived the equation 

1 ( lly') v'k' 
'td-1 ~- - . lz'l' 

2 y' (v-k)' ' · 
(4.26) 

The difference between (4.26) and (4.25) is explained 
by the fact that amplitude jumps in the betatron x oscil­
lations were not taken into account in ref. 7. This is 
justified only for lv - k I « vx. 

Let us compare the relative role of the field Hx and 
its gradient 8Hx/ax (Eqs. (4.25) and (4.20)). In prac­
tice, if special measures are not taken, 

I an./ I R - H. ~->1 
ox l:!R ' 

where R is the orbit radius, ~R is the effective length 
for variation of Hx with radius, which is usually of the 
order of the storage-ring chamber dimension. Here 
the term with the gradient will be the main term, ex­
cept very close to a resonance v ~ k: 

1-v-kl <vl:!R/R. (4.27) 

5. DIFFUSION NEAR RESONANCES 

For definiteness we will consider spin diffusion near 
an isolated resonance of first order in the presence of 
damping in the orbital motion of the particle. Examples 
with more complicated dynamical motion (the case of 
overlapping resonances) are discussed in Sec. 6. The 
correct solution for m, which is applicable also for 
lv- ilk IS I Wkl = u, has the form[ 6] 

m = h / h, h = en +' Re ue'"'•e•, 
e = 'V- "• + (wn), '!'.' = "•· (5.1) 

In a resonant system (rotating with respect to (2.2) 
with a velocity vkn) the spin precesses around m with 
a constant angular velocity h. In the case h > x, 11 

where X is the damping decrement of h resulting from 
friction (Tm ~ x-1), the depolarization time can be 
found by means of (2.14). In order of magnitude 

( 11lue'"'•l ') ~ u'A., ~8' ~ .!!'A., (5.2) 

where u2 and ~ 2 are the mean-square spread in the 
equilibrium state of the beam. 

For ~2 < u2 + ( E ) 2 the jumps in E can be neglected, 
and the estimate 

,.-• ~(lim')~ u'A./h' (5.3) 
is applicable also to the resonance region, where the 
spin diffusion rate reaches a maximum value r-;i ~ X. 21 

In the opposite case ~2 > u2 + ( t: ) 2 the depolariza­
tion is due to diffusion in E. Here T d is determined by 
the region of small I E I, which all particles visit in a 

'>we limit ourselves to the case X1 - X2 -A,- X. 
2>1n the resonance region, when the spread in m is large, there first 

occurs a dynamic mixing of the particle spins (dynamic depolarization) 
which, as a rule, does not lead to complete disappearance of < t > and an 
isotropic distribution of spins. The value of T d in this case characterizes 
the damping time of the "residual" polarization. 
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time ~A-1 as the result of diffusion processes. If IJ. 3 
> W, then condition (2.13b) (in our case cf1' =h) is 
satisfied for all E:. Here in order of magnitude Td is 
equal to the time to reach the resonance region I E: I 
~ u, where inversion of m occurs. Thus, for an 
equilibrium distribution of particles in the beam, 
Td ~ A- 1• And if 

(5.4) 

then (2.14) is applicable only. up to I E: 1 'S, E:b = ( 6€2 ) 113 . 
An estimate of T d can be obtained by considering the 
depolarization process as uncorrelated fast traversals 
with a frequency ~A of an effective region It I 'S E:b. 
For one traversal the change in ?;n to first order is: 

(5.5) 

where T ~ E:b1 is the time of rotation of the spin 
around n by an angle of order unity in traversal of the 
region 1 E: 1 < E:b. The mean-square rate of change of 

· 1 {) u' 
~.---(136.)' J..- --, J..6 •• 

2 a~. Eo 

Consequently, for the condition (5.4) we have 

_, u;'(A.)''• (5.6) 
-r. -~ ~ • 

Evaluation of Td by means of (2.14), of course, gives 
the same order of magnitude : 

•' S de' u' ( '}.. ) 'I• -r,-•- A. (13m')=--- . 
, 13e' !1 !1 .. 

It remains to consider the case h <A. Here (2.14) 
is inapplicable. Let us estimate the rate of damping of 
( ?;n). In times ~A.- 1 the field h can be considered as 
a small perturbation. In a time A- 1 (the flipping time 
is h- E:n) the change is 6?;n ~ i;lUA- 1 • The mean­
square rate of change is l;n ~ - u2?;n/A. Hence 

,;,-•- u'/A.. (5.7) 

The maximum diffusion rate rd-1 ~ A is reached 
max 

near resonances with a width u ~A, 6e2 • 

As should be the case, the depolarization time is 
always greater than the times of the dynamical motion 
(ri{ <h). 

For a single crossing of a resonance from outside, 
diffusion processes can be important only in the case 
of a slow crossing (I E:ext I « u2 ). For preservation of 
the degree of polarization the obvious necessary con­
dition is3> 

(5.8) 

6. SPIN DIFFUSION IN SYNCHROTRON CROSSINGS 
OF A RESONANCE 

Let us consider an example of spin diffusion for a 
more complex dynamical motion, when many reso­
nances overlap. Such a situation, for example, can 
occur near a resonance (4.3) at high frequencies (in 
the linear approximation) during slow synchrotron 
oscillations of the energy. In a resonant system the 

3>For u > A.,8e2,a dynamic depolarization occurs in the course of an 
adiabatic traversal. The condition (5.8) assures the restoration of the initial 
degree of polarization after traversal of the resonance. 

spin moves in average field modulated by energy oscil­
lations, 

h=h,+A(y), A(y)=l10 sin'¥,e,, '1'/=v,; (6.1) 

wy and 11 y are the phase and frequency of synchrotron 
oscillations. For A « 11 r or A « hs the diffusion 
rate can easily be found on the basis of the discussion 
above. Overlapping of resonances (in terms of the 
theory of isolated resonances) occurs for A >> 11y, hs. 
In this case we are dealing in essence with periodic 
traversals of a resonance (4.3). We will use the desig­
nations 

h=ee,+ue,, e=he,=e,+l1(y), 
u;e, = h, - (h,e,) e, = const. (6.2) 

The dynamics of the spin motion in a field of the 
form of (6.2) have been studied in ref. 6, where the 
periodic solution for m and the frequency ll of spin 
precession around m were found. Here the main 
parameters determining m and ll are 

n u• 1"" 
13 ~ ---. x = -s hd'¥,, 

4 v,!1, 2v, 
0 

1 ... 
Y = -J hsigned'¥,. 

2v, , 
(6.3) 

Here we will limit ourselves to discussion of the limit­
ing cases of fast or slow traversals. 

1) Fast traversal (6 « 1). For a single fast 
traversal [;3 changes by an amount Ai;3 ~ ...fO. Periodic 
crossing leads to oscillations of [;3 whose amplitude 
and frequency are determined by the closeness of Y/11 
~ E:s/lly to an integer: A?;smax ~ /6/sin Y, and the 
frequency of the oscillations is ll ~ 11 I' sin Y. A dif­
fusion .6 0 leads to development of chaotic phases of 
the traversals of the resonance. The reciprocal corre­
lation time of the traversal phase is 

-· ( - w ,'1• ) Tcorr ~min Vv; 6X2 ,_--~-A. . 
-v./' v.,/· 

The depolarization rate is determined by the dynamic 
change Ai;scorr in a time tcorr: 

(6.4) 

The following cases can be distinguished: 
a) llyl sin Yl > 6X2; here .6?;scorr ~ Al;3max and 

,;,-•- II, ijF (6.5) 
sin'Y+I3, 

( ffo is the width of a resonance Y = k11); 
b) 11,1 sin Yl < 6X2 < 11y; A?;scorr ~ Tcorr6o, 

T,-• ~ v/13, I 13X'; (6.6) 

c) 11 I' < 6X2 , .J Ally > ( 6€2 ) 1/ 3, successive traversals 
are completely uncorrelated: 

(6.7) 

d) .J11y.6 < (6€ 2 ) 1/ 3; 11}' >A; the change Ai;3 for a 
single traversal is limited by the diffusion of E: (see 
Section 5): 

2) Slow traversal (6 » 1). Here the departure of m 
from h/h is almost always exponentially small. In the 
adiabatic approximation, if u > (6€ 2 ) 113 , the resonance 
occurs dynamically with a rate E: = 11 r A0 • Here 

T,-•- min (v,; (13m')), (6m')- AA./ u. (6.9) 
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The case u < ( 5E 2 ) 113 does not differ from case d). 
The adiabatic nature is destroyed near resonances 

X ~ k7T (X ~ a/ 11 y) with width e -5 which occur as the 
result of diffusion in X. The change in traversal of 
one resonance is 

{6 .10) 

Since oX2 resonances are traversed per unit time, we 
have 

- ( /lX' )'''] -· ,;;~on-ideal ~ llX' [ 1 + e"• --::;; (6.11) 

The resulting Td1 is determined by the sum of {6 .9) 
and {6.11). As can be seen, nonadiabatic effects can be 
neglected for 

I A )''• A /l, e-"· ~ I - --
\ ~ v, 

The maximum rate (for a :~iven oX2 ) Td1 ~ oX2 is 
reached for e- 0o > (oX2/!•y)113• 
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