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A quantum transport equation is obtained in a linear approximation with respect to current-carrier concentration and in the 
one-band model. The equation resembles the kinetic equation, but the probabilities depend on the electric field strength. A 
new method for solving the equation is proposed, which is also valid for the usual kinetic equation. The method is employed 
to analyze a number of nontrivial physical situations leading to interesting effects in a strong electric field (negative differential 
conductivity, nonmonotonic current behavior, nonanalytic dependence of current on field strength). 

THE calculation of the electric conductivity a in a 
strong electric field E was based until most recently on 
solution of the Boltzmann kinetic equation by the method 
proposed by Davydov back in 1937[1]. On the other hand, 
in the case of a weak electric field, a convenient mathe­
matical formalism was constructed for the calculation 
of the kinetic coefficients, suitable also in those cases 
when the kinetic equation is not applicable. The general 
expression for a is given by the Kubo formula[zJ. Among 
the calculation methods, special notice should be taken 
of the Konstantinov and Perel' graphic techniqueC3J (the 
KP method), which could be generalized to include the 
case of strong electron-phonon couplingC4•5J. 

The number of investigations devoted to the general 
theory of electric conductivity of semiconductors in a 
strong electric field, not based on the kinetic equation, 
is relatively small. They can be broken up arbitrarily 
into five groups. 

1. Investigations in which the density- matrix method 
is used to derive the usual kinetic equation in a strong 
classical electric field (see, for example,C 6•7J). 

2. Investigations in which a new transport equation 
in crossed electric (strong) and magnetic (quantizing) 
fields is obtaineci8 • 9J with a weak electron-phonon coup­
ling. Inasmuch as the quantum- mechanical problem of 
the behavior of a free electron in crossed electric and 
magnetic fields can be solved accurately, this uncovers, 
in principle, a possibility of taking into account the in­
fluence of the electric field on the collision act. Inciden­
tally, this effect was not taken into account inC8 • 9J. 

3. Investigations in which closed equations are ob­
tained for the current j(E) in a strong electric field[ 10 ' 11J. 
We note that this is only the initial stage in the solution 
of the problem. To decipher such formulas it is neces­
sary to produce special computation methods even more 
perfect than those for the deciphering of the Kubo form­
ula. 

4. Investigations devoted to the derivation of general­
ized equations (i.e., equations valid for an arbitrary 
force of interaction with the scatterers) for the non­
equilibrium distribution functionsC12-15J, in which account 
is taken of the influence of the electric field on the scat­
tering, but the Coulomb correlations between the car­
riers are neglected. The following well-known kinetics 
methods are generalized to include the case of a strong 
electric field: the Green's function method in[12J , the 
Wigner density matrix method in[13J, and the KP method 
int:l4,15J. 

5. Investigations in which the equation for the trans­
port in the plasma is obtained with allowance for the 
influence of the electric field on the interaction between 
the carriers (see, for example,C 16J, and from among the 
later papersC17J ). For a classical plasma this can be 
done because of certain properties of the Liouville 
operator in an external field. For electrons in a solid, 
analogous possibilities are uncovered because of the 
Houston theorem[lsJ. 

The present paper should be assigned to the fourth 
group. Among the papers of this group, special notice 
should be taken of the paper by L. Keldysh[ 12J, where 
the most general approach, suitable for arbitrary 
statistics and (formally) for an arbitrary interaction 
force with the phonons, has been proposed. In this case 
the nonequilibrium distribution function f(k) must be de­
termined from Dyson's equation, which in the case of 
the Fermi statistics turns out to be nonlinear. In this 
case the usual analogy with the transport equation is 
completely lost (with the exception, of course, of the 
case when the field can be regarded as quasiclassical 
and the scattering as weak). Levinsont: 13J reconstructed 
this analogy formally, but only in the lowest order in the 
interaction with the phonons. The influence of the elec­
tric field on the scattering has been taken into account 
in the transition probabilities iJ: 13J (which were calcula­
ted in the lowest Born approximation), but no criterion 
was indicated for the electric field strength at which 
this influence becomes significant, and it is not indica­
ted in which concrete phenomena this influence can ap­
pear. 

We consider the case of low carrier density n, when 
the correlation effects can be neglected and it can be 
assumed that there is no degeneracy (Boltzmann statis­
tics). This makes it possible to perform all the calcula­
tions in the lowest order in n. In addition, we take into 
account the finite width of the allowed band ~E, which 
greatly facilitates the calculations (the calculations 
in[12 ' 13J correspond to ~E- oo). We impose no limita­
tions whatever on the force of the coupling with the 
phonons. Thus, our analysis has a more general charac­
ter than int: 13J, and is less general than inC 12 J. InC 14 •15J, 
the expression for j(E) was represented in the following 
form: 

Here Xm is the projection on the x axis (E 11 x) of the 
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radius vector of the lattice point Rm. The quantity W 
(which we call the effective transition probability) has 
the dimension sec-1 and satisfies the equation[15J 

(T,Xm,• Xm, (k 1 k ) = WXm,• Xm, (k , k ) 
n Xm:• Xm., l_ t .i Xm~· Xm, .L , .L 

+ ~ '\.~ Tf.Xm,• Xm, (k ' k ") 1i WXm,• Xm, (k " k ) 
~ LJ '. Xmz· Xm, 1. ' .l ieE (Xm,- Xm,) xll4. Xm,. .l ' l. ' 

k..!._" Xm,r-Xm, 

where W is a certain probability (in the general case, 
not diagonal over the sites) of the transition between the 
states of the Stark ladder, the graphic recipe for deter­
mination of which (for both strong and weak coupling) is 
given inl= 14 •15J. The function n(k 1) describes the distribu­
tion over the transverse momentum k 1. It is normalized 
to unity: 

,En(k.L)=1, 
• j_ 

and satisfies an integral equation of the type[ 14 •15J 

~ n(k.t')W(k.t'• k.t)=O, W(k.L'• k.t)= ~ w~:i:::(k.t'• k.L)· 
~ ~ 

(3) 
The solution of (2) can be represented formally in the 

form of a series in powers of W/nE, where nE = eEa/ti 
(a is the lattice constant). At W/nE « 1, the corre­
sponding expansion can be terminated, and the formula 
obtained thereby for j(E) is somewhat reminescent of 
the Titeica formula, which describes Umklapp in a 
strong magnetic field. We present below some new phys­
ical results that follow from this formula. In the case of 
very narrow allowed bands (~E/kT « 1, where ~E is 
the width of the allowed band), we can put n(k 1) ~ 1. 
Then formula (1) becomes much simpler, and Eq. (2) 
can be solved exactly for arbitrary E. The correspond­
ing results (as applied to the case of a small- radius 
polaron) are given in[14J. We shall show that in the most 
general case formula (1), with allowance for relations 
(2) and (3), is equivalent to a solution with the aid of a 
certain transport equation, in which the probabilities 
depend on the electric field (which reflects the influence 
of the electric field on the scattering act). It is valid 
for any coupling force with the phonons and at an arbi­
trary band width. In particular, it is possible to obtain 
from it all the results given in[14J for small- radius 
polarons, and also certain new results in the case of a 
strong electron-phonon coupling. 

In the case of a weak electron-phonon coupling, we 
consider the following concrete situations, which are 
not described by the Boltzmann equation. 

1. Superstrong "quantizing" fields, when ~E/tinE is 
not too large (i.e., the width of the band spans a small 
number of Stark levelfi:19J), but nET » 1 (i.e., the levels 
of the Stark ladder are not smeared out). In this case 
the experimental current j(E) may experience strong 
nonmonotonicities in E. This effect was predicted ini: 14J 
and was observed independently ini: 20J. 

2. Strong (but not necessarily "quantizing") electric 
fields in semiconductors with narrow allowed bands. For 
example, if ~E < tiwo (w 0 is the frequency of the optical 
phonons), then single-phonon processes are forbidden as 
E - 0, and the kinetics is determined by weak two­
phonon scattering. However, with increasing E, the 
single-phonon processes become allowed because of 
tunneling through the quasiclassical barrier in the strong 

Motion of electron in the Bril­
louin zone in the presence of an 
electric field. The arrow shows the 
transition following a collision with 
a phonon. The dash-dot lines limit 
the first Brillouin zone. 

electric field (in this case the o functions describing the 
energy conservation laws become smeared out). The 
dependence of the corresponding contribution to the cur­
rent j(E) takes the form E312 exp(-E0 /E). We were the 
first to obtain these results, although they can be deter­
mined from the transport equation proposed ini= 13J. 

We investigate also the case of a classically strong 
electric field nET » 1, ~E/tinE- "",which can be 
considered with the aid of the ordinary kinetic equation, 
but we shall solve it by another method, iterating in 
powers of W/nE. We then arrive at the conclusion that 
the differential conductivity is negative. 

1. NEW FORMULA FOR THE CURRENT IN THE CASE 
OF WEAK COUPLING AND CLASSICAL ELECTRIC 
FIELDS (~E/linE - oo) 

We shall show below how to obtain from the kinetic 
equation, for arbitrary nET, a formula of the type (1) 
for j(E). We present first certain qualitative considera­
tions concerning the form of j(E) when nET » 1. 

Let us consider for simplicity the case of one-dimen­
sional motion, and then let us generalize the result to 
the three-dimensional case. The figure shows the de­
pendence of the electron energy E on k within the limits 
of the first Brillouin zone. At E ""0, in the absence of 
scattering (nET - oo), the wave vector varies in time 
like k(t) = k(O) + eEt/ti, and the velocity v is a periodic 
function of the time: 

v=~~= 1 de[k(O)+eEt/li] 
lidk eE dt 

Thus, as nET ---:-- oo the electron executes oscillations 
in coordinate (and momentum) space with frequency nE, 
by virtue of which the average current is equal to zero. 
If an electron having a momentum tik' collides with a 
phonon at the instant of time T and changes its momen­
tum jumpwise (k'- k), then at t >Tit will again start 
to move periodically. By the time T + ~t, when its mo­
mentum has again become equal to tik', it has moved in 
coordinate space through a distance ~x: 

T+~t 

t!.x(k' k) = J v(t)dt =J{ k" ~!_de(k") = e(k')- e(k) 
d dk"li dk" eE · 

T • (4) 

Multiplying ~x by the collision probability W(k', k), 
summing over k, and averaging over k', we obtain the 
drift velocity v' where j = env: 

j,=en I:n(k.L')tJ.x(k',k)W(k',k) 
lr.,lr.• 

=; L n(k.L') (e(k')- e(k)]W(k',k). 

(5) 

Jr.,,.t. 
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Differentiating (11) with respect to kx with allowance for 
(15) and (13), we obtain 

at(k) =~_!_Jd'k'n(k 'JW(k' kJ. 
ak. eE A .L ' (18) 

(A) 

According to (11) and (14) we have 

Jjk+G) =/(k),W(k'+G', k+G)=W(k',k), n(k.L+G.L)=n(kL)· 

We change over in (17) to integration with respect to k 
only in the first Brillouin zone. Substituting (18) in (17), 
we obtain ultimately 

j. = _!!_~s d'kJ d'k'n(k/) [e(k')- e(k)]W(k',k). (19) 
E (2n)' 

We have taken into account here the fact that, according 
to (14)' r d3kW(k'' k) = 0. This has made it possible to 
add in ((9) a term containing E(k') and identically equal 
to zero. However, such a way of writing the equation is 
convenient, since it makes it possible to omit the con­
tributions made to W by the departure terms. 

Thus, (19) coincides with (5) apart from the substitu­
tion W- W. If the integral term in (16) is small (i.e., 
OET > 1), then the first iteration is w<o = W. The next 
iteration term makes a contribution from the processes 
with two successive collisions during the period of the 
oscillation in the electric field, etc. We present below 
several concrete examples of the use of the formulas 
obtained in the present section. 

2. QUANTUM TRANSPORT EQUATION IN ARBITRARY 
ELECTRIC FIELDS 

In the preceding section it was shown that in non­
quantizing electric fields and in the case of weak coup­
ling with the phonons, a formula of the type (19) and the 
traditional expression for the current (17) are equiva­
lent. In the present section we shall show that the ex­
pression (1) for the current in an arbitrary field E and 
at an arbitrary force of interaction with the phonons can 
be written in the form · 

i.(E) =en _Et(k) v:rr. (20) 

The summation over k is carried out here within the 
limits of the first Brillouin zone, and f(k) is a distribu­
tion function normalized to unity and satisfying the quan­
tum transport equation 

e: il~k~) = .E [W(k',k)j(k')- /(k)W(k,k')]. (21) .. 
The transition probabilities W(k', k) are defined as fol­
lows: 

W(k',k) =lim W(k',k,x), _, 
1 X X 

W (k', k, x) = N,• ~ W x::: x:: (k.L'• k.L) exp {ik/ (Xm,- Xm,)- ikx 
Xm (2~ 

x (X,.,- Xm.)- i xi (Xm, + Xm,- Xm,- Xm,)- iX (k' + ; ) 

-1- ir.(k'- ; ) + tx (k + ; ) - tx (k- ; )} . (23) 

The quantity viff(k) has the dimension of velocity and is 
equal to 
veff (k) = ~ ile(k) -. \"1 W (k k') 

X n ak;r;. ~ ~ 1 ' ' .. W, (k, k') = lim-il- W (k, k', x); 
-o ax;c 

(24) 

Nx is the normalization number for the summation over 
Xm, which of the order of the number of atoms in the 
crystal along the x axis(lSJ, and x(k) isC 15J 

ilr.(k) 1 
eEak=e(k)-e(k.L), e(k.L)=- ~ e(k). 

x Nx £..J (25) 
k 

The probabilities w~ml' ~m3 (kJ., kl) we~e defined ini: 15J, 
m2• m4 

where a graphic recipe was given for the calculation for 
both weak coupling with the phonons and for the model 
of small-radius polarons (see the Appendices in[15J). We 
present here an expression only for the diagonal proba­
bility 

w;::: ~= (k.L'. k.L) = 21irt ~I Cq 12 (8, .L'' k rq.L[(1 +Nq) II+ (U, k.L'. X m-Xm·) 
q 

+Nqll-(",k.L'• Xm-Xm·)]-llxm,Xm•l)k.L'·'.L ~ [(1 +Nq)iJ+ 
Xm" 

X (q, k.L'• Xm") + Nqil-(q, k.L'• Xm")]}, (26) 

in which 

B(k, k', Xm) = exp{- ik,Xm + ix(k)- ir.(k') }. (27) 

Equation (23) is outwardly similar to the kinetic 
equation (6), but does not coincide with it, since W(k', k) 
take into account the influence of the electric field on 
the collision act. Only at not too strong a field and in 
the first Born approximation in the scattering does (21) 
coincide with (6) (see below). 

We go over to the k representation in the expression 
for the current (1) with the aid of (23), which obtains in 
the case of homogeneous space (compare with (6) inC 24J), 
when the following relation is satisfied: 

(28) 
After simple algebraic transformations we obtain 

j,<''=-..:!.:_~n(k.L')W(k',k) e(k), i;'l=-i..:!.:_~n(k.L')W,(k',k), 
~~ d ~~ 
~ ~~ ~~ 

with jx = j~' + j~'. In the derivation of (29) we used sum 
rules for W in the k representation: 

.E -w (k', k) = 0, 

• 
.E n (k.L') W (k', k) = 0. 
lr.',kx 

(30) 

Formulas (30) coincide with (3) of the present paper 
and (35) oP5J, written out in the k representation. We 
change over likewise to the k representation in Eq. (2) 
for W: 

W(k',k,x)=W(k',k,x)+ _EF(k',k",x)W(k",k,x); (31) ... 
Here 

F(k',k,x)= .E W(k',k",x)ll•:t.·•.L; • .E ie:X .. exp{i(k.-k.'')X. 
k" z.*o 

tx(k"+ ;)+tx(k"- ;)+tx(k+ ;)-tx(k- ;)}. (32) 

It is now convenient to introduce the function f(k) in 
accordance with the equation 

/(k) = N.-• [ n(k.LJ+ L, n(k.L')F(k',k)], .. (33) 

F(k', k) =lim F(k', k, x) . ,._, 



- --------------------------------------------------------

GENERAL THEORY OF TRANSPORT PROCESSES 1275 

The function n(k 1) introduced here is a reflection of the 
specific character of the three- dimensional case (in the 
one-dimensional case n(k1) = 1) and describes the dis­
tribution with respect to the momentum perpendicular 
to the field, i.e., n(k 1) is the distribution function f(k) 
averaged over kx(E II x): 

n(k.L) = ~ f(k). ...... 
•. 

It is possible to take into account analogously the 
probability of successive (in time) collisions of an elec­
tron with two phonons within one period of oscillations 
in a field, etc. This would lead to a renormalization of 
the probability W, i.e., to a substitution W - W (see be­
low). However, when nET >> 1, we can confine our­
selves to allowance for only one collision per period, 
and use formula (5). The case of arbitrary nET is more 
conveniently considered with the aid of the kinetic equa­
tion 

eE of(k) = ~ J d'k'f(k') W(k', k). 
h ok, A (6) 

(A) 

The probabilities W include here both the arrival terms 
and the departure terms, i.e., in the usual notation 

W(k', kl-.. W(k', k)- 6,,,, L: W(k, k"). ... 
If E makes an irrational angle with the crystallographic 
axes, then in the absence of scattering the trajectory of 
the electron's motion in the first Brillouin zone does not 
close, and its motion is quasiperiodic. When the direc­
tion of E coincides with a high- symmetry axis of the 
crystal, the electron motion becomes periodic. In the 
general case it is convenient to consider the motion of 
the electron in complete k space with a normalization 
volume A, without confining ourselves to the first 
Brillouin zone. This makes it possible to find a formula 
for the current at an arbitrary orientation of E relative 
to the crystallographic axes. Indeed, for any rational 
angle between E and the crystallographic axes there ex­
ists a finite region ink space, within which the electron 
executes periodic motion along x with a period Kx. We 
choose in k space a normalization length Ax in the x 
direction, equal to an integer number of periods Kx. 
This makes it possible to formulate boundary conditions 
for the differential equation (6), which we choose to be a 
condition of cyclicity in x: 

f(k, +Ax, k_c} = f(k., k.L)· (7) 

When solving the kinetic equation under ordinary condi­
tions, when the moving electron does not reach the edge 
of the Brillouin zone, we use as the boundary condition 
f(E) ~ 0 as E ~ oo. The condition (7) is a generalization 
to the case of arbitrary motion in the zone. In the next 
section this condition will actually be derived. 

Any irrational direction of E can be obtained by 
means of an infinitesimally small rotation relative to a 
certain rational direction. It is clear that in the pres­
ence of scattering, such a rotation should not change 
f(k) jumpwise. Therefore any irrational direction of E 
can be regarded as the limit of a sequence of rational 
directions, by the same token generalizing (7) to the 
case of arbitrary angles. In all the final results it is 
necessary to make the transition Ax~ 00 • 

We rewrite Eq. (6) in integral form 

/(k) = n(k.cl+} J d'k'f(k')F(k', k)+ e: k, J d'k'/(k') W(k',k_c). (8) 
(A) (A) 

Here 
1 

W(k',k.c)=_:_ s dk,W(k',k), 
A, 

(Ax) 

and F(k', k) is defined by the equations 

aF~~· k) = :E {W(k', k)- W(k', k.L) }, s F(k', k)dk, = 0. (9) 
(A) 

Solving (9), we obtain 
h 

F(k',k}= :E{ i dk/'[W(k'; k/',k.c)- W(k',k.L)] 
-A:t./2 

+~X s dk/'k/' [W(k'; k/', k_c)- W(k', k_c) l}. 
(9a) 

(Ax) 

It is easy to verify that the function F(k', k) defined in 
accordance with (9) and (9a) is periodic: F(k' + G', 
k + G) = F(k', k) (G and G' are the reciprocal-lattice 
vectors). Since Ax is one of the reciprocal-lattice vec­
tors (Ax= G~ 1 , Gj_01 = 0), we get, in particular, 
F(k'; kx +A X' k 1) = F(k', k). The condition of periodic­
ity of (7) requires that the last term in the right-hand 
side of (8) vanish: 

s d'k'f(k') W(k', k~) = 0. (10) 
(A) 

Relation (10) makes it possible to determine the func­
tion n(k 1). 

We can now write the formal solution of Eq. (8): 

f(k)= n(k.cl+_!__ J d'k'n(k.L')F(k',k). (11) 
A(A) 

The function F(k', k) is determined from the equation 

F(k',k)=F(k',kl+ ~ Ja'k" F(k',k")F(k",k) 
(A) (12) 

= F(k', k) + ~s d'k"F(k', k")F(k", k). 
A 

(A) 

To determine n(k 1 ) we substitute the solution (11) for 
f(k) into relation (10). As a result we obtain an equation 
for n(k 1): 

J d'k' S dk,n(k.c')W(k',k)=O, 
(A) (A:t) 

W(k',k) = W(k',k)+ ~ S d'k"F(k',k")W(k",k). 

(13) 

(14) 

Comparing (14) with Eq. (12) differentiated with respect 
to kx, we have 

aF~~~k) = e~ [W(k',k)-W(k',k.c)], J dk,F(k',k)=O, (15) 
(A:t) 

i.e., F is expressed in terms of W in exactly the same 
manner as F in terms of W (see (9a)). In addition, W 
satisfies the equation 

W(k',k) = W(k',kJ+ ~ J d'k"F(k',k")W(k",k). (16) 

Formulas (11)- (14) give the exact solution of the 
kinetic equation. It is possible to express with their aid 
the current in terms of W: 

. en 1 J , ae(k) en 1 J of(k) 
lx = ---;;:-- d kf(k) -"-= --- d'ke(k) --. (17) 

" A ok, h A ak 
(A) (A) 
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From the definition (33) it follows that 

.E f(k) = n(k.c), }2 f(k) = 1, 
•. k 

since, according to (32), 

.E F(k', k) = 0. 
•. 

We shall now show that the function f(k) introduced 
by us actually satisfies the quantum transport equation 
(21), i.e., we can assign to it the meaning of a distribu­
tion function. To this end we multiply both parts of (33) 
by W(k, k") and sum over k. Using (31), we obtain 

_Et(k)W(k,k")=; _En(k.c)W(k,k"). (34) 
k • k 

On the other hand, differentiating (33) with respect to 
kx and recognizing that 

a~. F(k',k)= e: { W(k',k)-;,r, W(k',k) }. 

•. 
we get 

iif(k) =...!:_~ ~ n(k.')W(k' k) 
iik. eE N. L.l ~ ' . (35) .. 

Combining (34) and (35) and taking into account the sum 
rule 

.E W(k', k) = 0, 

which follows from (31), we arrive at the sought equa­
tion (21) for f(k). 

We can now express the current in terms of f(k). 
According to (29) and (34) 

i!') = -~ ~ e(k) iif(k) =en~ f(k) ~ iie(k) . (36) 
li i..J iik. i..J li iik. 

k k 

In order to express j~) in terms of f(k), we differentiate 
Eq. (31) with respect to Kx, after which we put" = 0 and 
sum over k: 

.E W,(k',k) = .E W,(k',k)-t- ~F(k',k,)W,(k,,k). 
k k k,kl 

Comparing this expression with (29), we obtain 

i;')= -ien ,Et(k') I: W,(k',k). (37) 
k' k 

Adding (36) and (37), we obtain the sought formula (20) 
for the current. 

Formula (20) for the current differs from the tradi­
tional formula (17) in that v is replaced by veff. In the 
usual case (weak coupling with phonons), the operator of 
the coordinate R commutes with the Froehlich interac­
tion Hamiltonian. Actually, in crystals with an inversion 
center, the Wannier functions <P(r) are symmetrical with 
respect to the substitution r-- r, and in the single­
band approximation we have 

i.e., R is diagonal in the m representation and commutes 
with the Froehlich Hamiltonian which is diagonal in the 
m representation. In this case we have the relation1 ) 

1)This relation can be obtained within the framework of the graphic 
techniaue proposed in[! 5l, by pairwise adding of graphs that differ from 
one another by the transfer of the extreme right-hand point from the upper 
axis to the lower one. 

and the formula for the current assumes th_!l traditional 
form. In the small-radius polaron model, R does not 
commute with the interaction Hamiltonian, and the con­
tribution from W1 differs from zero (W1 gives rise to 
an Umklapp contribution to the mobility). 

InC 15J are given expressions for Win the case of 
weak coupling with phonons in the stark-ladder repre­
sentation (see (A.4) and (A.5) inl= 15J). By using formula 
(23) it is possible to obtain with their aid an expression 
for W(k', k), in the lowest (Born) approximation in the 
interaction: 

W (k', k) = .E [w. +(k', k + q)- w. +(k', k) + w. -(k', k + q)- w. -(k', k) J, 

w~ (k', k) = 

• 
2 1 1 00 

n• fcqf'(Nq+2±2)Re \ dt.S,',k-eEtfoexp{-(s±iu>q)t 
0 

. I 

--F\at'[e(k-q~e: t')-e(k-e: t')]}: (38) 
0 

here wq is the frequency of a phonon with momentum q, 
sis the adiabatic parameter (s- +0), Nq is the distri­
bution function for the phonons, and lcql 2 is the square 
of the amplitude of the electron- phonon interaction. We 
note that W(k', k), written out in the lowest approxima­
tion in the interaction, actually coincides with the proba­
bility fromU 3 J (where, however, the case of an infinitely 
broad electron band is considered), i.e., in this particu­
lar case the quantum transport equation (21) obtained 
by us goes over into the corresponding equation ofC 13J. 
If we put in (38) E = 0, then W(k', k) goes over into the 
classical expression for the probability without allow­
ance for the influence of the field E. 

The expression (20) for the current and the transport 
equation (21) in the k representation are valid for any 
field direction, whereas formula (1) for the current was 
valid only when the field direction coincided with that of 
a high- symmetry axis of the crystal. Indeed, W(k', k) is 
the probability of the transition between the electronic 
states in the Houston representation[lBJ, which is valid 
for an arbitrary field direction. 

We note that if W(k', k) and f(k) are linearized with 
respect to E in the transport equation (21), the latter 
goes over into the kinetic equation obtained inC3J , and 
the linear-in-E corrections to W(k', k) renormalize the 
left- hand side of the equation and constitute its vertex 
part r (see (8) irf 3 J). 

3. DISTRIBUTION FUNCTION WITH RESPECT TO THE 
PERPENDICULAR MOMENTA n(k 1) 

It was shown above that n(k 1) is the symmetrical 
part, averaged over kx, of the distribution function f(k). 
Therefore in the classical limit, but n(k 1) for OET > 1 
should be "smeared out" over the entire Brillouin zone. 
Let us find the form of n(k 1 ) upon interaction with non­
polarization optical phonons (lcql 2 = [cl 2 , wq = wo), as­
suming for simplicity that E(k) = E(kx) + E(k1). Then the 
equation for n(k 1) (13) assumes in the classical limit the 
form 

s d'q sdk.[ n(q_c}{ (N., + i)D-(q, k)+ N.,D+ (q, k)} 
- n(k.c) {(N., + i)D+(q, k)+N.,D-(q, k)} J = 0, (39) 

D±(q, k) = 6(e(q.c)- e(k.c) + e(q.)- e(k.) ± liw,). 
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The integration is carried out ·within the limits of the 
first Brillouin zone, the volume of which is v c = K_xK~, 
where Kx is the length of the zone in the x direction, 
and K~ is the area of its cross section in the yz plane. 
As seen from the structure (39), n(k1) = n(E(k1)) (we put 
for brevity E(k 1) = 1;). Now (39) can be simplified using 
the "quasielasticity" condition tiwo <<~Ex, ~E 1 , where 
~Ex and ~E 1 are the widths of the band in the longitud­
inal and transverse directions, respectively. Expanding 
D:t in powers of tiwo and retaining the first and zeroth 
terms, we obtain 

J d'd dk,{ cthc:~) [n(e(q.c))- n(~) ]D 

+liw,[n(e(q.c))+n(~)]D'}=o, (40) 

D = 6(e(q.c)- ~+ e(q,)- e(k,)). 

The prime denotes differentiation with respect to 1;. 

We consider first the case ~Ex - ~E1 - ~E. It is 
convenient to represent n( 1;) in the form 

[ liw, ] n(~)=C 1-Mq>(~) , 

where C is a constant determined from the normaliza­
tion condition. For rp(i;) in the lowest order in tiwo/ ~E 
we obtain from (40): 

cth ( ::; )S d'q J dk, {cp(e(q.c))- q>(~)} D = M J d'd dk,D'. (41) 

We see therefore that rp(i;) Rj 1, i.e., n(k1) Rj C accurate 
to tiwo/ ~E. 

Let ~E 1 »~Ex· Expanding Din (40) in powers of 
E(qx)- E(kx) and confining ourselves to terms linear in 
~Ex/ ~E1 , we obtain 

n(~) = C exp {- ~ (:;>th ( ::; )}. (t.E,)' = ~) dk,e'(k,)(.42) 

Thus, with the exception of an extremely asymmetrical 
band, when 

t.E.chw, h(lioo' \ ....,_ 
(t.E,)' t 2kT.J "" 1• 

we can put in classical fields n(k 1) = C. 
In the limit of quantizing fields, in the single- band 

approximation, the current tends to zero, the system 
becomes nondissipative, and 

n(k.c) = C exp{-e(k.c) I kT}. 

Such a distribution corresponds to the case of scattering 
of an electron inside a single Stark subband, and it can 
be obtained from (3) if in the sum over Xm we confine 
ourselves to the term with Xm = 0 (see formula (26)). 
We note that in the quantum case the probability of scat­
tering between different Stark subbands is small com­
pared with the intraband scattering with respect to the 
parameter ~Ex/tinE. As shown by Levinson (private 
communication), when tinE >~Ex« tiwo, allowance for 
weak interband scattering causes a Maxwellian distribu­
tion to be obtained only at E(k 1) ~ tiw0 , and in the inter­
val from tiw0 to tinE there is a small smooth non­
exponential tail. 

4. ELECTRIC CONDUCTIVITY IN A STRONG FIELD IN 
THE PRESENCE OF TOTAL HEATING 
In the preceding section it was shown that in non­

quantizing fields (~E/fl.nE » 1) there is complete heat-

ing of the carriers and n(k1 ) = C if nET » 1. Let us 
examine the current under such conditions. 

We begin with the case of classically strong fields 
(~E/tinE- oo, nET » 1). ~bstituting n(k.J = C in (19) 
and making the substitution W- W(nET » 1), we obtain 

n v• J J j, =E (2;)' d'k d'qJc.J' · 2nw,6(e(k+q)- e(k)+liw.). (43) 

It follows from (43) that when n(k1) = C and nET » 1, 
the current does not depend on the lattice temperature, 
which, generally speaking, contradicts the conclusions 
of Bychkov and DykhneC21J. Incidentally, in scattering 
by unpolarized optical phonons only (lcql2 = Jcl 2 

= y (tiv.•o) 2 , w q = w0), we obtain 
AE 

. _ .!!._ \ d li.wo dN(e) dN(e) = ~ C dlkll( - (k)) (44) 
lx - E J e -r0 (e) de ' de (2n)3 J 8 e ' 

~ ... 
which coincides withE21J if we put in place of (12) inC21J 

-r,-• (e) = 2nw,yhw,dN(e -liw,) I de. (45) 

Formula (44) is valid for any temperature, and not only 
at kT < tiv.•o as inC21J. Another important difference be­
tween (43) and the results oP1J is that the contributions 
to the current from different scattering mechanisms 
are additive. 

In scattering by polarization optical phonons we have 
in order of magnitude, according to (43) 

. hw, ( liw, ) ''• 
J~ ~ enVmua-- --z 

eEa t.E ' (46) 

where 
Vm .. = M a ~ [ 5 ·10' -- 1·10' em ] !lE 

1'IIJ sec 1eV' 

a is the lattice constant, a is the Froehlich coupling 
constant, z is the number of nearest neighbors in the 
lattice, and wz is the frequency of the polarization 
phonons. 

In the case of scattering by acoustic phonons we have 

( E, )'hwn liwn is ::::::::: enVmu - --- · 2nz2 

ilE Ms' eEa ' (47) 

where wn is the Debye frequency, M is the reduced 
mass of the cell, s is the speed of sound, and Eo is the 
constant of the deformation potential. 

The condition nET > 1 can be rewritten in the form 
E > 2 x 104 (sec/ 1012T). By T -l is meant the frequency 
of collisions with phonons, averaged over the entire 
width of the electron band, and in order of magnitude 
T - Ttr(tiw/ ~E) 112 , where Ttr is the transport relaxa­
tion time, w is the characteristic phonon frequency: 
w = w0 for acoustic phonons and w = w0 or w = wz for 
optical phonons. 

Thus, in the absence of cascade ionization, negative 
differential conductivity takes place at nET » 1, and 
the current is inversely proportional to the field. This 
conclusion coincides with the results ofC21J. 

We now obtain for the current a formula that is valid 
in quantizing fields in the case of total heating (n(k 1) 
;:, C). To this end we substitute in (20) n(k 1) = C, 
W- W, and we use Win the form (38). Then in the 
model where the coupling with the phonons is weak, as 
noted in Sec. 2, we have yeff = ti-1Ve(k). Integrating by 
parts (with respect to (t) in the obtained expression, we 
get 
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n V 2 = 
j,= hE (2:),J d'kJ d'qjc.l'w.·2Ref dte-•'exp[-iF(k,q,t)], (48) 

where 

1m E E 
F(k,q; t) = w.t+h J dt' { e (k- q+Tt')- e (k +Tt')} .(49) 

-t/2 

According to (48) in the quantum case, just as in the 
classical one, the current is independent of the tempera­
ture when n(k 1) = C. Putting E = 0 in ( 49), we arrive at 
formula ( 43), which has been obtained from the classical 
kinetic equation. 

In the case when E coincides with a rational direc­
tion in the lattice, it is convenient to go over in (48) to 
the Fourier representation 

j, = -.!:_~S d'k Sd'qJc.J' 
hE (2n)' 

n/OE 

X 2nw. J dt exp[- iF(k, q; t)] I: b(2nn- v(k.L, q)), (50) 
-n/QE 

where 
2n{ 1 } 1°' \'(k.L,q)=~ w.+ 11[e(k.L-q.L)-e(k.L)] , e(k.L)=G,J dk,e(k). 

0 (51) 
Here Go is the smallest of the reciprocal-lattice vectors 
coinciding with the field direction. For example, in a 
cubic crystal with a lattice constant a, for E directed 
along the axes [100], [110], and [111], Go is equal to 
27T/a, 27T-/2/a, and 27Tv'3/a, respectively. The quantity nE, 
as before, is the frequency of the electron oscillations 
in the field, nE = 27TeE/nG0 • 

The formula for the current (50) can readily be ob­
tained from (1), since the transition to the Fourier 
representation with respect to time connects the 
Houston representation with the Stark-ladder represen­
tation. 

In some applications, when the field is quasiclassical 
(t.E/llnE » 1), it is convenient to use for the current a 
formula in somewhat different form, summing over n in 
(50) by the Poisson method: 

n V 2 n/QE 

j, = hE (2:),J d'k J d'qJc,j'w. J dt. 
-n/OE (52) 

X exp[-iF(k,q;t)] r exp{ilv(k.L,q)}. 
~ 
l=-oo 

In the succeeding sections we present examples of cur­
rent calculation by (52) in quasiclassical electric fields. 

5. NONMONOTONIC DEPENDENCE OF j ON E IN 
STRONG FIELDS 

With the aid of (52) we can find the current in the 
system when the resonant transitions between the Stark 
subbands lead to a nonmonotonic dependence of the cur­
rent on the field[ 14 ' 15 ' 20 ' 22J. We shall consider here the 
quasi classical case t. E/li n E » 1. By virtue of the fact 
that integration with respect tot in (52) is carried out 
within the limits of one period of the oscillations in the 
field, the quasiclassical corrections from this integral 
have a monotonic character. Neglecting these correc­
tions, we can put E = 0 in the integrand: 

nfCE 

J dtexp{-iF(k,q;t)} ;:::,2nhli(hw.+e(k-q)-e(k)). (53) 
-n/'iJB 

The term with l = 0 in (52) coincides with the expression 
for the current in the classical limit ( 43). 

Let us calculate the current resulting from the inter­
action with unpolarized optical phonons (lcql 2 = y(liwo) 2 , 

y is the dimensionless coupling constant, and wq = Wo). 
In this case (52) becomes much simpler 

00 AE 

· 2 .n (li 2 " 0 d dNz' (e) {2 ·z w0 \ dNz (e- liw0) 
Jx = E y w0) nw0 LJ ~ e---a:e- exp . m QEf de , 

l=-oo f1w0 

(54) 

where 

dN,(e) J { 6 } -d- = ds exp 2nil- <p ( e, £), 
e " fzQE 

(55) 
fll(e,6)= (2~),J d'k.S(e-e(k))6(s-e(kJ.)). 

The functions dNz(E)/dc:: at l = 0, which we have intro­
duced here, coincide with the density of states in the 
band dN(c::)/dE (44), and therefore the term with l = 0 in 
(54) gives the classical contribution to the current (44). 
If t. E 1 /li !2E; » 1 and the density of states in the two­
dimensional zone has no singularities, then 

dN,(e);:::, ihQEl [<p(e,O)-cp(e,d.EJ.)exp{2nil!!.EJ. }] I . (56) 
de 2n hQE '*' 

Substituting (56) in (54) and summing over l, we obtain a 
final expression for the current 

1 2nwo hQ" ( hw,)' ~ ( 1 ) 
j, = j,c + enyG.n !!.E d.EJ. l...J a, 6 - f.t• + r<.' ; (57) 

·~· 
here jil is the classical monotonic contribution to the 
current (44) 

t.E 

a1 = !!.E (1:1EJ.)2 S de [<p (e, 0) <p (e -liw0, O)+<p(e, 1:1EJ.)IP (e-liw., 1:1EJ.)I. 

and 

l!oo, 
!J.E 

a,= - 1:1E (1:1E J.)' S de <p (e, 0) <p (e- hw0 , 1:1E J.), 
tlwa 
t.E 

a3 = -1:1E(1:1EJ.)2 J' de<p(e- hw0 , 0) <p(e, 1:1EJ.) (58) 
noo, 

f.t• =~-N,, f.tz=-1- (d.EJ.+wo) -N;, f.ts=-1- ( I!J.E.L_ wo) 
QE QE fi QE h 

(59) 
where Ni are integers chosen such that 0 ~ fli < 1. 

It is easy to see that the nonmonotonic contribution 
to the current is smaller than jcl by a factor 
(lin W t. E 1) 2 • In the case when tti s parameter is not 
small, their ratio is of the order of unity. We note that 
at certain field directions in a crystal of definite sym­
metry, the quasiclassical condition t.E/nnE » 1 does 
not automatically imply the relation t.E 1 /nnE » 1. 
For example, in a cubic lattice with strong coupling, 
where 

e(k) =I Ee'"• 
(J is the overlap integral between the nearest neighbors, 
g is the vector drawn to the site of the nearest neighbor, 
and lgl =a), when the field is directed along [111], we 
have E(k 1) = 0 in accordance with (51), and a contribution 
to E(k 1 ) is made by the overlap integrals with the suc­
ceeding neighb0rs J' « J. In the same crystal, but with 
the field directed along the [100] axis, we get t.E 1 
= (2/3)t.E ~ t.E. Thus, in cubic crystals it is most con-
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venient to direct the field along [111] when observations 
are made of the described nonmonotonicities. 

A detailed discussion of the described effect was pub­
lished inE22 '23J. All we mention here is that the current 
in the quasiclassical case has a discontinuity of the 
derivative at the points Wo = N1nE and n-16El ± Wo 

= N2,3 nE. However, the nonmonotonicities at the points 
n-16 E l ± Wo should be less manifest in experiment in the 
quasiclassical limit, since the resonant points lie very 
close to one another in terms of E. The nonmonotonici­
ties at wo = N1nE were observed experimentally in ZnS 
with the field directed along [111] inE20J, and were inde­
pendently predicted theoretically inC 15J. 

6. NONANAL YTIC DEPENDENCE OF j ON E IN THE 
CASE OF NARROW BANDS (6E $ tiw0 ) 

In certain semiconductors there can be realized the 
case of very narrow electron bands, such that 6E 
-::; nw0 ~ 0.01-0.1 eV. Examples of such materials are 
polaron semiconductors (such as Ti02, in which the car­
riers are small- radius polarons), or organic semicon­
ductors. Without taking the influence of the field on the 
electron-phonon collisions into account, the transition 
processes with participation of one optical phonon are 
forbidden, and contributions are made to the current 
only by processes in which either one acoustical or two 
optical phonons take part. The presence of a field leads 
to the smearing of the 6 function that describes the en­
ergy conservation law in the electron-phonon collision, 
and makes the single- phonon processes allowed for the 
optical phonons. This situation recalls the Franz­
Keldysh effect in optics and leads to a nonanalytic de­
pendence of the current on the field; this dependence 
can be found with the aid of (52). 

We shall calculate the current using the following re­
lations between the parameters: 

TJ•' = (liw,-!J.E) /!J.E~ 1, 

(liw,- !J.E) I '1]/iQE ~ 1. 

(60a) 

(60b) 

(60c) 

(60d) 

Here 6E is an energy on the order of 6E, a rigorous 
definition for which will be given below. The inequality 
(60a) makes it possible to use formula (52), while (60b) 
is the condition under which the field is quasiclassical 
and the integral with respect tot in (52) can be taken by 
the saddle-point method. To this end, we expand 
F(k, q; t) in (52) in a series in t about the point t =-iT: 

T(k,q)= liE{8fliw.+e(k-q)-e(k)J j [&'e(k-q) &'e(k) ]}'/, 
e akx' ()kx' 

(61) 

Confining ourselves to the terms (t + iT)2 inclusive, we 
obtain 

ix ""'.-!!:..____!l_J d'k J d' lc l'w { T(k, q) [ 8'e(k- q)- 8'e(k) ] }-'/, 
eE' (2n)' q • • 8nli &kx' &kx' 

{ 2T(k,q). } ~ 
Xexp - 3/i [liw.+e(k-q)-e(k)J .l..lexp{ilv(k1_,q)}o 

•~ 00 (62) 

Expression (61) for Tis valid if (nET)2 « 1. On the 

other hand, the integrand in (62) decreases rapidly with 
increasing T, the minimum value of which is Tmin 
~ r)I/nnE, i.e., (61) is valid if the inequality (60c) is 
satisfied. The argument of the exponential in (62) 
reaches its lowest value at k = K1 and q = K1- K2, where 
K1(K2) is the wave vector corresponding to the largest 
(smallest) value of E(k), i.e., E(K1)- E(K2) = 6E, 
dE(Ki)/ dKi = 0. For simplicity we assume that at k 1 
= Kil the transverse band E(k 1) is also extremal, i.e., 
dE(Ka)/dKil = 0, E(K 11)- E(K21) = 6El' and near k = Ki 
the band is spherical: 

I d'e (x,) I d-x,'l = li' I m,, j d'e ( x,j_) I d-xu_' I = li' I m,j_o ( 6 3) 

Here m2(m1) is the effective mass near the lower (upper) 
edge of the band E(k), and m21 and m11 are the same 
parameters for the transverse band E(k 1). Expanding 
the argument of the exponential in (62) in powers of 
k- K 1 and q - K 1 + K / > and confining ourselves to quad­
ratic terms, we obtain 

. . (o) [ 1 8 , 2 mu mu ( 1 ) ] ]x=Jx - ltT]1 --- --!t+!t' , 
m,m, 6 (64) 

where 
0 (o) _ E _!__ (2rr )3 Jt [ (Go )aj-' (m1 + m2)3 ( liQE )'f, lx --en - Yx x - v -

li G0 ,- ' 4 a 2rr 8 (m1m2)'1• /iw0 - !J.E 
TJz •_ f 8Jt7]1 liw0 - 1'1E }. 

X 'l'],'h exp \- - 3- /iQE 0 (65) 

In deriving (64) we have neglected the dispersion of the 
phonons wq = w0 ; Yq = lcql 2/(nw0)2 is the dimensionless 
coupling constant with the phonons, 1}2 = nwokE, and 
6E = Y2n2G~(1/m1 + 1/m2). The parameter f1. = nwo-
- 6E 1)/n nE- N is chosen with the aid of the integer N 
such as to make 0 :s f1. < 1. 

In ionic crystals, where the coupling with the optical 
phonons is stronger than with the acoustical ones, we 
can obtain anN-shaped current-voltage characteristic. 
In weak fields, the current increases with the field, and 
then at nET > 1, owing to the interaction with the acous­
tic phonons, a decrease of j begins with increasing E 
(i"' 1/E), and when the argument of the exponential in 
(65) %7T7J 1(nw0- 6E)/nnE becomes not too large, the 
current increases like E 3 / 2 exp (- E 0 /E). Just as in op­
tics, the current oscillates against the monotonic back­
ground, with a period 27TeG;/ (nw0 - 6E 1r\ and with an 
amplitude that is small compared with the background 
in terms of the parameter 7J~mdmd/m1m2. 

Apparently the nonanalytic dependence of j on E at 
nw0 ;G 6E also remains valid at nEr < 1, when the 
closed formula (52) for the current cannot be used and 
it becomes necessary to solve the transport equation 
(21) with probabilities W that have a nonanalytic depen­
dence on the field. 

CONCLUSION 

Let us discuss briefly the main premises on which 
the theory described above is based. The most stringent 
among them are a) the single- band approximation, 
b) neglect of correlations between the carriers. The 

2>we can disregard here the corrections due to the expansion of 
a2(E(k-q)-E(k)]/ak; in the expression forT (61), since they are smaller 
by a factor '1'/l than the corrections to the numerator 
hw0 +e(k-q)-e(k) in (61)0 
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single- band approximation imposes an upper bound on 
E: the probability of tunneling between bands should be 
small. The second assumption does not permit us to 
ascertain when the electron-electron collisions begin to 
influence processes such as heating, runaway, etc. 

We disregard the influence of the field on the Hamil­
tonian of the electron-phonon interaction. In the small­
radius polaron problem or for interaction with piezo­
acoustic phonons, this influence can be large. Inciden­
tally, it is easy to forgo this assumption. 

It is assumed that the electron density n does not 
vary with the field. A distinction should be made between 
two cases: 1) the total number of carriers in the band 
varies with the field, but this does not affect their dis­
tribution with respect to energy (the Frenkel- Pool 
effect); 2) the change of n with increasing E affects 
their energy distribution (cascade ionization tunneling 
breakdown). In case ( 1), n( E) can be obtained from inde­
pendent considerations and substituted in (20) in place 
of n. In case (2) it is necessary to add in (21) a recom­
bination-generation term in a strong electric field. 
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