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Particle production and vacuum polarization of a scalar field with arbitrary mass are considered in a strong external gravitational 
field with a homogeneous spatially-flat nonstationary metric. The finite renormalized average values of the energy-momentum 
tensor are found in the general anisotropic case. It is established that vacuum polarization and production of particles of a 
zero mass field are absent only in the isotropic case. The behavior near the singularity is investigated; in the case of isotropic 
collapse the exact asymptotic forms are determined. It is shown that the average values found for anisotropic collapse increase 
like t-•, and the contraction law may be substantially altered when the reciprocal effect of the scalar field on the metric is 
taken into account. The polarization operator is calculated to first order in h for the case of a weak gravitational field. 

STATEMENTS made prior to 196oi:HJ about the possi­
bility of particle production in empty space are of inter­
est as an indication of an important area of investiga­
tion, but they do not contain precise physical- mathe­
matical treatments of the problem. 

The structure of the field corrections to the theory of 
gravitatimf4- 7J was investigated in a number of articles 
during the following ten-year period, right up to attempts 
to derive a complete theory of gravitation from a con­
sideration of vacuum polarization.C8J The question of 
the cosmological constant has also been studied from 
this point of view.[9-lOJ 

In recent years particle production in strong gravita­
tional fields, in particular near the cosmological singu­
larity, has been considered in a number of articles.C11- 16J 
Interest in this problem has been "warmed-up" by the 
theory of a "hot" Universe containing, as is well known, 
a large preponderance of neutral particles over charged 
particles. It is also important to consider particle pro­
duction during the process of relativistic collapse. 

As is well known, the most general solution of the 
problem of collapse turns out to be locally anisotropic[17J 
near the singularity. Cosmological solutions are also 
known in which the expansion is anisotropic at first, 
near the singularity, and only later does the transition 
to isotropic expansion, which is observed at the present 
time, occur (the simplest of these solutions is the 
Heckmann-Schi.iking solutioni. Interest in such models 
has recently increased.C18- 20 

The object of this article is primarily the investiga­
tion of the production of scalar particles in strong 

anisotropic gravitational fields, specifically near a 
singularity. 

In the presence of a strong gravitational field, it is 
natural to treat it in the classical (not the quantum) ap­
proximation. On the contrary, the particles which are 
produced (photons, e+e- pairs, vv pairs, NN pairs, etc.) 
necessarily must be described within the spirit of the 
theory of quantized fields. The same also pertains to 
gravitons; this means that it is advantageous to repre­
sent the metric as a superposition of slowly and rapidly 
varying quantities (compare with the investigation of 
gravitational waves in the article by IsaacsonC21J) and it 
is necessary to quantize only these quantities. 

Vacuum polarization and particle production must be 
investigated concurrently; and what is more, so long as 
the metric does not become four-dimensionally flat, it 
is impossible to separate in the formulas the particles 
which are actually produced from the virtual particles 
responsible for the polarization. Paradoxes ariseP2J if 
this fact is not taken into consideration; however, these 
paradoxes can be resolved in analogy to the situation in 
electrodynamics.r23J 

It is found that the energy density and the other com­
ponents of the energy-momentum tensor of the produced 
particles increase rapidly upon approach to an aniso­
tropic singularity. At a characteristic time tp = v'Gii/c5 , 

allowance for particle production may substantially alter 
the asymptotic form of the collapse; however, no such 
complete calculation with allowance for the reaction of 
the produced particles on the metric has yet been made. 

It is necessary to emphasize that the isotropic case 
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(uniform contraction or expansion in all directions), 
which was treated in[11- 14J, is degenerate. Upon approach 
to an isotropic singularity, particle production ceases 
(see Sec. 3) and its reaction on the metric is small; 
however, in the anisotropic case the situation is just the 
opposite. The deep-seated reasons for this difference 
are related to conformal invariance of the fields. 

The important concept of conformal invariance,[ 24J 
that is, invariance with reference to a conformal trans­
formation of the metric ds2 ~ v2(x1)ds2 , exists in the 
theory of wave fields (classical or quantum fields-it 
doesn't make any difference). When v depends on the 
coordinates, a change occurs in the properties of space, 
such as the transformation of flat space into curved 
space (but not into every curved space). 

It is obvious that the particle's rest mass violates 
the conformal invariance of its wave equation, since the 
length n/mc associated with the rest mass m does not 
transform in proportion to the scaling factor v. Only the 
fields of particles with m = 0 can be conformally invar­
iant. For such particles a remarkable result is obtained: 
they are not produced (which is shown in the articles by 
Bronnikov and Tagirovr12J and by Parker[13J) and they 
do not give any contribution to the vacuum polarization 
in conformally-flat space-time. For particles with 
m "' 0 the contribution at large momenta is proportional 
to the fourth power of the mass, which leads to the re­
moval of the divergences from the polarization and to 
the smallness of the pair production. 

The most important class of Friedmann's cosmologi­
cal solutions pertain to conformally-flat metrics. How­
ever, the more general singular solutions and, in par­
ticular, the simplest of these, whose three scaling fac­
tors a, b, c along the three spatial axes depend on the 
time in different ways (see the metric (1) given below), 
are not conformally- flat. In such a metric one can ex­
pect strong particle production, independent of the mass 
(that is, particle production also occurs even form= 0), 
increasing like t-4 in the case of power-law dependent 
a, b, and cP6 J The form of the answer, E ~ nc-3t-4, fol­
lows from dimensional considerations: the action of the 
gravitational field on the particles and on the other 
fields do not contain the gravitational constant G; the 
energy density is constructed in a unique way out of 
n, c, and t. One can formulate the result in the same 
way as the well-known properties of the viscosity of a 
gas, namely, the absence of pair production at m = 0 in 
the isotropic case means that the so- called second vis­
cosity, associated with the divergence of the velocity 
and the change of volume, is equal to zero for a vacuum 
of relativistic particles. However, the first viscosity of 
the vacuum, associated with shear, does not vanish-the 
relations are the same as for a gas. We have carried 
out specific calculations for the metric (1), in which 
three- dimensional space (the section t = const) is homo­
geneous and three-dimensionally flat. The quantum 
theory can be treated in the Hamiltonian formalism 
owing to the distinguished role of the time. The problem 
reduces to solving the classical wave equation.u 

t)This connection between the production of particles in the quantum 
theory and the consideration of the classical equation is quite natural, since 
for Bose particles the classical theory is the exact asymptotic limit of the 
quantum theory for a large number of particles. Amplification of the 
classical wave due to nonadiabaticity and parametric resonance corre­
sponds to the creation of particles-the quanta of the field. 

The proposed method is generally covariant. In fact, 
the wave equation and the energy- momentum tensor of 
the scalar field are covariant. However, the choice of 
the quantum state, with respect to which the averaging 
is carried out, is not unique. As such a state we take 
the vacuum of the scalar field, which can be properly 
defined only in flat space-time (ST). However, if an ar­
bitrary ST adjoins such an ST, then by solving the wave 
equation (and also the "n-equation" necessary for re­
normalization) one can uniquely determine the energy­
momentum tensor Tij of the considered wave field re­
sulting from the vacuum. In curved ST it is not clear 
how to separate the contribution made to Tij by previ­
ously created particles from the contribution due to 
vacuum polarization; however, perhaps this question 
pertains more to philology than to physics. 

The considered form of the metric (1) contains both 
the conformally-flat case as well as the opposite case, 
which is not conformally reducible to the flat case. Fur­
ther, in the mentioned case divergences of the polariza­
tion part of the energy- momentum tensor take place in 
full measure, and therefore a·program of renormaliza­
tion and elimination of the infinities is required. For 
this purpose a method is developed which is a modifica­
tion of the Pauli- Villars method. Each individual "wave' 
with a given m and a wave vector k is associated with an 
n-wave with similarly increased nm and nk and an am­
plitude decreased by ..frl times. The energy- momentum 
tensor Tij>(k) of the n-wave and the necessary number 
of its derivaties with respect ton are subtracted from 
the Tij(k) of the physical particles under consideration 
in such a way that J d~T~g(k) converges, and then the 

limiting transition n ~ oc/ls made. The increase of not 
only m, but also of k, substantially facilitates the pro­
cedure. Just like the Tij, the quantities Tij> are con­
structed from the solutions of the wave equation; there­
fore each of the quantities satisfies the conservation 
law ~j; j = 0. Therefore the renormalized quantities 
T~g identically satisfy the conservation law. In com-

lJ 
parison with the Pauli- Villars method, the principal ad-
vantage consists in the fact that in the newmethod one 
can indicate the renormalized contribution of each in­
dividual wave with a given k. The subtracted quantities 
correspond to ann-particle, whose trajectory is the 
classical limit (ray) of the considered wave with given 
values of m and k, which is not the case in the Pauli­
Villars method. Real production of n-particles obviously 
does not occur in the limit n ~ oo. 

In order to study the general properties of particle 
production, the case of small changes of the metric is 
instructive: 

a'(t)=i+h,(t), b'(t)=i+h,(t), c2 (1)=1+h,(l); 
h.(± oo) = 0, ih.i ~ 1. 

In this case, by having specified the vacuum at 
t =-co, one can uniquely determine the number of parti­
cles and all of the properties at t = +oo, that is, after 
completion of the process. In this connection the answer 
for t = +oo turns out to be convergent for continuous hQI. 
The number of produced particles is connected with the 
imaginary part of the vacuum polarization. This imag­
inary part is finite and is not needed in the renormaliza­
tion procedure. However, the real part for t "'± oo turns 
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out to be divergent, and a finite answer is obtained only 
after renormalization. 

The consideration of small perturbations of the me­
tric also enables us to classify quantities according to 
powers of the small parameter h. It is found that the 
spatial components T 11 of the energy- momentum ten­
sor are proportional to the first power of h, whereas the 
energy density E = T00 is proportional to h2. The energy 
conservation law, which has schematically the form 
Too ~ hTgv• is therefore satisfied. Only fort- +oo do 
the spatial components T ll 11 of first order in h vanish, 
leaving TIJ. 11(+oo) ~ h2. Thus, the condition of "energy 
dominance" (the relation IT ll 11 I < Too) is violated in the 
process of particle production; only after completion of 
the process do we deal with a definite number of pro­
duced real particles and the indicated condition is satis­
fiedP2'23J 

Above, the production of particles was treated in a 
metric which was specified beforehand and without taking 
account of the reaction of the produced particles on the 
metric. By virtue of the equations of the general theory 
of relativity (GTR), the given metric corresponds to a 
quite definite energy- momentum tensor Tik(ext) of the 
"external" matter (in particular, it is poss1ble that 
Tik(ext) = 0). In this sense it is not completely correct 
to call the process under study particle production in 
vacuum; we are actually investigating particle produc­
tion in the presence of "external" matter. However, 
only the gravitational interaction of the "external" mat­
ter with the produced particles is taken into considera­
tion here. 

The particular case of the Kasner metric with power­
law dependences of a, b, and c on t, and with the expon­
ents p1, p2, p3 satisfying the well-known relations, corre­
sponds to the absence of "external" matter. Inciden­
tally, if we gradually effect the transition from the 
Minkowski metric to the Kasner metric, then external 
matter is certainly necessary. The natural mode of 
transition to the Kasner metric gives the Heckmann-
Schiicking solution with a(t) ~ tP1(t + t1)213 - P1 and so 
forth. In this case as t- 0 the "external" matter does 
not disappear, its density increases like C\ and its role 
is small in comparison with the major terms (~ t-2) in 
the equations of GTR. From the methodological point of 
view the formulation of the problem of particle produc­
tion in a given metric is not altered thereby. The 
method of renormalization, verified with a weak field as 
an example, turns out to be applicable also to the prob­
lem of production in an asymptotically Kasner metric. 
We mention the case p1 = 1, P2 = p3 = 0, whose impor­
tance has been insisted on by V. A. Belinskil. Here 
space-time is four-dimensionally flat and is easily 
transformed to the Minkowski form. However, the me­
tric with the transition region a(t) - const for t < t0 and 
a(t) ~ It I fort >to, b = c = const, is essentially non-flat 
for t ~ to; "external" matter exists in it. As a conse­
quence of the nonlocal nature of the theory, the influence 
of the transition at t = t0 also appears for t > t0 • There­
fore, the nonvanishing result for P1 = 1 and p2 = p3 = 0 in 
such a formulation of the problem does not violate any 
general principles. 

The present article does not claim to be an exhaus­
tive investigation of the problem. The immediate funda-

mental problem, which is in principle solvable (although 
it is also difficult) within the framework of the concepts 
developed here, is the systematic investigation of the 
collapse to a singularity with a self- consistent calcula­
tion of the reaction of the produced particles and of the 
vacuum polarization. As indicated above, such an effect 
is small in the isotropic case; however, it may become 
large in the case of anisotropic collapse. It is very 
probable that the reaction of particle production on the 
metric leads to isotropization of the contraction, the last 
stage of the approach to the singularity is switched over 
to the tracks of the quasi- isotropic solution described 
by Lifshitz and KhalatnikovP7J On the other hand, it is 
improbable that the reaction might lead to the replace­
ment of contraction by expansion. For this to happen it 
would be necessary for the energy density to be negative 
at some stage. 

Finally, let us mention problems which are natural 
components of the general problem, but which require 
new ideas: 1) a general-covariant formulation of the 
theory, in particular a formalism without a distinguished 
role for the time; 2) allowance for the direct {electro­
magnetic, strong, etc.) nongravitational interaction be­
tween the particles; 3) the most difficult and important 
problem-the cosmological problem of emergence from 
the singularity, and the formulation of the initial condi­
tions in the singular state. It is possible that this prob­
lem is inseparable from the general problem of the 
quantization of the metric, where the separation into 
high- and low-frequency dependences on the coordinates 
is still not satisfactory because of the contraction of 
the horizon. Here one can also express the enticing 
hypothesis that, just as in the case of collapse, the reac­
tion of vacuum polarization on the gravitational field 
leads to the transition of an anisotropic expansion of the 
Kasner type into quasi- isotropic expansion at t ~ t 
(seeC16J for the appropriate estimates). p 

1. QUANTIZATION OF THE FIELD AND THE 
AVERAGE VALUE OF THE ENERGY-MOMENTUM 
TENSOR 

Let us consider a real scalar field fP(xi) in a homo­
geneous cosmological model with a spatially-flat non­
stationary metric: 

ds' = dt'- a'(t)dx,'- b'(t)dx,'- c'(t)dx,', (1) 

where a, b, and c are certain given non-negative func­
tions of the time. We take the Lagrangian density of this 
field in the form 

Z = 'f,[g"q>,;<p,.- (m'- '/,R)rp'], (2) 

where R = gik~k is the scalar curvature we use a sys­
tem of units in which 11 = c = 1; the notation for products 
and the choice of signs in the definitions of gik• Rtklm 
and ~k coincide with those adopted inC25J). The corre­
sponding field equation is 

<p:/ + (m'- '/.R)<p = 0. (3) 

It is conformally invariant for m = o,C24J that is, under 
the conformal transformation of the metric 

(ds = v(x')ds, 
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and under the corresponding transformation of the field 
function 

(q:->-iji = v(x')q:) 

Eq. (3) preserves its form. Tagirov and Chernikovi:11J 
advance arguments in favor of the necessity of choosing 
the scalar field Lagrangian in the form (2). 

The energy- momentum tensor of this fielcf: 11J is of 
the form 

T,. = q:,.~.•- g,.P + 'I,(R,. + g,.D- V,V,)q:', (4) 

where D = ~kY'fv'k; Y' denotes the operator of covariant 
differentiation. This tensor possesses the following 
properties: 

(5) 

We note that in the case of flat space-time Tik differs 
from the usually employed energy- momentum tensor of 
a scalar field by the quantity ( 1/ 6)(gikD - Y' i Y'k)c/, 
which has the form of a divergence. 

The metric is assumed to be given and is not quan­
tized. We carry. out quantization of the scalar field by 
the standard method, using the Hamiltonian formalism 
(for the case of the isotropic Friedmann model, this was 
done by Bronnikov and Tagirovl:t2J and also by 
Parkerl:13J), namely: we introduce the canonical equal­
time commutation relations 

[q:(x, t), qJ(x', t)] = [n(x, t), .:rt(x', t)] = 0, 

[<p(x, t), n(x', t)] = iO('>(x- x'), 
(6) 

where the generalized momentum of the field is given by 

n = a(l!-gP) 1 a~= v~. V""Y-g=abc. 

Rel!ltions (6) are satisfied if we represent the function 
cp(x1) in the form 

rp(x') = - 1-J d'k [A,rp,,(t) e-'"• + A,+rpA (t)e•••]. (7) 
(2:t) ,, 

Here x = (x\ x2, x3) and k = (k1, k2, k3) is the constant 
wave vector; the function cpk(t) satisfies the equation 

.. V' • ( R ) O (8) 'F•+v-rr.+ (t).'(t)-6 'P•= ' 

where 

and the condition 

~r:p· - q,q,· = i I v (9) 

(a dot indicates differentiation with respect to t), and 
the Ak are certain constant operators with the commuta­
tion relations: 

[11.:,.4 •. } = [A,.+A>J =0, [A,J,,+] =O''>(k-k'). (10) 

Further, we shall everywhere assume that, as 
t--oo, a, b, and c- const and space-time becomes 
flat, and also the initial condition for cpk(t) is 

rp.(t) 1,_,. -oo = r••.,• I }'2(1)., v,, 

where wko = wk(-oo) and Vo = V(-oo). Only in this case 
do the operators Ak and Ak coincide with the operators 
for the annihilation and creation of quanta of the free 
field at t =- oo and one can introduce the constant 
Heisenberg state vector IO) (satisfying the condition: 

AkiO) = 0 for all k), which is the properly defined vac­
uum of the scalar field fort= -oo. A complete system 
of in- states for t =- oo is introduced in similar fashion. 

Because of the nonstationary nature of the metric (1), 
in the general cas~.it is impossible to identify the 
operators Ak and Ak with the creation and annihilation 
operators for t > -oo, and the state 10) is not the vac­
uum state fort >-oo. The question as to how to define 
the creation and annihilation operators and the "vacuum" 
state for all values oft was investigated by Bronnikov 
and Tagirovi:12J in the case of the isotropic Friedmann 
model, and they showed that the answer is not unique 
(in this connection, see also the articles by Grib and 
Mamaevi:14J). 

For the problems considered in the present article, 
this ambiguity is unimportant, since we are only inter­
ested in the average value (OI~(t)IO). In a space with 
the metric (1), the average values of the diagonal com­
ponents of the energy- momentum tensor are different 
from zero: 

(11) 

and so forth. 
It is clear that in such a formulation the quantum 

problem reduces to.a consideration of the classical wave 
equation (3) for cp(xl) or Eq. (8) for cpk(t). 

We immediately note that the vacuum expectation 
values (11) include the energy density and the pressure 
of the zero-point oscillations of the vacuum and neces­
sarily diverge. Therefore, in what follows we investigate 
the renormalized quantities 

8 = ;s- ;s,, (a= 1, 2, 3), 

where 

,.. 1 f ' (t). 1 f k.' "'·=--- dk- :JJ ---- 3 
(2:rt)'V 2' ••- (2:rt)'V dk 2a'(t)• 

and so forth; lSo and !Pa0 do not depend on the rate of 
change of the metric, and they diverge like k4. 

The renormalized energy density E and pressure p 
satisfy the following conservation law: a 

1d (a li c) 
Vdt(Ve)=- P•-;;+P•z;-+P•-;;- . (12) 

The question of their convergence will be investigated 
in the following section. 

Because of the spatial homogeneity of the metric (1), 
the total momentum of the scalar field, G = 

J 3 - o a 
= d x-J-gTa, ~s conserved. In the case of a complex 
scalar field cp(x1) (whose quantization is carried out in 
analogous fashion) the total charge Q = J d3xv'=g J 0 is 
also conserved, that is, the particles are created in 
pairs with opposite charges and momenta. 



PARTICLE PRODUCTION AND VACUUM POLARIZATION 1163 

2. GENERAL ANISOTROPIC CASE 

Let us make the following change of the variable t 
and of the field function cp: 

t dt 
1J =) V'l•(t) (13) 

x.(TJ, x) X•(TJ) 
cp(TJ, x)= V'I.(TJ)' 'i'•(TJ) = V'I'(TJ). 

We introduce the notation v(TJ) = V113 , g1(TJ) = a/v, and 
g2(TJ) = b/v; then Eq. (8) reduces to the form 

where 
" 2 2 2 2 2 + k.' + k,' + 2 2k 2 ~!:'.A =VWk =mV - - g1g2 3, 

g,' g,' 

1 [ ( a' b' ) 2 
( a' c' ) 2 

( b' c' ) 2 ] 
Q(TJ)=Ts --;;-/; + --;;--;- + T-7 

- 1 [ ( g/ ) 2 ( g,' ) 2 g.' g,'] -- - +- +-. 3 g, g, g,g, 

(14) 

and a prime denotes differentiation with respect to 'T/. It 
is clear that Q( TJ) = 0 only in the isotropic case. 

We have obtained the equation of a classical oscilla­
tor with a variable frequency. 

Let us consider the special case of a metric whose 
evolution is such that a, b, cl = a, b, cl = 1. TJ=-co TJ=+oo 
Let us take a single mode k. As TJ ~-co let the function 
X('TI) .corresponding to this mode have the form x(TJ) 
= e-lno'TI, where no= ,Jm2 +k2 • Then, as 'T/ ~+co this 
same function x has the asymptotic form 

where Ia 12- lf:ll 2 = 1, {:l ,.. 0 in the general case. Thus, 
amplification of the wave occurs-its energy increases 
by 1 + 21f:ll2 times. The same thing also pertains to the 
second elementary wave: if x = eino 'T/ as 'T/ ~-co, then 
for TJ ~+co one has 

The energy of this wave also increases by 1 + 21f:ll2 
times. An arbitrary linear combination of both waves 
with different signs of the frequency for 'T/ ~-co obvi­
ously can be both intensified and weakened. 

The wave equation is invariant with regard to the re­
placement of TJ by -TJ; one can easily construct the ini­
tial combination 

for TJ ~-co, which gives a decrease of the energy on 
emergence, that is, for TJ ~ +oo. However, if for 
TJ ~-"" the ratio of the moduli of C1 and C2 is fixed and 
the answer is averaged over the relative phase 
(Arg(C1/C2)}, then one again obtains an increase of the 
total energy by that same factor of 1 + 21(:lJ 2 times. 

From the quantum point of view, the energy increase 
associated with this process implies the creation of new 
quanta of the field. In the classical theory the increase 
of energy is proportional to its initial magnitude by vir­
tue of the linearity of the field equations. The quantum 
theory of Bose particles is equivalent to a classical 
theory with a nonvanishing energy (tiQ 0 /2) of the state 
without any particles, and therefore gives a non-zero 
result for the production of particles from this state. 
Since the vacuum is a state with an undetermined phase, 

the energy always only increases. 
It is obvious that {:l is a measure of the nonadiabaticity 

of the process. The departure from adiabaticity decrea­
ses with increasing wave vector k and frequency nk; 
therefore lf:ll 2 turns out to be a rapidly decreasing func­
tion of lk 1. For the calculations it is convenient to write 
the corrections to the adiabatic approximation in explicit 
form; therefore, in order to solve Eq. (14) we shall use 
the method of Lagrange. 

Thus, we shall seek the solution of Eq. (14) in the 
form 

X..(TJ)= a,(TJ) e_ + P•(TJ) e'' 
l'2~~,. l'2Q,, 

e± = exp { ± i J Q,,dl'J}, 

with the additional condition 

x..'(TJ)=- iQ,( a•(TJ) e_ -~~_._(~e+) 
y2Q, -yzg. 

(15) 

(16) 

(that is, the derivative of Xk is taken as if ak, f:lk, and 
nk did not depend on the time). From Eqs. (9), (15), and 
(16) it follows that 

la•(TJ) 1'-IP•(TJ) I'""' 1. (17) 

As a result, instead of the single second-order dif­
ferential equation (14) for Xk• a system of two linear 
first- order equations is obtained for ak and f:lk: 

a.' =~2 ( g~- i_!]_) e+'P•- i_.!}__a,, .,. g. zg. 
(18) 

with the initial conditions: for 'T/ =- oo (t = -oo) the quan­
tities ak = 1, {:lk = 0. 

Sometimes it is convenient to change from the two 
complex variables ak and {:lk, which are related by the 
condition (17), to three real variables: 

s. = I ~.j', u, = a,p,•e_2 + a,•p,e+'• 

-r. = i(a,p>e-'- a.'~.e+'). 
(19) 

For these variables one can obtain a system of three 
linear equations: 

ds, 1 g•' 1 Q 
-=--u.+--'~"•• 
d1] 2 g. 2 g. 

du. = R.' (1 + 2s.)- (.!]_ + 2g.)-r., 
d1] g. g. 

(20) 

d-r:. = !}_(1 + 2s,) + ( ~ + 2R.) u, 
d1] g. ... 

with the initial conditions: sk = uk = Tk = 0 for TJ = -oo, 
From the asymptotic form of the solution of the system 
(20) (or the system (18) which is equivalent to it), which 
is given in Appendix II, it is seen that as nk ~ co 

so that E and Pcv diverge like k2 at the upper limit (also 
see formula (22)). 

Therefore, an additional renormalization is required 
in the anisotropic case. We shall use the method dis­
cussed in the introduction to this article. Let T .. (k, m) 

1] 
be the energy- momentum tensor for the single mode k 

<n> 1 ' and let Tij = n- Tij(nk, nm) be the energy-momentum 
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tensor for the n-wave. Then the renormalized energy­
momentum tensor for the given mode will be given by 

R•l • [ I•) f) (n) T,; (k,m}=hm T,;(k)-T;; (k}---T,; (k) 
·~00 fJ (n-') 

1 fJ' ,(n) ] ----1;; (k} . 
2 fJ(n-')' 

(21) 

By expanding Tij(k) in inverse powers of Qk as 
Qk ~ co, one can easily show that for large values of Qk 
we have T~g(k) ~ nk-5; so the total energy- momentum 

lJ 
tensor of the field, TReg = J d3kT~g(k), converges. In 

lJ lJ 
addition, for Jkl ~ 0 and m "'0, JT~eg(k)J <co. We note 

lJ 
that the first subtraction corresponds to discarding the 
energy-momentum tensor of the zero-point oscillations 
of the vacuum, which was done at the end of Sec. 1. It is 
clear from the method of regularization that the tensor 
T~eg satisfies the conservation law: T1Re.j . = 0. 

lJ g; J 
The present method of renormalization is not appli­

cable when m = 0, owing to the appearance of an infra­
red logarithmic divergence (the analogous phenomenon 
is observed in quantum electrodynamics). In actual fact 
this divergence is fictitious, and evidently it can be 
eliminated by the same method as in electrodynamics. 

With the aid of this procedure, one can determine the 
~inite renormalized average values of the field's energy­
momentum tensor (form"' 0): 

1 s 3 { (2) (4) e.,,= (2:rt} 3 v' d k Q, (s,- s, - 8 , ) 

1 Q [ (2) 1 (2) ] } --- s,-s, +-(u,-u,) ; 
2 Q, 2 

1 s 3 { k,' (2) (4) P•R••=--- dk --(s,-s, -s, ) 
(2:rt) 3 u' gt'Q, 

(22) 

+ _;_l (3 k,'.- Q.') (11"- u~,''- u:'') + -.1- [ ( g,' )'- Q) 
flL g,- . 6Q,, g, 

r (2) 1 (2) ] g,' (l) (3) } 
X s,-s, +-(u,-u, ) --("r,--r, --r, ) etc. 

- :! lig, ' 

where s.< 2 > s<4 > u< 2 > u< 4 > T< 1 > and T< 3> represent the 
-K ' k ' k ' k ' k ' k 

corresponding terms of the asymptotic expansion of 
sk, uk, and Tk in powers of Qk:1 for Q ~co (see Appen­
dix II); the superscripts indicate the order of decrease 
with respect to Qk1 • 

The case of a weak gravitational field (a small differ­
ence between the metric (1) and the Minkowski metric) 
is considered in Appendix I. 

The quasi-Euclidean model of Friedmann is an inter­
esting and important special case; in this model one 
can assume a= b = c = v, and then the metric (1) is iso­
tropic and conformally- flat: 

ds' = u'(11) (d'l'- dx,'- dx,'- dx,'). 

As a consequence of this, Q(7J) = 0 and all the formulas 
in Sec. 2 simplify considerably. 

In the first place, in the isotropic case fork = Jkl 
~co we have sk ~ k-6 , uk ~ k-4 , Tk ~ k-3 so that the 
quantities t and p, introduced at the end of Sec. 1, turn 
out to be finite (that is, the first subtraction is already 
sufficient for regularization). They have the following 
form: 

1 1 d' k ( m'u' ) 
e=--Jd'kQ,s,, p=--J- k's,--u, , 

(2:rt) 'v' (2:rt) 3 u' 3Q, 2 
(23) 

where Qk = vk2 + m2v2 • From the expression forE it 
follows that one can interpret sk as the average number 
of pairs (real and virtual) created in the mode k. 

Furthermore, for particles with m = 0, one will have 
nk_ = 0 and !3k = 0, so that E = p = 0. Thus, in the iso­
tropic case with an arbitrary dependence of v(7J) not only 
the production of real massless particles does not oc­
cur, which is shown in articlesC12 ' 13J, but also vacuum 
polarization is completely absent. We emphasize that in 
the general anisotropic case !3k "' 0 for m = 0, which is 
clear from the system (18). 

3. BEHAVIOR OF THE ENERGY DENSITY AND 
PRESSURE OF A SCALAR FIELD AS THE 
SINGULARITY IS APPROACHED 

The investigation of the behavior of the field near a 
singularity is of the greatest physical interest. Let us 
consider the case of collapse, when we have flat space­
time at t = -co and a singularity at t = 0. Let the quanti­
ties a, b, and c be power-law functions of t as t ~ 0. 

In the anisotropic Kasner case the following region 
gives the basic contribution to the integrals in formula 
(22): wk ~ 1/t, where sk ~ 1, and fort- 0 and jmtl 
<< 1 we have E ~ pCl' ~ t"" (correct to, possibly, logar­
ithmic terms). The exact coefficients associated with E 
and pCl' have still not been determined. Since the com­
ponents of the Riemann tensor increase like t-2 as t ~ 0, 
but the energy density of the "external" matter increa­
ses like C413 (for an ultrarelativistic gas), it follows 
that as the characteristic time t ~ tp = v'G is approached 
the reciprocal effect of the created particles on the me­
tric becomes large and it may substantially alter (of 
course, in connection with the consideration of the self­
consistent problem) the subsequent course of the con­
traction. 

In the degenerate case of the isotropic contraction of 
space, the following case is physically of interest: a(t) 
~ tq for t - 0; 0 < q < 1. Let us choose 7J such that 

7J = 0 when t = 0; then a(7J) ~ 7Jq\ where q1 = q/(1- q). 
From Eq. (11.2) (see Appendix II) it is seen that if 
rna( 7J) « k = Jk I « 1/7} (and for a sufficiently small 
value of 7J, any arbitrary k falls in this region), then 
sk, uk, and Tk ~ const; therefore pair production stops 
as 7J ~ 0. 

The reason for this is very simple: Wk ~ k/a as 
71 ~ 0, that is, one cannot neglect the mass, but parti­
cles with m = 0 are generally not created during iso­
tropic collapse. Upon further contraction the created 
particles behave as a relativistic gas with the equation 
of state p = (1/3)E, so that fort~ 0 and Jmtj « 1 we 
find 

1 00 

e=3p=--Jdk k'n(k) ~ m'JmtJ-'' 
2:t2a" ' 

where n(k) = lim sk. One can show that n(k) ~ k-1 as 
7} ~co I 

k ~ 0, and n(k) ~ k- 4;( 1-q) ask~ co; therefore the 
written integral converges. The corresponding expres­
sion for the asymptotic density of particles (also includ­
ing vacuum polarization) is given by 

1 00 

n(t) =~sdk k'n(k) ~ m'JmtJ-3'. 
~:rt a 
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matter is an ultrarelativistic gas), then the ratio of the 
energy of the created particles to the energy of the ex­
ternal matter will be: E/ 8ext ~ Gm2 « 1 (we are con­
sidering "ordinary" elementary particles with masses 
from 10-24 to 10-27 g). 

We note that in the isotropic case one can set up the 
opposite "cosmological" problem, specifying the 
"vacuum" state at t = 0 with the aid of the condition: 
s, u, Tlt=O = 0 (for cl = 1/2{k, c2 = {i{/2; see Eq. 
(II.2)). In the anisotropic case s, u, and T ~ oo as t ~ 0 
and it is impossible to impose such an initial condition. 
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APPENDIX I 

WEAK GRAVITATIONAL FIELD 

Let us consider the case of a weak external field 
(that is, there is a small difference between the metric 
(1) and the Minkowski metric) and let us calculate E and 
Pa to first order in h(t) using perturbation theory. The 
following anisotropic case is of the greatest interest: 

a'(t) = 1 + h,(t), b'(t) = 1 +h,(t), c'(t) = 1 + h,(t), 

where 
3 

/ha(t) I« 1, ha(t) lt-±oo = 0, ~>" = 0. 
a.'"'l 

To first order in ha, in the Fourier representation we 
have 

• 
e",,=O, L,P""''=O, Pan,,(q)=A(q)h.(q), (I.l) 

where 
1 - 1 00 

h(t) =- sh(q)e'q'dq, p(t) =- Jp(q)e'q'dq. 
2n 2n 

The imaginary part of A(q) is finite and does not require 
renormalization: 

1 v--~ 
Im A(q)= ---(q'-4m')' 1--EJ(q'-4m')E(q), (1.2) 

1920n a' 

where 
B(x)= { 1, x>O, 

0, x<O 
{ 1, X> 0 

E(x)= 
-1, x<O 

The quantity Im A( q) determines the energy at t = + oo 
in the second-order approximation (that is, the energy 
of the particles which are actually created): 

1 ~ 3 1 ~ 3 

e(+co)= --J dt \"1 p.li. = --J dq q ImA(q) L, lh.(q) I'~ 0. 
2 ~ ~ . 
-~ a=t a=t (I. 3) 

The real part of the polarization operator, which has 
been regularized with the aid of three subtractions, has 
the form 

1 q' [ 1 7 23 (1- y)'h v-y--J 
A (q) = -,.--,----::- ---+ --- arctg --

!Jo0(2n)' m' v' 3v' 15y v'h 1- v 
(1.4) 

1 q' [ 1 7 23 
I\e A ( q) = -9o-.0-(-2:n:_)_' -rn-, V'- -3v-, + -1-5v-

(y-1)'1• - --] 
y'l ln(yy + 1v -1) 

for y > 1. 
The asymptotic form of A(q) is given by: 

1) 
1 q' 

A(q)=--- -
!Jo0(2n)' 7 m' 

for y~ 1; 

2) A ( ) 2 'lnL f 1 q = 9li0(2:n:)' q m' or v;;;,. · 

Also the following expressions in the coordinate 
representation are instructive: 

1 00 3 t 

e(+co) = -~J dt L,lia(t) J h.,v1 (r).il'(t --T)dr, 

(I. 5) 

(1.6) 

where X(t- T) ~ (t- 1)ln(t- T) for particles with m = 0. 
t 

The quantity J ... plays the role of the components of the 

stress tensor, denoted by p' =- T'a. However, this is 
Ql (11 

only part of Pa; it is obvious that the addition of terms 

of the form h~n 1 (t) to p~ does not change the value of 
E(+oo). It is precisely such terms, which do not give any 
contribution to E( +oo), which are subjected to renormal­
ization. 

We note that the found Pa are proportional to ha, 
provided 0 ha = 0, just as for the viscous stresses as-

a 
sociated with the deformation of an incompressible 
liquid. However, viscosity would give Pa ~ ha; vacuum 
polarization (and even just its imaginary part) has a 
more complicated nonlocal dependence on the form of h 
as a function of t. 

APPENDIX II 

THE ASYMPTOTIC BEHAVIOR OF THE SOLUTION OF 
THE SYSTEM OF EQUATIONS (20) 

Let us consider the case of large momenta (Ok ~ "") 
and let us expand the solution of the system of Eqs. (20) 
in an asymptotic series in powers of S1k1• This expan­
sion is valid in the quasi classical region: IS1k: I « ofc 
In this region sk, luk I, IT~ I « 1. It is found that 
T = T(l) + T'31 + ••• , S = S ( I + S <4> + •.• , U = u' 2> + U ' 41 + ... 
(here and in what follows, the subscript k is omitted), 
where 

.<'> = ~~ u<'! = _·_1 [#'I _ Q('IJ)] 
2 ~~- ' 2il dr] ~~ ' 

s<'>=_!__J[~u<'l+~-r<'l]dr =-1- il'' 
2 ~~ il I 1li il' 

1 [du''' il' Q() 
<'" = -~ d,]- 2Qs''1 +-w~r'"], 

u<'•) = - 1-[ do;<'! - Q(rJ) (2s<'l + u•'l)] 
2il d~ il , 

( II.l) 

s<'> = ~ J [~ u<'> + Q(rJ) o;<'> ]a 
2 il il l] 

and so forth. The superscript inside the brackets indi­
cates the order of decrease in powers of Ok for Ok 
~ oo. 

Near the singularity ( T) = 0, t = 0) one can obtain 
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another important asymptotic form of the system (18), 
(20). Let 

. a, b,c 
hm-t-=oo, 
'--¥1 

then for sufficiently small 11 one has 

I [o.aTJ 1~ 1 

for arbitrary k. In this essentially non- quasi classical 
region we have 

a= c, (-vo- !__J Q(TJ)dTJ) + ~ -yo -yo, 

p = c, (-vo + ~J Q(TJ)dTJ)- ~, -yo -yo 

6=1Cd'[o+ ~ (JQaTJ)'] + 1~1' 
(11.2) 

i 1 
+'Q(C,•c,-C,C,'lJ QdTJ- 2 , 

u = 2ICd' [ 0- ~ (J QdTJ)'] - 2 1~1'- ~: (C/C,- C,C,") J QdTJ, 

1: = 41Cd' J QdTJ + 2i(C,•C,- C,C,'), 

where C1 and C2 are complex numbers (depending on k), 
satisfying the condition: CiC2 + C1cr = 1/2. In the case 
of power-law dependences for the a, b, and c we have 
Q(17) ~ 17-2 so that, in the anisotropic case the quantity 
s ~ -2u ~ 1/n172 and 7 ~ 17-1 as 11 ~ 0; in the isotropic 
case s, u, and 7 ~ const as 11 ~ 0. 

By joining the two asymptotic expressions in the reg-
ion 

one can derive the law € ~ Pa ~ C4 , which was cited in 
Sec. 3. 
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