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Quantum interference effects in rotating hollow thin-wall superconducting cylinders are investigated. 
It is shown that by a suitable choice of the cylinder radius, wall thickness, and superconductor param­
eters one can study the oscillating dependence of the London field on angular velocity w for reasonable 
values of the latter when both the external field and angular velocity are effective. Stability of current 
states of the cylinder is analyzed and it is shown that for small radii a large part of the descending 
branch of the pair-breaking curve is stable and may be observed. 

1. INTRODUCTION 

T H~S article is devoted to an investigation of quantum 
coherent effects in superconductors in a rotating coor­
dinate system. The existence of such effects is based on 
the phenomenon of the "London moment," namely the 
appearance of a magnetic field in the volume of a super­
conductor when the latter is rotatedC 1J 1 >. The Meissner 
effect in the presence of rotation calls for the vanishing 
not of the magnetic induction B, but of the quantity 
B + 2mcwje, where w is the angular velocity of the ro­
tation. Consequently, the field in the volume of the 
superconductor differs from zero and equals - 2mcw je, 
amounting to 7 x 10-7 G per revolution per second. 

When a hollow thin-wall cylinder is rotated, condi­
tions are produced for the quantization of the magnetic 
flux produced by the field of the London moment. The 
situation here, however, is more complicated than in the 
case of flux quantization in a thin-wall cylinder in an 
external fielciC3J. The macroscopic states of a ring with 
frozen-in field, corresponding to a specified number n 
of flux (more accurately, fluxoid) quanta, are stable to a 
high degree against switching into states with other n. 
Therefore the energy-minimum principle, which is usu­
ally used in the interpretation of the Parks- Little effect 
in hollow thin-wall cylindersC3 ' 4J, is not directly appli­
cable. A calculation of quantum coherent effects calls 
for the determination of the lability boundaries (i.e., the 
"superheat" field) for the indicated states. It is shown 
in the present paper that observation of quantum coher­
ent effects connected with rotation is perfectly feasible 
if certain requirements with respect to organization of 
the experiment are satisfied. 

The London-moment effect was first observed by 
HildebrandtC 5J and subsequently by a number of 
workersC8- 9J. All the indicated measurements confirm 
London's formula H =-2mcwje, where m is the free­
electron mass, and reveal no oscillations or jumps of 
the London field as a function of w even when the cylin­
der wall thickness amounts to 27 A.C 9J. In the case of 
superconducting circuits containing Josephson tunnel 

1) An analogous effect was predicted earlier for an ideal conductor by 
Becker, Sauter, and Heller [2], but, as is well known, the properties of a 
superconductor are not identical with the properties of an ideal conduc­
tor. 

junctions, the effect of rotation leads to the appearance 
of quantum interference effects3 perfectly analogous to 
the action of a magnetic field[ 10 • 

London's treatment of the effects in a rotating super­
conductor is based on an extension of his phenomeno­
logical equations to a rotating coordinate system. 
London's equation for the superfluid velocity 

H+~rotv,=O (1.1) 
p 

can be written as the condition Ps = 2mvs + (2e/c)A that 
the field of the superfluid momentum be potential:2 > 

rotp. = 0. (1.2) 

In a rotating superconductor, the superfluid velocity in 
the volume of a bulky body should coincide with the lat­
tice velocity u = w xr. From this we get curl Vs 
=curl u = 2w, which yields, when substituted in (1.1), a 
field H = - 2mcw /e in the volume of the superconductor. 
From the point of view of modern concepts, Ps is the 
gradient of the phase of the Cooper-pair wave function. 
The expression for the current in the superconductor 
takes the form 

j=N,e(v,-u), 1 ( 2e } v,=- hV!(J--A . 
2m c 

(1.3) 

The current inside the superconductor vanishes, all that 
remains is a certain surface current, and this produces 
the field of the London moment. 

Determining Vcp from (1.3) and integrating it over a 
certain closed circle r passing inside the superconduct­
ing body, we obtain, from the condition that the wave 
function ¢ be unique, the relation 

. ~ VqJdl = 2nn 
r 

(n is an integer), whence 

J( 2mc } me ,h 
ll>L = H+--ro dS+-,'fjdl = n<l>,. 

8 e N,e r 
(1.4) 

The quantity if>L is called a fluxoid. The first integral in 
(1.4) represents the flux of the field H + 2mcwje through 
the surface S subtending the contour r. Relation (1.4) 
expresses the fluxoid quantization condition for a rotat-

2>Naturally, we substitute in London's formulas the doubled charge 
and mass of the electron, which pertain to the Cooper pair. 
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ing superconductor; +o = hc/2e is the magnetic-flux 
quantum, the numerical value of which is •a = 2 
x 10-7 G-cm2. 

2. SUPERCONDUCTING CURRENT IN A MOVING 
SUPERCONDUCTOR 

The purpose of the present section is to derive an ex­
pression for the current in a moving superconductor on 
the basis of the microscopic theory of superconductiv­
ity(11J. We consider a homogeneous current state, in 
which the velocity of the superfluid motion and the cur­
rent density do not depend on the spatial coordinates[ 12J 
(see alsoC 13J ). When formulating the equations of super­
conductivity theory, it is natural to change over to a 
coordinate system moving with the lattice. 

The Gor'kov equation for the Green's functions G and 
F of a superconductor are of the formC 11J 

(iw-Ho+~J.)G.(r, r') +<'.(r)F.+(r, r') =6(r-r'), 

(-iw- Ho'+ !l)F.+(r, r') -d'(r)G.(r, r') =0, 
(2.1) 

where 

(2.2) 

Ll (r) is the superconducting ordering parameter, w are 
odd frequencies (wn ~ (2n + 1)7TT), A is the Cooper inter­
action constant, and Ho is the one-electron Hamiltonian. 
In a nonmoving reference frame, in the quasiclassical 
approximation, Ho = E(p- (e/c)A, where E(p) is the dis­
persion law and p =- iV'. In the moving coordinate sys­
tem, the quasiparticle energy is 

1£ = e ( p- mu- -7 A) - ~u', 

and we should put accordingly3> 

A (A e ) mu' 
H,=e p-mu--;;-A -2. (2.3) 

In formula (2.3), m represents the mass of the free 
electron. This expression can be obtained on the basis 
of the laws for the Galilean transformation of the energy 
and momentum on going over to the moving coordinate 
systemC 14J 4 >. We present here, however, a more direct 
derivation based on the microscopic model of a moving 
one-dimensional periodic lattice with o-function poten­
tial (the Kronig-Penney model), which admits of an exact 
solution. 

The Schrodinger equation for the time-dependent wave 
function is (a is the lattice period, 11 = 1) 

ii'¥ 1 {)' ~ 
i-= [---+ U, \""'l 6(x-na-ut) ]w. 

iJt 2m dx' """ 
(2.4) 

We seek its solution in the form 

'¥ = e-'E'e'"1u(!;), s = x- ut, (2.5) 

3lThe last term is immaterial. It can be included in the renormali­
zation of the chemical potential, and will henceforth be omitted. 

4l After this article was written, we learned of a paper [ 15 ] in which 
an analogous derivation was obtained using the Larmor theorem. The 
free electron mass m = m0 enters as a result in the electron-inertial ex­
periments. 

where u(~) is the Bloch function 

2nn 
k.=-. 

a 

Substitution of (2.5) in (2.4) leads to an equation for the 
coefficients an: 

[ -1-(k+kn)'-u(k+kn)]an+~ ~ an=Ean. (2.6) 
2m a """ 

For the energy we obtain the relation 

~·f,[E- 2:(k+knl'+u(k+kn)r =1. (2.7) 

At the same time, the equation determining the disper­
sion law E(k) in the immobile lattice (u = 0) is 

u ~ 1 -1 --f I:[e- Zm (k+kn)'] = 1. (2.8) 

Comparing (2.8) with (2.7) we see that the energy in the 
moving reference frame, as a function of k, is 

E(k) = e(k- mu)- 1i2mu', (2.9) 

thus proving formula (2.3). 
Returning to the Gor'kov equations (2.1) and (2.2), we 

seek their solution in the form 

<'. = !10e'•, rp = 2kr, 
G.(r, r') = 3'.(r-r')exp[ik(r-r')], 

P.+(r, r') =.'F.+(r-r')exp[-ik(r+r')]. (2.10) 

Neglecting the small term mu2/2, we obtain for '!lw and 
£Tw the equations 

[iw- e( -iV + 1/ 2p,) + !!]'!l.(r- r') +d,(p,).'F. +(r- r') = ll(r- r'). 

[ -iro- e( -iV- 1/2p,) + ~J.]£T. +(r- r') - d,(p,)'!l .(r- r') = 0. 

(2.11) 

Here Psis the superfluid momentum vector, defined by 

( e ) 2e p,=2 k--;;-A-mu = Vrp--c-A-2mu. (2.12) 

Subtracting cTw and '!lw from (2.10) and substituting in 
the self-consistency equation (2.2), we arrive at a rela­
tion defining the function Ll0 (ps): 

\""'lf dp 1 
1 = I ;\. I T £...: ( 2n) ' ( w--,+-,7. I;+---:-)--:-( w-----,-i£--:_-:--)+--:-:!1-;, ,c:-(p--:-,) • (2 .13) 

Here ~± = E(p ± 1/2Ps)- J.l. = ~ ± 1/2vo(P)Ps, and~ is the 
energy in the normal metal, reckoned from the Fermi 
level J.1.. 

Calculating the current in the system K' moving to­
gether with the lattice, we obtain 

j=eRe 1:( 'iJ.+v(p-+A-mu)'iJ.) 

= 2eReT I: v ( p-+A- mu) G.(r, r') I"~'· (2.14) 

Here 1/J~ is the electron wave-function opez:_ator in t~e 
second-quantization representation, and v(p) = ilE/ilp is 
the quasiparticle velocity operator. In particular, in the 
case of quadratic dispersion with an effective mass m *, 
the current will be 

j =·__:_ Im ~< '~'·+ (v -~A- imu) '~'•) 
m* ~ c 
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2e {'1 ( te . ) , =-;;:-ImT.l...J V--c-A-1mu G.(r,r)J, .• ,. (2.15) 

In (2.14) and (2.15), m is again the free-electron mass. 
The remainder of the calculation duplicates exactly the 
derivation of the expression for the current in the homo­
geneous stateC12 •13J. As Ps - 0 we obtain 

N,e ( 2e ) j =~ Vcp--A-2mu , 
2m' c 

(2.16) 

where Ns(T) is the concentration of the "superconduct­
ing electrons"[uJ 

N, {'1 !'J.,' 
N=nT ~ (w'+tJ.,')''•. (2.17) 

In conclusion, we make the following remark. In the 
derivation of (2.16) we have assumed that u 1- const. 
Actually, we shall be interested below in a situation 
wherein the velocity varies in space. When the gradient 
terms auifaxk are taken into account, the current con­
tains corrections proportional to these gradients: 

(!) 
// = N,eM.iau.lax, + ... , (2.18) 

where in order of magnitude we have .\'1 > - i;o ( i;o is the 
coherence length), etc. Consequently, the correction 
terms are smaller than those taken into account in 
(2.16) by the factor i;o/a, where a is the characteristic 
distance over which the velocity changes. The role of a 
will be played below by the rotating- cylinder radius R 
~ !;o. 

Thus, all the formulas of superconductivity theory 
retain their form, with the required degree of accuracy, 
provided the vector potential A is replaced by A = A 
+ (mc/e)u, where e and mare the charge and mass of 
the free electron. 

3. QUANTUM STATES OF ROTATING THIN-WALL 
CYLINDER 

An analysis of the behavior of a hollow cylinder in a 
magnetic field,c 16-18J and elsewhere, shows that the dis­
tribution of the induction and the magnitude of the field 
in the hollow are determined by the dimensionless ratio 

a= rd I 2/l', (3.1) 

where dis the cylinder-wall thickness, r the cylinder 
radius, and 0 the depth of penetration. In the case of a 
rotating cylinder (Fig. 1), the induction distribution is 
determined by the total field 

H = H, + 2mcw I e, (3.2) 

which consists of the applied field Ho and the field of the 
London moment 2mcwje. Substituting the expression for 
the superconducting current (2.16) in Maxwell's equa­
tion curl H = 41Tj/c, we obtain the field in the hollow 

H, =- 2;c w + [ ( H, + 2;c w) (J,(p,)K,(p,) + K,(p,)/,(pt}) 

- n<I>, (J,(p,)K,(p,)- K,(p,)J,(p,))] [/,(p,) (K,(p,) + 'l,p,K,(pt)) 
2nrll 

+ K,(p,) (/, (p,)- 'l,p,.l,(p,)) ]-': (3.3) 

here P1 = r/0, P2 = R/0, rand Rare respectively the 
inside and outside radii of the cylinder, K and I are 
Bessel functions of imaginary argument, and ncJ>o is the 

z 

!J 

FIG. I 

fluxoid. At a fixed value of n, the derivative dHl/dw is 
given by the relation 

dH,=-~{i 
dw e 

/,(p,)K,(p,)+K,(p.}11 (p,) } 
[K, (p,) + '/,p,K,(p,) ]/,(p,) + [I,(p,)- '/,p,l,(p,) ]Ko(Pz) (3.4) 

If the cylinder wall thickness d = R- r is small com­
pared with the penetration depth 0, formula (3.4) as­
sumes the simple form 

dH, 2mc a --=------ (3.5) 
dw e 1+a 

where a is given by (3.1). An analogous expression was 
obtained earlier by GriffinC 19J. 

We see from (3.5) that at small thicknesses (a - 0) 
we have dH1jdw - 0, as should be the case. When 
a >> 1, to the contrary, dH1jdw is equal to the London 
value -2mc/e. The transition from the case of "large" 
thicknesses to the case of small ones is realized, in ac­
cordance with (3.5), not at d - 0, but at much smaller 
values of d: 

(3.6) 

The critical thickness de is usually very small. Under 
normal conditions at r - 1 em and 0 - 10-s em, it 
amounts to -10-10 em. Nonetheless, an appreciable 
increase of the parameter de is possible if one uses ex­
tremely "dirty" s~stems, in which the penetration depth 
is 0 - Oo(T) (i;o/l)1 2 ~ Oo (l is the mean free path, Oo the 
penetration depth of a pure superconductor, and i;o the 
coherence length in the absence of scattering at T = 0). 
In granular or amorphous films with l - 1 A (seeC20•21 J) 
we obtain 0 - 10-3 em, "lhich gives a perfectly reason­
able value de - 2 x 102 A. Thus, the situation of the 
"thin" cylinder is, in principle, experimentally attain­
able. At the same time, the most interesting phenomena 
come into play precisely in the thickness region d <£ de, 
where effects of "switching" of the values of the quan­
tum number n (the fluxoid in units of cJ>o) come into play 
when the angular velocity w is varied. 

In order to consider effects of this kind, we use the 
Ginzburg- Landau equationsC22J, which, allowing for the 
expression obtained in Sec. 2 for the current in a rotat­
ing superconductor, take the forms> 

Sl As is well known, these equations are valid near T c [ 11 ]. For 
"dirty" systems, the region of their applicability is. broader [23]. In one 
way or another, the Ginzburg-Landau theory describes the character of 
all the effects qualitatively correctly also at temperatures far from Tc. 
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1 ( li 2e )' , - -:-V--A-2mu w-aw+~Jwl w=O, 
2m' ' c 

H 4n. 
rot =-J, 

c 
H=rotA, rotu = 2ro, 

e [ ( 2te ) ] i= 2m,Im ¢' fiV----;-A-2imu ¢. 

(3.7) 

The wave function 1/! is normalized in such a way that 
II/! 12 is the concentration N s of the superconducting elec­
trons (the depth of ~netration of a weak field is 
6 = (m*c2/47TNse2 )1 2). Introducing the customary 
dimensionless variables of the Ginzburg- Landau 
theoryl:22J, we obtain (K = 6/~) 

v )' (-;;--A-[rop] ljl- w(1-J,pJ') = 0, (3.8) 

and 

rot rotA= Im [ ljl' (: - t(A +[oop])) IJl]; (3.9) 

w is measured in units of (e/mc)Hcf2, where He is the 
thermodynamic critical field ( ~ is the coherence length): 

(3.10) 

The role of the boundary conditions for (3.9) are 
played by the requirements that the normal component 
of the current vanish on the surface of the superconduc­
tor: 

n(: -t(A+[ropJ))IJlls=O (3.11) 

and that the tangential component of the field H be equal 
to the field in vacuum Hs: 

fnrotA] Is= [nH,]. (3.12) 

We introduce further, as usual, the modulus and phase lJi 
and the superfluid velocity vector Q: 

1 
Q=--Vcp+A+[rop], 'IJ=Fe;,. (3.13) 

X 

In a cylindrical coordinate system ( p, 0, z), for the 
geometry of interest (Fig. 1), only the 0 component of 
the vector Q differs from zero, the phase cp is equal to 
nO, where n is an integer, and the quantities F and Q 
depend on p61 and satisfy the equations 

I __!___!__!!_(PdF) +F(i-F'-Q')=O, 
x' p dp dp 

..!!._ [__!_~(pQ)] = F'Q, 
dp p dp 

with the boundary conditions 

dF 
-=OIP=n dp 

dF 
ap=OJP=R• 

(3.14) 

1 d 
--(pQ)=Ho+2roJp=R• p dp 

1 d 
--(pQ)=H,+2ooJ •• ,. (3.15) 
p dp 

Equations (3.14) coincide with the corresponding equa­
tions describing vortices in a superconductorC24 J. The 
only difference from the latter case lies in the form of 
the boundary conditions; to Eqs. (3.15) (H0 is the field 
applied from the outside and H1 is the field in the hol­
low), it is necessary to add a relation expressing the 

6lin principle, inhomogeneous solutions (that depend on the angle 8) 
are possible, but analysis shows (see footnote II below) that they are 
unstable. 

continuity of the fields at p = r. The latter can be 
written in the form (compare with[18 J) 

2ltp (Q +...!!....- oop) = ltr'H,, 
Kp p=r 

(3.16) 

which can be regarded as the continuity condition for the 
flux q, = 4>(p) at p = r, expressed in dimensionless var­
iables. 

We shall obtain the solution of (3.14)-(3.16) in the 
following manner. Assuming r » 1, we can replace the 
radial parts of the Laplace operators in (3.14) by d2/dp2, 
and p-1d(pQ)/dp reduces to dQ/dp. We shall assume 
furthermore that the cylinder wall dis thin in the sense 
of the criterion (3.6), which, in dimensionless variables, 
takes the form rd « 1, and expand formally all the 
quantities in powers of d (actually, rd). Obviously, at 
d = 0 the field H1 should coincide with Ho. The indicated 
expansion therefore takes the form 

H,=H,+dh,+d'h,+ ... 

Making the substitution p = r + xd, 0 < x < 1, we repre­
sent the functions F( p) and Q( p) in the form .. ~ 

F = 1: d"F.(x), Q = Lrd"Q.(x), (3.17) - ... 
where Fn and Qn nolonger depend on d. Substitution of 
(3.17) in the initial equations (3.14) and (3.15) leads to a 
system of equations and boundary conditions for the 
functions F n(x) and Qn(x). The first three approxima­
tions for F n are of the form 

F,"(x) = 0, F,''(x) = 0, F.'= Ol•=•· ,; 

x-'F.''+F,(1-F,'-Q.") =0, (3.18) 

from which it follows that F0 , F1, and F2 are certain 
constants that do not depend on x, and from the last 
equation follows the relation F~ + ~ = 1. The equations 
for Qn(x) are written and solved analogously. 

Omitting the trivial derivations, we present the final 
result. We have, accurate to terms of zeroth order in d 
for the quantities Q and F and first order for the field 
H1, 

Q = 1/ 2r(H, + 2oo- 2n/xr'), F = l'1- Q', 

H,=H,-dQ(i-Q'), IQJ<1. 

(3.19) 

(3.20) 

The field difference H0 - H1 is proportional to the total 
current in ring j. As seen from (3.19) and (3.20), the 
current distribution is determined by the summary field 
H0 - H0 + 2w or (in dimensional variables) by the field 
H0 + 2mcw/e. Thus, the problem of destruction of super­
conductivity by rotation is equivalent to the problem of 

j j 

a b 

FIG. 2. Dependence of current circulating over the surface on the 
magnetic field: a-case 1er > 1/2, b-case 1er < 1/2. 

H 
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its destruction by a magnetic field of magnitude 
2mcw/e, in accord with the Larmor theoremC15J. 

Figure 2 shows the dependence of a current j circu­
lating over the surface of a cylinder on H at different 
values of the parameter Kr. When Kr > 1/2, the state of 
the cylinder in a specified field His ambiguous, and 
can be realized by a number of values of n; when Kr 
< 1/2 there is no such ambiguity and in certain intervals 
of variation of H (for example between the points A and 
B in Fig. 2b), the superconductivity is destroyed'>. At 
n = 0, the critical value of the field H, at which the 
ordering parameter vanishes, is determined from the 
condition Q = 1, and equals H = H s = 2/ r or, after 
changing over to dimensional units, 

H.= <D, I nl's. (3.21) 

A comparison of this expression with the thermodynam­
ical critical field (3.1<)) shows that HsfHc ~ o/r ~ 1. 
Thus, for the example considered above we have Hs/Hc 
~ 10-3 • The "critical" angular velocity of rotation Ws 
is obtained by multiplying Hs by the coefficient e/2mc. 
At He~ 102 G, it amounts to ~105 rps, i.e., it is quite 
large (experimentally unattainable). 

A transition between neighboring curves in Fig. 2a 
corresponds to a field change amounting to .t.H = 2/Kr2 

or, in dimensional variables, 

Ml = <D,/nr' (3.22) 

and corresponds to a change of the flux in the ring by 
one quantum. At r = 1 em, the change of the angular 
velocity corresponding to the increase of the field by an 
amount A.H is ~ 10-1 rps. 

The changeover from the situation shown in Fig. 2a 
to the case shown in Fig. 2b is realized at .t.H = 2Hs, 
which yields Kr = 1/2. It is easy to show that the char­
acter of the destruction of the superconductivity by the 
field (or by rotation) shown in Fig. 2b agrees with the 
diagram of state of the superconductor in the field. 
Indeed, in the case of a large- radius ring, according to 
the linearized Ginzburg-Landau equation (3. 7), the quan­
tity Tc is obtained as a solution of the equation 

[ ~ - ~c ( H, + 27c w) r r = s-'(T). (3.23) 

Since C2(T) is proportional to Teo- T, this leads to the 
Tc(H) curve shown in Fig. 38 >. From this we obtain for 
the smallest critical temperature Tc = Tc1 (Fig. 3), by 
minimizing the left-hand side with respect to n, the con­
dition 

(3.24) 

corresponding to oscillations of T c with an amplitudeC4J 

!J.T, IT,,~ J;'(O) I r'. (3.25) 

It is easily seen that the condition ~(T) = 2r, when 
expressed in dimensionless variables, corresponds ex-

nwe note that since we have put r > 1, the relation Kr < 1/2 can be 
realized only at sufficiently small "· 

8) Actually, at large values of the field H, the envelope of the oscil­
lations in Fig. 3 should shift to the left, corresponding to a monotonic 
decrease ofT c with increasing field [ 3]. The corresponding characteristic 
values of the fields Hen - <1> 0 /d~ in the case of films are very large, so 
that in our case we can assume this envelope to be practically vertical. 

Ho+Zmc w 
t: P' 

T 

FIG. 3. Diagram of states of cylinder in field. The superconducting 
region is shaded. 

actly to the relation Kr = 1/2. Depending on how close 
T is to T co' we obtain a dependence of j on H of the type 
shown either in Fig. 2a or in Fig. 2b. Curves of the type 
of Fig. 2a correspond to motion along the line PP' on 
Fig. 3 (T < Tc1), and the curves of Fig. 2b (Tc1 < T 
< Tc0 ) to motion along the line QQ' in the same figure. 
The points A and B in Fig. 2b correspond exactly to the 
points A and B in Fig. 3. Between these points, the cy­
linder is in the normal state, and the circulating current 
is j = 0. 

4. STABILITY OF MACROSCOPIC STATES OF A RING 
AND QUANTUM COHERENT EFFECTS 

The analysis presented in the preceding section can­
not, of course, answer in the general case the question 
of how the field inside the cylinder actually depends on 
the external field H0 or on the angular velocity w. If at 
the initial instant the quantum number is n = 0, then in 
principle, when Ho (or w) is increased, we can move up 
to the point Hs in Fig. 2a, although it is already clear 
intuitively that the "switching over" into a state with 
another value of n will occur earlier, apparently near 
the vertex of the j(H) curve. In the case shown in Fig. 
2b, however, realization of the entire "pair breaking 
curve" is possible, up to its termination at the point A. 

To determine the limit of thermodynamic stability it 
is necessary to analyze the second variation of the free­
energy functional G, which has a minimum at the equili­
brium state for the specified external conditionsC25J. 
In the case of type- II superconductors, such a problem 
was considered inC26 ' 27J. In our case the functional G is 
of the form 

G = J [F'Q'+:, (VF)'++(1-F')' 

+(H, + 2ro- rotQ)'] dp +(H,- H,)'nr'L., (4.1) 

where Lz is the cylinder length in the direction of the z 
axis. Considering small perturbations, we assume that 
the quantities F and Q acquire small increments 9> 

F, = /(p, ll), Q., = q(p, ll), Q,. = s(p, ll}, Q., = 0. (4.2) 

In addition, we should take into account the change of 
the z-th component in the magnetic field inside the cylin-

9>we consider perturbations that the homogeneous along the z axis. 
Perturbations inhomogeneous with respect to z correspond to an ad­
ditional positive contribution toG, which in turn corresponds to greater 
stability (compare with [27 ] ). 
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der, which we denote by h. By virtue of the flux quan­
tization condition ( 3.16), we have 

1 •• 
h=-[Jq(p,e)ae] . (4.3) 

1tr 0 par 

We expand Gin terms of the small perturbations f, q, 
and s, accurate to second-order terms 

G=G,-1-G, -1-G,; (4.4) 

Go does not contain small terms, and G1 and G.! are pro­
portional to the first and second degrees of the pertur­
bation, respectively. We are interested in an expression 
for (b. Referring this quantity to unit length in the z 
direction, we obtain 

G, = J d8 i pdp{ F'(q' -1- s') -(1- 3F'- Q')f' -1- 4FQfq -1-
o ' 

1 iJf ' 1 ( iJ f ) ' [ 1 iJ 1 iJs ] '} +-(-) +- - + --(pq)--- -l-nr'h'.(4.5) 
x' iJp x'p' ae p iJp p iJ8 

The functional (b ceases to be positive definite at the 
point at which o<b = 0. By virtue of (4.3), this leads to 
the following system of equations and boundary condi­
tions for the functions f, q, and s: 

__!__ [__!__~ ( p!.l.._) -1-~ iJ'f , -1- (1- 3F'- Q')f- 2FQq = 0, 
x' p iJp iJp p- iJ8' 

- !__ [_!__L(pq)- _!_ iJs 1-1- F'q -1- 2FQf = 0, 
ap r ap r ao 
_!__L [_!__L(pq)- _!_~] + F's = 0, 
r ae r ar r as 

iJf 1 iJ 1 iJs 
-i)p =0J,~,,R, --(pq)---=Oio=R• 

p iJp· p iJ8 

1 iJ 1 iJs 1 •• 
--(pq)---=-J qdfllo=•· (4.6) 
p iJp p iJ8 nr 0 

These equations are solved by the method described 
in Sec. 3, namely we put r » 1 and d- 0, and expand 
all the quantities f, q, and s in powers of the cylinder 
wall thickness d (see (3.17)). The result is a system of 
equations for the functions fn(x, 8), qn(x, 8), and sn(x, 8), 
where x = (P- r)/(R- r) and 0 < x < 1. An analysis of 
these equations shows that fo, f1 , qo, ~' So, S1 and f2 do 
not depend on x. For f0 we obtain the relation 

--1-.~-(1-3F'- Q')f, -1- 2FQq, = 0· 
x'r' de' , 

(4.7) 

F and Q are determined by formulas (3.19). Inasmuch as 
the quantities f0 , q0 , etc. are periodic functions of the 
angle 8, they can be expanded in Fourier series: 

00 

fo = ~ /orne''"' 
"'-' 

(4.8) 

etc. The boundary conditions for Eqs. (4.6) lead to the 
relations .. 

s q,d8 = 0, 
0 

1 '• - s q,de -1- F'q, -1- 2FQj, = 0. 
nr , 

(4.9) 

At m = 0 Eq. (4.7) yields, by virtue of the first rela­
tionin(4.9) 

1 - 3F' - Q' = 0. ( 4.1 0) 

This quantity is equal to- 2(1 - Q2). It vanishes only at 
the point Q = 1, at which the current j = Q(1 - Q2) be­
comes equal to zero. Consequently, homogeneous per-

turbations do not lead to loss of stability at any value 
of Q. 

At nonzero m, by virtue of the second relation in 
(4.9) we obtain 

2Q 
qom = --pfom, (4.11) 

which leads after substitution in ( 4. 7) to an equation de­
termining the point where stability is lost. 

2(3Q' -1)- m' / x'r' = 0, m 9=0. ( 4.12) 

It is clear therefore that the first occurrence of insta­
bility (the minimum value of Q = Qc) will be determined 
by the smallest value of lmJ. Inasmuch as m"' 0, we 
should put m = 1, which leads to the expression 

1 ( 1 )''• Q,=-::: 1-1--- . 
l'3 2x'r' 

(4.13) 

The foregoing analysis could be realized also in the 
following manner. Instead of determining the second 
variation of the functional G2, one can use the time­
dependent Ginzburg-Landau equation in the formC 2B-30J 

iJijJ ( v )' -+ -. -A-[rop] w-IP(1-I1J>I')=O 
iJt !X 

(4.14) 

and define the point at which stability is lost as the point 
of appearance of perturbations that increase with time, 
(f, q, s) ~ eYt with y > 0. Such an approach is perfectly 
equivalent to the one given above. We note that in this 
case we are not interested in a formal derivation of 
(4.14), which can be rigorously justified only in certain 
particular casesC30 J. The diffusion equation ( 4.14) can be 
represented in the form 

,;p = -1\G /.SijJ", (4.15) 

which gives the relation oG2 = 0 at the point where the 
instability appears first (y = 0, i.e., lj! = 0), by virtue of 
the fact that lj! satisfies the stationary Ginzburg- Landau 
equation (oG1 = 0). 

FIG. 4. Dependence of the cur­
rent on the superfluid velocity. Kr = 
0.75. 

j 

n~o n=l 

\ 
\ 

According to ( 4.13), the stable states will be those 
located somewhat to the right of the maximum of the 
pair-breaking curve j(Q) (Fig. 4), i.e., it becomes possi­
ble to observe at least a part of the decreasing branch 
of this curve10 >. The physical reason for this fact is the 
"blocking" of the most unstable homogeneous oscilla­
tions with m = 0, corresponding to strong perturbation 
of the field in the entire internal region of the cylinder, 
which leads to an increase of the free energy G. It is 
important that the quantity Qc changes in the range from 

10lThis remark has no bearing on the data of [ 31 ), where an attempt 
was made to investigate states located to the right of the maximum 
point of the j(Q) curve. The situation considered in [ 31 ) corresponds to 
the case Kr ~ I ,and in this case the stability limit Qc"" I ;..;r corresponds 
to the point of maximum current. 
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1/ V3 to 1 when Kr changes from oo to 1/2. At Kr = 1/2, 
we have Qc = 1, corresponding to stability of the entire 
j(Q) curve up to its termination at the point Q = 1. 
Naturally, this conclusion remains in force also when 
Kr < 1/2. Thus, in the case shown in Fig. 2b, it is pos­
sible to observe the entire pair- breaking curve, which 
is stable up to the point of transition to the normal state. 

Taking all the foregoing into account, let us analyze 
the variation of the current j in the ring as a function of 
the angular velocity w (Fig. 5). The quantity H0 - H1 is 
proportional to j. We consider for simplicity the case 
Kr » 1. 

/( 

FIG. 5. Dependence of the field in the hollow of the cylinder (HJJ 
on the angular velocity w. 

Assume that the quantum number in the initial state 
is n = 0. Then, with increasing w, we move to the vertex 
A of the curve corresponding to n = 0. At this point, 
stability is lost and a change takes place to the state 
with a value of n differing by unity from the initial state. 
This process repeats at the points B, C, ... , etc. If at a 
certain point K we begin to decrease w, then we shall 
move along the line KL, i.e., appreciable hysteresis 
takes place. The analogous process of switching at the 
points P, Q, ... ,etc. then repeats. 11 > We note that com­
plete thermodynamic equilibrium (a minimum value of 
G for each specified value of w) would correspond to 
motion along the dashed line of Fig. 5. Such a state, 
however, cannot be realized in samples with macro­
scopic dimensions when w changes at any nonzero rate, 
since the corresponding relaxation times are very large. 

Both in the case of thermodynamic equilibrium and 
when account is taken of effects of "superheating" 
(OAB ... ) and "supercooling" (KLPQ ... ), the dependence 
of the field inside the cylinder (H 1) on the angular veloc­
ity oscillates with a period t:1w determined by the flux 
quantization condition t:1w = et1H/2mc. We note that 
situations corresponding to superheating and supercool­
ing are not fully equivalent, it being connected with 
boundary effects not taken into account in our calcula­
tion. It is known that in experiment it is usually much 

Ill An investigation of the kinetics of such a switching is an independ­
ent problem. As shown by analysis, the transition occurs with involvement 
of inhomogeneous states of the ring, corresponding to values ofF that 
depend on the angle e [ 32]. All such states are unstable, and their de­
velopment decreases the values of the modulus of the ordering para-
meter 11/11, and it is vanishing of this parameter at a certain point that 
makes possible the switching into a state with another n. A unity change 
in n is the most natural assumption corresponding to a transition of the 
system into the state closest to the given one, which corresponds in 
turn to a local minimum of the potential curve. 

easier to observe supercooling than superheating. It 
may therefore turn out that it is more convenient to 
study these effects experimentally in a decreasing 
rather than increasing field H = H0 + 2mcw/ e. 

As already noted, to reach the stability-loss point A 
it is necessary to have very large angular velocities, 
w ~ ws/13 ~ 105 rps. Nonetheless, in view of the 
already noted additivity of the quantities H0 and w, it is 
easy to shift the origin by applying a constant magnetic 
field Ho ~ 0.1 G. If we choose a value of H0 close to 
Hs/13, then the loss of stability with increasing angular 
velocity will occur already at rather small values of w, 
which in principle can be made of the order of t:1w 
~ 0.1-1 rps. It is similarly possible to initiate the 
oscillations in a decreasing field. The order of the am­
plitude of the oscillations of H1 is given by the relation 

I!H, 2mc rd ,/ 
-~----,3 
l!ro I e I ll' ' 

(4.16) 

At values of w corresponding to the points P, Q, etc., 
the derivative dHt/dw becomes very large (formally, 
infinite), i.e., a significant sensitivity to small changes 
of w appears. By setting the working point in the region 
of the jump with the aid of an externa 1 field H0 , it is 
possible to measure the angular velocity with a very 
high degree of accuracy. Of course, this requires very 
accurate stabilization of the external field H0 • 

Observation of all the foregoing effects is of consid­
erable interest from the point of view of studying the 
so- called macroscopic coherent phenomena in super­
conductors[l ' 13]. 

In conclusion, we consider it-our pleasant duty to 
express deep gratitude to I. M. Dmitrenko for constant 
interest in the work and for numerous discussions. We 
are also grateful to A. A. Abrikosov· for a discussion of 
this article and significant remarks. 
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