
SOVIET PHYSICS JETP VOLUME 34, NUMBER 5 MAY 1972 

NEGATIVE IONS IN SOLID HELIUM 

V. B. SHIKIN 

Physico-technical Institute of Low Temperatures, Ukrainian Academy of Sciences 

Submitted March 18, 1971 

Zh. Eksp. Teor. Fiz. 61, 2053-2066 (November, 1971) 

A self-consistent description of the structure of a negative ion in solid helium is presented. The mo­
bility of negative ions (anions) in weak constant and variable external fields and also the first nonlinear 
corrections to the mobility, which appear upon increasing the intensity of the driving field, are calcu­
lated within the framework of a diffusion mechanism. The mobility of the anions is determined under 
conditions when the vacancies of solid helium lose their localization. The question of surface electron 
states on the vacuum-dielectric boundary is discussed, and also the question of the structure of these 
states above a helium film which has a solid dielectric as its support. 

FREE electrons, introduced into solid helium, form in 
it, just like in liquid helium, spherical cavities which 
are rather large in comparison with the dimensions of 
interatomic distances. The self-consistent complex 
arising from the deformed region of helium and from 
the electron localized inside this region possesses many 
interesting properties. A description of some of these 
properties is given in the present article. In addition, as 
one of the varieties of interaction of free electrons with 
solids, the question of the electron surface states above 
a helium film, having a solid dielectric as its support, is 
discussed. 

THE STRUCTURE OF THE NEGATIVE ION IN SOLID 
HELIUM 

The fundamental parameters of the negative ion can 
be comparatively simply estimated within the frame­
work of the model of a spherical potential well. In this 
model the total excess energy of the negative ion is 
written in the following manner:u 

W = W,+ Wp+ W.-n+ W,, 
n'x' 4 e -1 e' 

W,= 2ma'' W.=3na.'p, W,=--2---;;-' (1) 

2nn' sin' x 
W,-n = --a,nf(x), /(x) = . . 

m I ctg x[ (x- smxcos x) + sm' x 

sinx 11 2nn' 
Uo = --a,n. (1a) 

x a12mU, m 

Here We denotes the kinetic energy of the electron in 
the ground state for a spherical well of radius a and 
height U0 • The value of the parameter x determines 

!)The relatively large dimensions of the negative ion in solid helium 
are usually associated with the smallness of the ratio m/M ~ I, where m 
is the electron mass and M is the mass of the helium atom. Thus from 
[ 1•2 ] it follows that the ion's radius a is determined by the expression 
a5 ""'h2 x2 /47Tmp; for p""' 30 atm we obtain a""' I OA; here p denotes the 
external pressure and x is a certain numerical parameter varying within 
the limits 7T/2.;;;; x < 7T. However, in actual fact the problem of the calcu­
lation of the radius a contains one more small parameter, a0 /a 1 <I, 
which influences the size of the ion (a0 and a1 denote the amplitudes 
for the scattering of an electron or a helium atom by an atom of helium; 
a0 /a1 ""' 1/5). The self-consistent calculation of the ion's radius, carried 
out in this article with this additional smallness taken into account, 
leads to values of the radius a somewhat larger than those in [ 2). 

the position of the electron level in the well. A discrete 
level appears in the well for the first time when x = rr/2. 
However, if the height of the barrier is very large, then 
x- rr. Thus, the self-consistent value of x which we 
are interested in is found somewhere within the limits 
rr/ 2 ~ x < rr. The relation between x and the barrier 
height U0 and the ion's radius a is given by relation 
(1a), which is taken from r 3 J. As to the expression for 
U0 , it describes a hard-sphere type of interaction of a 
free electron with a medium having a particle number 
density equal to n (see, for example, [ll). In this defi­
nition a0 denotes the amplitude for the scattering of an 
electron by an individual helium atom, m denotes the 
electron mass, and n denotes the number density of 
particles in one cubic centimeter of solid helium. Wp 
denotes the excess energy of the ion, resulting from its 
finite volume % rra3 in the medium with an external 
pressure p; We-n denotes the excess energy asso­
ciated with the penetration of the electron wave function 
into the depths of the solid helium; WE denotes the 
negative energy resulting from the polarization attrac­
tion of the solid helium towards the charged vacancy; 
E is the dielectric constant of solid helium. One can 
use the Clausius -Mosotti formula with sufficient accu­
racy in order to estimate the difference E - 1; in units 
which are convenient for later use this relation is writ­
ten as follows: 

0.1245 
e-1=4n-­

Vo 

where V0 denotes the molar volume of solid helium at 
the given pressure. 

Relations (1) and (la) must be supplemented by the 
relation between the external pressure p and the num­
ber density n of particles of solid helium. The analytic 
dependence of n on p is not known. Therefore, certain 
numerical data, taken from experiment, will be utilized 
below. After this, by minimizing W with respect to a 
for given values of p or n, one can obtain an equation 
which determines the dependence of a on p or on n. 

In practice it is convenient to carry out the required 
calculations in the following manner. From (1a) let us 
express the quantity a in terms of x and n: 

1 X 
a=---- (1b) 

2ya,n sinx 
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and let us substitute this expression for a into W from 
(1). As a result the energy W turns out to depend only 
on x, n, Y0 , and p, and moreover there is a unique re­
lation between n, Y0 , and p, so that the independent pa­
rameter is either p or n. Therefore, minimization of 
W with respect to x for a given value of n enables us 
to find the values of x corresponding to the extremum 
state of the ion. Specific values of Xextr• obtain~d from 
the equation dW / dx In = 0 by using numerical data con­
cerning the molar volume and density of solid helium 
associated with certain specific pressures, are col­
lected in the table. (The data concerning the density and 
molar volume is taken from l 4 l), Here the values of the 
radius a, following from Eq. (1b) for known values of n 
and Xextr• are also given (the quantity ao = 6 x 10-9 em). 

As a brief comment on this table, we point out the 
interesting behavior of the quantity Xextr with increas­
ing pressure. If one moves in pressure from the side of 
liquid helium, then at first Xextr increases monotonical­
ly, which corresponds to the unimportance of the polari­
zation correction WE to the total energy W. However, 
starting with negative ion radii ~ 10 A the situation 
changes. In this range of external pressures, the equi­
librium state of the ion begins to be determined by com­
petition between the contributions to the total energy W 
coming from We and WE, but not We and W P• as was 
the case at smaller pressures. Formally this shift in 
the competing factors corresponds to nonmonotonicity 
in the behavior of Xextr· 

MOBIT..ITY 

The question of the mobility of ions in solid helium 
actually arose in connection with the first successful 
experiments in regard to the measurement of such a 
mobility, which were carried out by Keshishev, 
Mezhov-Deglin, and Shal'nikov,l5 l It should be noted 
that the dynamical properties of the ions in solid helium 
differ qualitatively from the corresponding properties of 
the ions in liquid helium. If one can talk about the ions 
in liquid helium as about quasiparticles, for which the 
concepts of momentum, dispersion law, and so forth 
are well defined, then for ions in solid helium such con­
cepts lose their meaning over practically the entire ac­
cessible range of temperatures and pressures. Here 
the coordinate of the ion plays the role of the dynamical 
characteristic. Under such conditions the mobility of 
the ions must be of a diffusion, either viscous or plastic 
character. 

One of the possible mechanisms for the mobility of 
negative ions in solid helium was considered by the 
authorl 6 J under the assumption that the displacement of 
the ion with respect to the lattice of solid helium is ac­
complished with the aid of specific diffusion processes 
which arise around the negative ion due to the influence 
of the external electric field. The results of the calcu­
lation in ls l lead to the following expression for the mo-

p,atm Jv,,cm'fmolel n,IO'~cm·• I xextr a, A 

26 20.9 1,9 

l 
2.15 12,1 

iiO 20.6 1.94 2.17 12.0 
73 18.8 3.20 2.23 10.0 

142 17.0 3.65 2.13 8.5 
1064 12.5 4.65 I 1.88 5,7 

bility 11 (the driving field is assumed to be constant and 
sufficiently small): 

c,w, nh' A 
1-1 = eD kT ma' I Ao - )., I ' 

A=. 2~~ . !...j,(np,x)j.~,J' j,(nx)j,(n~,x)x·'dx, (2) 
Jo(n~,)J,(n;J,) Ox 0 

~~ = 1.4303. 

Here Wo and D denote the volume and diffusion coeffi­
cient of the vacancies in solid helium, Cs denotes the 
equilibrium concentration of vacancies on the surface 
of the negative ion (for the determination of cs, see be­
low), a denotes the radius of the ion, and the jz are 
spherical Bessel functions. The constant A is of the or­
der of unity, and I Ao- A1 1 denotes the difference between 
the ground and the first excited electronic levels in the 
spherical cavity of the negative ion. In order of magni­
tude this difference is given by I Ao- A1 1 :::,: 1r2 li2 /2ma2 • 

In addition to the calculations from ls l it makes 
sense to determine the value of the concentration of va­
cancies on the surface of the ion more accurately. In 
the indicated article the quantity cs was assumed to be 
equal to the volume concentration of vacancies, c0 • In 
actual fact, however, the distribution of vacancies near 
the negative ion turns out to be nonuniform. The causes 
of the nonuniformity are the polarization forces, which 
repel the vacancies from the surface of the ion into the 
depths of the solid helium. As is shown in the first sec­
tion of the present article, the polarization forces (or 
the polarization energy WE from (1)) turn out to have a 
pronounced effect on the structure of the ion in solid 
helium. These forces change the concentration of va­
cancies in the neighborhood of the negative ion, and 
therefore they must be taken into consideration in cal­
culating the mobility of the anions. With the polarization 
forces taken into account, the distribution of the vacan­
cies near a negative ion is determined from the condi­
tion that the chemical potential of the vacancies be con­
stant: 

ae' 
7 w, + kTlnc = kTlnc,, 

from which 

/. Olo ae') 
c(r) = c,exp \-ki'T . (3) 

Here a denotes the polarizability of solid helium: 
a = (E- 1)/81T, w0 denotes the volume of a single vacan­
cy, and c0 denotes the equilibrium concentration of va­
cancies far away from the ion. From Eq. (3) we find 
that the surface concentration of vacancies is deter­
mined by the following expression: 

( w,ae') c,=:c(a)=c,exp ---. 
kT a' 

(3a) 

Substituting here the values Wo :::,: 10-22 to 10-23 em -3 , 

a:::,: 3 x 10-3 and a:::,: 10-7 em, one can easily verify that 
for T:::,: 2°K the argument 0 of the exponential is of the 
order of 0 ;: 1, that is, the quantity cs is appreciably 
smaller than the equilibrium concentration c0 • 

The value of the mobility of the anions from Eq. (2) 
is qualitatively in agreement with the existing experi­
mental data. csJ However, this experimental data is still 
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too incomplete to reach any final conclusions about the 
uniqueness of the description proposed in r6 l • Detailed 
measurements of the temperature dependence of the mo­
bility and of its dependence on the intensity of the driv­
ing field are needed. In addition, the verification of other 
possible consequences of the diffusion mechanism of mo­
bility might prove to be of great assistance in regard to 
the final interpretation. Some of these consequences 
are discussed below. 

A. The Mobility of Negative Ions in a Variable Field 

We recall that in liquid helium the high-frequency 
mobility of the ions contains certain relaxation reso­
nances, and the determination of the position of these 
resonances enables one to judge the relaxation time and 
the effective mass of helium ions in liquid helium. In 
the simplest case the existence of relaxation maxima 
follows from the elementary equation of motion for the 
helium ion 

where m * is the effective mass of the ion and T de­
notes the relaxation time. From here we find the follow­
ing expression for the imaginary part of the mobility 

Ol"t' 
lmf,l(w)= !1(0) 1 +(wt)', (4) 

that is, the imaginary part Im JJ.(W) has a maximum 
for WT ~ 1. The experimental determination of such 
maxima in liquid helium is already a solved problem 
(see, for example, r7 l), Similar maxima in the fre­
quency dependence of the mobility should also be ob­
served for the ions in solid helium. Only their specific 
position is, of course, determined by other physical 
parameters. 

The problem of the frequency dependence of the mo­
bility of negative ions in solid helium is solved with the 
aid of the following equations (see r6 l): 

DVcl,~.=vn(O), f1(w)=vn/E, 

I - n/t1 £ E., IJ 'I' . ~ lt~.r ) '"' Pel- '( 2 )'io ~,--- J• -- P,(cos9)e , 
ma 1[a r~o .II.[ ur r=a a 

' 
II 0 ~ 

Pel = Pel~ 2n s1s,P, (cos 9), 
I 

j,' (n) ;." (n) ( ) 
s1 = j

1
(n) - jo'(:rt) , a(O) =a 1 +I: s,P,(cos 9) , (5) 

Pz (cos 9) are the Legendre polynomials, c(r, 9, t) is 
the nonequilibrium concentratio.n of vacancies, D is 
their diffusion coefficient, E0 e1 w t is the variable elec­
tric field, and p~1 denotes the electron pressure due to 
the perturbation of the electron wave function by the ex­
ternal electric field. Here the E0z denote the matrix 
elements of the potential of the perturbing field with re­
spect to the electron eigenfunctions of the problem, the 
jz (11{3l r/a) are spherical Bessel functions with the coef­
ficients l3z chosen from the condition j z(1I/3z) = 0, and 
the A.z are the electron levels of the unperturbed prob-

lem. It is necessary to insert additional pressures p~1 
and Pa on the surface of the ion into the problem, be­
cause in addition to the first harmonic the pressure p~1 
contains still higher harmonics. These higher harmon­
ics lead to a deformation of the ion, ~(9) = [a(9)- a]/a, 
which in turn causes the appearance of additional pres­
sures which impede the growth of the deformation. The 
pressures P~l = 7In2/4ma5 and p~ = 2o/a, which appear 
in the definitions of p~\ and Pa• correspond to the 
spherically symmetric values of the electron and the 
Laplacian pressures. 

Taking the specific form of the solution of the diffu­
sion equation 

c(r, e, t) = e'"' E clhl(yr)PI(cos 0),. 
I 

into consideration, where y ll = i w /D and hz ( y r) are 
the spherical Bessel functions which decay exponen­
tially at large distances from the center of the ion (in 
view of the fact that their argument is imaginary), and 
for the sake of brevity representing p~1 from (5) by the 
summation 

Pe/ = I:q~P~(cos9), 

we obtain the following expression for the diffusion rate 
of travel vn(9) of the ion boundary: 

Vn(O)= Ev.,,P,(cos9), 
I 

x [ 1ah,(yr) I c,ro. D 
Vn,=h-( ) ql+s~Q, -,- ' x= kT , 

l va ur r=a 

Q, = [p.'(l' + l- 2) + Pei0 ·2:rrsl] (6) 

The first harmonic of the pressure p~1 does not cause 
any deformation of the ion. Therefore one immediately 
obtains 

X f) 
Vnt = q,---h,(yr)lj,~., 

h,(ya) 8r 

, iro z+1 , 
v =n· h,(z)=--z-' -e•. 

From here one can easily find 

(6a) 

6 1 roa' 
ImJ.t.1((1))=J.t.•(O)(f+ll)'+ll'' 6'=2:[)· (6b) 

This relation is completely analogous to (4) and indi­
cates the existence of a relaxation maximum at a fre­
quency w Rl 2D/all. 

In the remaining harmonics vnl it is first necessary 
to determine the quantities ~l· For this purpose we 
write vnl in the form vnl =a~ l = iaw~z, after which 
from (6) we find 

• _ xq1ln' h,(ya) . , 1 fJh, 
b< In h,,...---. 

-iaw-xQI1n'hl('\'a)' h, fJr 
(7) 

From the determination of ~l given by (7) it is seen 
that the diffusion displacements of higher order are 
small in comparison with ~ 1 : ~l/~ 1 "'1/lll << 1. There­
fore, although the higher relaxation resonances exist in 
principle, their relative amplitude is small and appar­
ently not sufficient for practical observations. 
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B. The Diffusion Mobility in the Presence of Strong 
Fields 

By forgoing the assumption that the driving field is 
small, one can obtain one more generalization of the re­
sults of [sJ. The limiting case of small fields actually 
corresponds to the fulfillment of the following three in­
equalities: 1) V << Dla is the condition for it to be pos­
sible to describe the distribution of vacancies by the 
harmonic equation; 2) eEa/W0 << 1 implies neglecting 
the influence of the ion's deformation on the mobility. 
3) w0 pJ1/kT << 1 corresponds to a linear relation be­
tween the boundary values of the excess concentration 
of vacancies and the perturbed electron pressure P~l . 
In these inequalities V denotes the ion drift velocity, 
whose value can be estimated with the aid of {2) and the 
relation V = tJ.E, E denotes the intensity of the driving 
field, and W0 denotes the total self-energy of the ion; 
the value of the electron pressure P~l is determined 
in (5 ). 

Estimates show that inequality 3) is violated first 
with increasing intensity of the external field. 21 Thus, 
in order to describe the first effects which are nonlin­
ear in the field, it is only necessary to define the bound­
ary condition, relating the excess electron pressure and 
the concentration of vacancies on the surface of the ion, 
in the system of Eqs. {5) more accurately. In the gen­
eral case this condition is written as follows: 

c(r) 1,~• = c,(e'-1), v = <ilo(Pei 1 + Pei11 + p.) /kT, 

and in the range of fields v .:5 1 of interest to us 

cl,=·=c.[v+ ~+f+ ... ]. 

Now we notice that the displacement of the ion as a 
whole is only related to the angular harmonics of the 
external pressure, which are proportional to cos 9 (all 
the remaining harmonics deform the ion and in a con­
stant driving field with time they are automatically can­
celled by the additional pressures p~\ and Pcr)· There­
fore, desiring to take into account the influence on the 
mobility in a constant field of the nonlinear terms in the 
expansion of c in powers of 11, it is necessary to choose 
in this expansion the powers of v which contain cos 9. 
The first nonlinear term of such a type is v3 13 !, be­
cause cos3 9 = % cos 9 + % cos 31i. Taking account of 
this first nonlinear correction in the boundary condi­
tion for the excess concentration and determining the 
corresponding mobility, we find 

~t(E)= ~t(O) [t +~(~ eEa) ']' 
4! v, kT 

where w 0 and v0 denote the volumes of the vacancy and 
of the negative ion. With regard to specific values of w0 

2>Let us compare, for example, the left-hand sides of inequalities 2) 
and 3). Taking the estimate for P!J - eEa/v0 into account, where v0 

denotes the volume of the negative ion, and also the numerical values 
w0 "' 10-22 to 10-23 cm3 , v0 "' 10-20 cm3 , we find that forT"' I °K and 
W0 - 103 to 104 °K 

eEa kT kT v0 
---=--~1. 

Wo OloPet 1 Wo OOo 

that is, the left-hand side of inequality 3) is larger than the left-hand 
side of inequality 2). 

and v0 , for temperatures T ~ 1 °K the nonlinear effects 
should appear in fields E ~ 105 VI em. 

CERTAIN QUANTUM CHARACTERISTICS OF THE 
MOBILITY 

The determination of the mobility of ions in solid 
helium is of interest not only by itself. In the present 
case the problem excites increased interest in connec­
tion with the prospect of using charged particles to in­
vestigate different properties of lattice defects in solid 
helium. The rather general considerations of Andreev 
and I. Lifshitz[aJ about the possible existence in solid 
helium of vacancies of quantum origin, having a nonvan­
ishing concentration as T- 0, are well known. In addi­
tion, even at rather high temperatures the helium va­
cancies must lose their localization, turning into "va­
cancy-ion" quasiparticles. All of these properties in 
the behavior of the vacancies have a direct relation to 
the mobility of the negative ions. 

Upon lowering the temperature in the problem con­
cerning the calculation of the mobility of the anions, it 
first becomes necessary to take account of the loss by 
the vacancies of their localization. According to the es­
timates of Pushkarov, [9 J the mean free path of the va­
cancies becomes appreciably larger than the interatomic 
distances for temperatures T < Ya Tn, that is, some­
where in the region T .:S 1 °K. Under such conditions the 
relation between the boundary values of the excess con­
centration of vacancies and the pressure on the surface 
of the ion still remains classical: c lr =a = CsW 0 PnlkT. 
However, the spatial distribution of the vacancies and 
the corresponding vacancy-ion currents must now be 
determined, not with the aid of the diffusion equation but 
from the solution of the kinetic equation for the distri­
bution function f of the vacancies. In the limiting case 
l I a>> 1 ( l denotes the mean free path of the vacan­
cies and a denotes the radius of the ion) the kinetic 
equation for the function f can be written without the 
collision integral: 

Here vr and ve are the components of the vacancy ve­
locity in the spherical coordinate system whose origin 
coincides with the center of the ion, and the polar axes 
of the coordinate space and of the velocity space are 
chosen to be collinear; U{r) denotes the potential energy 
of the vacancies in the field of the polarization forces; 
M denotes the effective mass of the vacancy-ion. 

Equation ( 8) is solved with the aid of the method of 
characteristics and in the general case the solution can 
be written in the form of an arbitrary function of the to­
tal energy, the aQgular momentum of the vacancy-ion, 
and some angle 9 : 

M ' d 
f = t [ 2(v,' + v,') + U(r); Mv,r; e- rv, f r'~,]. (9) 

In the absence of a perturbing electric field the dis­
tribution of the vacancies around the ion is spherically 
symmetric and must go over into a Maxwellian distri­
bution at large distances from the ion. These require­
ments uniquely determine the specific form of the arbi-
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trary function from (9) for the stationary distribution 
fo(r, Vr, V(}): 

f _ ( M ) '1• [ M(v,' + v8')/2 + U(r) ] 
0 - Co 2nkT exp - kT (9a) 

where c0 denotes the equilibrium concentration of va­
cancies far away from the ion. Now calculating the lo­
cal density of the vacancies by the usual method 

e (r) = 2:n: J f,(r, v., v,) dv,u,,dv,, 

with the aid of Eq. (9a) we obtain 

c (r) = c,e-U(')'"'. 

This distribution turns out to be in perfect agreement 
with the distribution (3), (3a) obtained above, that is, 
the surface concentration of vacancies, cs, which enters 
into the determination of the anion's mobility, is not 
sensitive to the nature of the motion of the vacancies in 
solid helium. 

Before going on to the case involving an external 
field, it is still necessary to discuss the question of the 
behavior of vacancies whose trajectories either begin 
or end on the surface of an ion. The basic property of 
the ion's surface, which is essential for the entire prob­
lem about diffusion mobility, is its ability to absorb and 
emit vacancies. Therefore, in solving the kinetic equa­
tion it is natural to assume that all of the vacancies, 
falling onto the ion's surface from the volume of the 
crystal, are absorbed by this surface. In the equilib­
rium case the flux of particles, impinging on a given 
element of the ion's surface, is given by 

• +• +• -v2kT 
j.= Jv,dv,J dv. J dv.f,(a,v)= ;~', Vr= M. 

0 -w -w l' 
(10) 

The z axis in the cited integral is chosen in the direc­
tion of the inward normal to a given point on the sur­
face of the sphere, fo(a, v) is taken from Eq. (9a), and 
VT denotes the thermal velocity of the vacancy-ions. 

Assuming the possibility of absorbing the currents 
(10) on the surface of the ion, it is necessary to postu­
late that in the equilibrium situation there simultaneous­
ly occurs an emission of vacancies by the ion surface in 
the volume of the crystal with an output which is equal 
to the value of the current from expression (10). It is 
natural to assume the velocity distribution of these va­
cancies to be Maxwellian, with a characteristic tempera­
ture equal to the temperature of the crystal. This as­
sumption is quite reasonable, since a source of vacan­
cies on the surface of an ion has a fluctuating thermal 
origin and may impart only thermal velocities to the va­
cancies which are leaving the surface. 

The considerations discussed here enable us to de­
scribe relatively simply the situation when an external 
electric field is switched on. In this connection the dis­
tribution of the vacancies incident on the ion and also 
the corresponding currents remain the same as before, 
given by expressions (9a) and (10). As to the distribu­
tion function of the vacancies which are leaving the ion 
surface, it acquires a small correction, having a Max­
wellian shape in velocity space (here considerations 
about the nature of the emission of vacancies by the ion 
surface are utilized; a weak external electric field 
eEa/kT << 1 should not influence the emission mecha­
nism, operating under equilibrium conditions) and de-

pending on the angular variables in coordinate space. 
The angular dependence of the correction is selected to 
be such that, on the one hand, it would allow the general 
solution (9) and, on the other hand, it would permit one 
to satisfy the boundary condition 

(10') 

oc denotes the nonequilibrium concentration of vacan­
cies on the surface of the ion, and P~l denotes the per-
5:rbing electron pressure. For simplicity the pressure 
Pel contains only one angular harmonic ex: cos 9. Conse­
quently the total distribution function has the following 
form: 

I f,(r,v), v,<O, 

/(r, e, v) = dr 
f,(r, v) [ 1 + const·cos ( 9- rv, f r'v,)], v, > 0 

(11) 

fo(r, v) is obtained from expression (9a). 
The value of the constant in this distribution is 

found with the aid of the indicated boundary condition, 
that is, from the equation 

S ] c,m0 0 eEa 
2n [f(a, 9, v)- f,(a, v) v,dv,dv, =--Pel --cos a. 

kT Wo 

Here the perturbing electron pressure is represented 
by the estimated expression 

1 o eEa 
Pel :::::: Pel Wo cos a, 

where P~l denotes the spherically symmetric electron 
pressure: P~l ~ W0 /v0 , W0 is the self-energy of the 
anion, and v0 is the volume of the ion. Now using the 
distribution function from (11) to calculate the radial 
nonequilibrium current on the surface of the ion and re­
lating the value of this current with the velocity of mo­
tion of a given element of the ion's surface, we obtain 
the following expression for the velocity of motion of 
the ion as a whole: 

llj. I,~.= Vcos a, 

V = c, eEa ~-v kT 
kT v0 2rrM' 

(12) 

This result for the velocity V differs qualitatively from 
the diffusion expression (2) and has a simple physical 
meaning. Under conditions when the vacancy-ions are 
free, that is, they arrive at and leave the ion surface 
without collisions, the velocity of displacement of the 
ion as a whole is limited by only two factors: the con­
centration of nonequilibrium vacancies on the surface 
of the ion, which is estimated to be 

eEa Olo 
6c~c.---­

kT v, ' 

and the velocity of escape (or arrival) of the vacancies 
from the surface, that is, the thermal velocity of the va­
cancies VT = v'2kT/M. Therefore V ~ VTOc, which is 
also obtained in (12). 

Upon a further reduction of the temperature, the 
classical boundary condition (10') loses meaning. How­
ever, the specific range of temperatures, where degen­
eracy of the vacancy-ion gas begins, is still unclear. 
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Therefore, a discussion of the question of the modifica­
tion of this boundary condition is not given in the pres­
ent article. 

THE INTERACTION OF ELECTRONS WITH THE 
FREE SURFACE OF A SOLID DIELECTRIC. 
SURFACE ELECTRONS ABOVE A HELIUM FILM 

Surface electron states exist on the free boundary of 
a solid dielectric, just like on a liquid-vapor boundary; 
the concept of these states is introduced independently 
in articles [ 10 ' 11 l. The difference between the cases of 
solid and liquid boundaries consists only in the numeri­
cal difference of the discontinuities of the dielectric con­
stant, as a consequence of which the localization of the 
electrons above a solid dielectric turns out to be much 
stronger than above a liquid. The presence of surface 
states above liquid helium was recently confirmed by 
the experiments of Williams, Crandall, and Willis.[l2 J 

Therefore, there is no doubt at all about the existence 
of such states above a solid surface. However, by them­
selves the surface states above a solid dielectric are 
apparently of little interest. It is much more attractive 
to utilize the strong interaction between the electron and 
a solid dielectric in order to increase the effectiveness 
of the interaction between the electron and a liquid di­
electric. The reasons for the appearance of such a 
problem require explanations. 

The surface electrons above a liquid boundary can be 
utilized in order to investigate the spectrum of thermal 
surface excitations in liquid helium, where there is 
practically no information about this spectrum in the 
region of large values of the wavenumbers of the ther­
mal excitations. However, as is shown in [ l3J, the natu­
ral surface electrons interact weakly with the surface 
vibrations of liquid helium, and therefore are not very 
suitable for the indicated purpose. The situation is im­
proved considerably if an external field is enlisted in 
forming the electron-phonon interaction. The simplest 
possibility of this type is the inclusion of an additional 
electric field E 1, pressing the free electron from the 
side of the gaseous phase toward the liquid-vapor sur­
face. This possibility is investigated by the author in 
[ 13 J. But the field E 1 cannot be very large, since with 
increasing E 1 the probability of breakdown phenomena 
in the gaseous phase rapidly increases. Therefore, 
from the point of view of strengthening the electron­
phonon interaction for surface electrons one can ad­
vance much further by studying the surface electrons 
above a helium film (in connection with this, also see 
l 14 l). Here the additional image force, acting on the 
charge from the side of the dielectric backing, plays the 
role of an external field. 

Let us consider a helium film of thickness d, situ­
ated on a planar dielectric backing having a typical 
value of the dielectric constant E ""'2 to 5. Let a free 
electron be located above this film; thanks to the at­
tractive image forces acting on it, and thanks to the 
repulsive potential that prevents the electron from pene­
trating into the liquid film, the electron is localized 
above the surface of the film. The wave equation de­
scribing the state of the electron in such a situation, 
taking account of the existing small deviations of the 
shape of the free surface of the film from its equilib-

rium planar shape, appears in the following form (the 
z axis is directed along the normal to the interface, and 
the gaseous phase corresponds to the region z- d ::=: 0; 
for simplicity the perturbation 15(x) of the shape of the 
surface is assumed to be one-dimensional): 

2m 
Ll'IJl +y,P·- W(z, tS) ]¢ = o, 

¢I ·=<-O(i) = 0, ¢I H+--->- 0, (13) 

6. is the two-dimensional Laplacian operator, m is the 
mass of a free electron, ,\ is the eigenvalue of the 
equation, and W(z, 15) is the potential energy of the 
electron in the field of the image forces associated with 
the presence of a deformation of the free surface of the 
helium film. In the case when no such deformation is 
present, one can determine the value of the potential 
W0 (z) for an electron, located in the gaseous phase 
above two planar boundaries dividing the media with di­
electric constants E 1 (for the gaseous phase), E2 (for 
the liquid phase), and E3 (for the backing), by using the 
method of successive images: 

a, a, I: qn 
W,(z)=~+-+a, --d, 

z- d z n~! z + n 

e2 Et - Ez O Bz - Ct Bz - 83 O 
ao=----<, q=------<, 

2s, s, + s, e, + e, e, + e, 

e' ( 2e, ) 2 e, - B, a,=---- ---<O,e,<e,<e,, 
2e, e, + ez e, + e, 

(14) 

where e is the charge of a free electron and d is the 
thickness of the helium film. One can approximately 
obtain from (14) the expression for the potential 
W(z, 15) above the perturbed surface of the film, by hav­
ing replaced the thickness d in W0 by its variable value 
d- 15(x). Such an approximation is applicable for W(z, 15) 
if the average distance from the electron to the liquid­
vapor surface is smaller than the characteristic scales 
of variation of 15 along x. 

Let us make the following change of variables in (13): 
~ = z + 15, x = x, which enables us to get rid of the per­
turbation 15 in the boundary conditions: 

iJ''Ijl o2¢ 2m [ a, a, f"1 qn ] 
a:;,+a;:;+nz ic-£-d-1'.-b -a,~£-b+n(d-b) ¢ 

= ( ll')' o'¢- 2tS' a'lll + fl"!.! 
a~,' axo£ a~ ' 

'i'lt~d=O, .PI<~+--+0, b'==df5/dx. (15) 

From the derived equation it is clear that in the ab­
sence of the backing, that is, for a 1 = O, there is no 
perturbation, which is linear in o, present in the prob­
lem. In fact, formally the right-hand side of Eq. (15), 
where the perturbing terms which are not related to the 
backing are collected, has linear-in-o terms which are 
proportional to o' and 15". However, one can show that 
in the linear approximation of perturbation theory, these 
terms do not operate.3 > However, if a 1 * 0 then a term 

3lThe solution of the unperturbed equation (15) has the form iJ; = 
fn(~) eikx, where fn(~) satisfies the boundary conditions fn(d) = fn(=) = 
0. In the process of interaction with thermal vibrations of the surface, 
the quantum number n. of the electron's wave function is fixed and equal 
to its minimum value n = I, and the interaction only changes the value of 
the electron's wave vector k along the surface. Noticing this, let us calcu-
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which is linear in o appears as a perturbation, and the 
major portion of this term has the form 

at. a1 
w.::::::r6:::::: (d+y-•)' 6. 

Here y- 1 denotes the average distance from the electron 
to the free surface of the film; for d >> y- 1 the quantity 
y is of the order of magnitude cited in [ 11 J, y ;,1 

~ 5 x 10-7 em. Comparing the value of W d with the lin­
ear perturbation WE 1 , which arises in the problem in 

the presence of the external pressing field E 1 (WE 1 
= eE16[ 13 J), one can conclude that for d ~ 10-5 em the 
effect of the backing is equivalent to a field E 1 
~ 300 VI em. With a reduction of the film thickness to a 
value d ~ 10-6 em, this effect of the backing on the in­
teraction of the electrons with the surface waves is in­
creased again by an order of magnitude. 

Now let us go on to a more detailed investigation of 
Eq. (15). 

A. The degree of localization. It has not been possi­
ble to solve the unperturbed wave equation (15) exactly. 
Therefore, in order to determine the degree of locali­
zation of the electron above the helium film it is neces­
sary to use a variational approach. Assuming that the 
wave function of the electron's ground state has the 
form 

~ 

f,(s) = 2y'1'(~- d)e-Y<'-".,, J t.'(s)ds = 1, (16) 
• 

we find the minimum of the integral 
.. 2 

/(y) = f[ (Vf)' + ll7W,(!;)/'(!;)] d~. 
d 

Here W0(0 is the total potential energy of the electron 
near the film. As a result we have 

2m ' 1 
/(y)=v'+vv{-la.l-41a,lv'd'[ 4y'd' 

- 2:d- e''"Ei(- 2yd) ] } , 

where I a0 I and l a 1 1 are given in (14), and Ei(- ~)is 
the exponential integral function. Minimizing J(y) with 
respect to y in the case yd > 1 of practical interest, 
we obtain the following equation for the determination 
of y: 

(17) 

For sufficiently large values of the film thickness d, 
the approximate solution (17) can be written as follows: 

y ~ Voo(1 -1- il), Voo = mh-'laol, 

il=3~~<1 
fjZ '/oo 'd' • (17a) 

late the value of the matrix element of the transition between electron 
states with different values of k for the perturbations indicated in the 
main text. For example, 

By virtue of the boundary conditions for f 1(0, the square bracket van­
ishes, and with it this entire matrix element. A similar situation also 
occurs for the perturbation involving li'. 

Here y 00 denotes the value of y corresponding to 
d- oo. The value of y00, obtained by the variational 
method, coincides with the exact value of y 00 from [ 11 J. 

The determination of y from ( 17a) is valid as long as 
~ < 1. For the specific values of the dielectric con­
stants € 1 ~ 1, € 2 ~ 1.06, and € 3 ~ 2 to 4, one can use 
formula (17a) in the range of thicknesses d ~ 5 x10-6 em 
without violating the condition ~ < 1. 

B. Mobility. The scheme of calculation of the mobil­
ity of electrons above a helium film is completely analo­
gous to the scheme used in [ 13 J. Only the specific form 
of the interaction of the electron with the surface pho­
nons 

W,.l_ = eE,!'i-+ Wd = a/>/s' 

and the dispersion law of the surface waves are 
changed; the dispersion law now has the form 

w' = (o I p)q' th qd, (18) 

where p is the density of liquid helium, a is the coef­
ficient of surface tension on the liquid-vapor boundary, 
and q is the wave vector of the phonon. 

The corresponding mobility of the surface electrons, 
calculated under the assumption 2kd > 1, where k is 
the thermal value of the wave number of the electrons, 
is written down as follows: 

f.1.=4ehod'(t+2__!:1/ n) 
a,'m 16 d f 2k.Tm · 

(19) 

Here kB is the Boltzmann constant. Formula (19) is 
accurate as long as the second term inside the circu­
lar brackets is smaller than unity. At temperatures 
T ~ 1 °K this condition is satisfied for thicknesses d 
~ 5 X 10-6 em. Assuming a = 0.36 erg/cm2 , T ~ 1 °K, 
d"" 10-5 to 5 x 10-6 em, and taking into account that a 1 

~ % e2 for the values of the dielectric constants indi­
dicated above, we obtain the following estimate for the 
mobility in CGS units: JJ. ~ 106 to 108 • 

CONCLUSION 

Now let us summarize the results. The results dis­
cussed above show that the model of a negative ion in 
the form of an empty bubble of quasi-macroscopic di­
mensions together with the assumption about the diffu­
sion character of the anion's mobility permits us to 
give definite answers to practically all of the questions 
which arise in connection with the experimental inves­
tigation of the properties of negative ions. In this con­
nection the parameters of the problem (the ion's radius 
a, the diffusion coefficient D of the vacancies, and the 
equilibrium concentration c0 of vacancies) can be de­
termined by several independent methods, which supple­
ment and check each other. Thus, a numerical relation 
between a, D, and c0 can be obtained from data about 
the mobility of anions in a weak constant field. The 
measurement of the characteristic frequency of the 
first relaxation resonance gives one more relation be­
tween a and D. Finally, optical absorption or elastic 
resonances give direct information about the radius a 
of the ion. Incidentally, experimental confirmation of 
the correctness of the characteristic dimensions of the 
anion's radius, a~ 10-7 em, is apparently unnecessary, 
since this quantity is determined rather accurately the-
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oretically and, most importantly, this quantity depends 
weakly on the external parameters of the problem 
(pressure, temperature). 

The situation is somewhat more complicated with 
regard to the interpretation of the experimental data 
concerning the mobility of positive ions. With definite­
ness one can only state that the displacement of positive 
ions, corresponding to charged particles with a mass of 
the order of helium atoms and therefore interacting with 
the lattice primarily in a polarization way, is not at all 
related to the presence of vacancies in the helium lat­
tice. In fact, estimates of the degree of inhomogeneity 
of the distribution of vacancies around a charged parti­
cle, carried out for a negative ion (formula (3)}, are 
also quite suitable for positive ions with the only differ­
ence being that now we will be interested in the concen­
tration of vacancies, not at distances of 10-7 em as was 
true in the case of anions, but at distances of the order 
of interatomic distances. Substituting the value a ~ 3 
x 10-s em into the relation (3a), one can easily verify 
that the probability for the approach of a vacancy to 
within an interatomic distance of a positively charged 
particle is insignificantly small. Therefore, in contrast 
to the anions, the mobility of the cations does not have 
any clear connection with the imperfection of the helium 
lattice. Possible mechanisms for the mobility of the 
cations will be discussed in detail in a separate article. 

The author sincerely thanks A. F. Andreev and A. I. 
Shal'nikov for a discussion of this work and for helpful 
comments. 
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