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We obtain a kinetic equation for the generalized electron density matrix of a superconductor. There­
laxation of a system to an equilibrium state described by this equation takes place in two stages. First 
a fast quanta! rearrangement of the system occurs; a self-consistent field of the superconducting con­
densate is formed and a quasi-particle description of the excitations is valid. After that the quasi­
particle distribution and the superconducting ordering parameter slowly evolve due to collisions be­
tween the excitations. 

AFTER a microscopic theory of superconductivity had 
been constructed[ 1• 2 1 various kinetic phenomena in su­
perconductors (such as heat conductivity, ultrasound ab­
sorption, interaction with a weak electromagnetic field) 
were studied in the framework of the linear functions 
for the response of the system to a weak external influ­
ence (see, e.g., [31). According to the generalized fluc­
tuation-dissipation theorem [4 l the corresponding kinetic 
coefficients can in that case be expressed in terms of 
correlation functions for the equilibrium fluctuations of 
the system and can be evaluated by applying standard 
methods of quantum field theory to systems with a 
large number of degrees of freedom. [ SJ A generaliza­
tion of these methods to the case of essentially non­
linear, non-stationary processes in superconductors 
(such as, e.g., the variable Josephson current, [61 or 
resistive states in superconductors of the second 
kind [ 7 l) was proposed by Gor'kov and Eliashberg.[aJ 
Their procedure was based upon the analytical continu­
ation of the electron Green functions of the supercon­
ductor which satisfy the Gor'kov equations, [ 9 l 11 to the 
real frequency region. 

The Green functions are a very general theoretical 
concept which enables us in principle to describe ki­
netic phenomena in condensed systems even when there 
is no sharp separation of the time scales (relaxation 
time) and the usual method of the kinetic equations is 
inapplicable. If, nevertheless, such a division is pos­
sible, the kinetic equations are much preferable, since 
they determine directly the temporal evolution of the 
physical parameters of the system like, for instance, 
the kinetic equation for the single-particle electron 
density matrix which is the basis of the evaluation of 
the kinetic phenomena in normal metals. However, in 
contrast to the kinetics of normal metals for a super­
conductor the choice of the parameters for a kinetic 
description just as the derivation of the kinetic equa­
tions themselves is not at all obvious and must be per­
formed anew starting from first principles of statistics. 

A necessary condition for a macroscopic description 

1>It is, however, necessary to note that the Gor'kov equations do not 
describe the relaxation of the electrons with respect to energy, since the 
electron-electron interaction is in them taken into account only to the 
extent in which it guarantees a non-zero value of the superconducting 
ordering parameter. 
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of non-stationary processes in the case of large devia­
tions from equilibrium is that they proceed slowly in 
time. Thanks to that condition the statistical operator 
p which satisfies the quanta! Liouville equation 

iap 1 at= [J!1, p], (1) 

can be synchronized with some set of macroscopic pa­
rameters yk, the temporal evolution of which is de­
scribed by kinetic equations and as a result one can ab­
breviate the complete mechanical description of the 
system.[lDJ Thus during the lapse of a short time in­
terval 7 0 the following equations must be satisfied: 

t>-r,, p(t) = p(y(t)), Y•= Sp(py.), (2) 

av.!at=L.(y). (3) 

Peletminskii and Yatsenko[ 111 proposed a rather 
general scheme for deriving quanta! kinetic equations 
in the above-mentioned sense for an extensive class of 
systems; they consider systems with a Hamiltonian JC 
which can be split into a "basic" Hamiltonian 7'60 guar­
anteeing the synchronization of the statistical operator 
with the parameters Yk and a relatively weak interac­
tion V(Jc: = "t:o + V) due to which the parameters Yk 
relax to their equilibrium values. The choice of the pa­
rameters Yk is determined by the symmetry proper­
ties of the Hamiltonian dt'o and the main condition as­
sumed in r 11 l consists in that the corresponding opera­
tors Yk must satisfy the commutation relations: 

(4) 

The conditions (4) are the natural Unear generaliza­
tion of the usual commutation relations [ J'Co, 9 k] = 0 
(conservation laws) and enable us to describe the sys­
tem with a self-consistent field. In particular, as we 
shall show in this paper, similar relations can be used 
as a basis to derive kinetic equations also for super­
conductors since the BCS theory of superconductivityC 1 l 

is a variant of a self-consistent field theory. 

1. DERIVATION OF THE KINETIC EQUATIONS 

It is well known r 11 that the phenomenon of supercon­
ductivity of metals is connected with the fact that thanks 
to the effective attraction between electrons induced by 
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the electron-phonon interaction there occur character­
istic correlations of electron pairs with antiparallel 
momenta and spins. The corresponding rearrangement 
of the electron states involves a narrow layer with a 
width of the order of Tc (Tc is the superconducting 
transition temperature) near the Fermi boundary. It is 
therefore sufficient for the construction of a kinetic 
theory of the superconducting state to consider only the 
dynamics of the electrons in that layer assuming that 
the fast process of Fermi-occupation has essentially 
already been accomplished. 

This observation enables us to simplify consider­
ably the Hamiltonian of the system under consideration. 
In particular, we can assume the dispersion law for the 
electrons to be ~iven and, for the sake of simplicity, we 
can put 0(p) = p/2m. Moreover, as the characteristic 
frequency determining the interaction of the electrons 
through the field of the virtual phonons is of the order 
of the Debye frequency w D in the weak coupling ap­
proximation (Tc << wn) we can neglect the retardation 
of this interaction and we can thus use for the Hamil­
tonian of the system the Gor'kov model:£ 9 l 

:M = ;M, + ;M,.,, 

~. = J dV[¢t•(B(p-eA)+u}1jlt +wi•(B{p-eA)+ u}¢!], 

~ •• , = g JdV(¢t•1P(¢11Pt}, 

B(p}=p'/2m, p=-iV (li=1,c=1}, (5) 

where lflt(r), lflt(r), lflt(r), and lfli(r) are the annihila­
tion and creation operators of electrons with a given 
spin at the point r, g < 0 is a small constant for the 
effective attraction of the electrons acting near the Fer­
mi boundary in a layer with a thickness of order w n, 
A(r, t) is the vector potential of the electromagnetic 
field. The potential u(r, t) includes the scalar potential 
of the electromagnetic field and also the interaction with 
other external fields, impurities, and so on. 

Turning now to the condition (4) we note easily that 
apart from the usual quantities l/1 t (r 1) l/1 t (r2), 
l/1 i(r1) l/1 +(r2) from which the single-particle density ma­
trix for normal electrons is constructed, Eqs. (4) are 
also satisfied by the operators lfi t (r1) lfi + (r2) and 
lfi ;Cr1) lfi i(r2). It is well known[l• 2• 9 l that the occurrence 
of non-zero average values of these quantities is a 
characteristic property of the superconducting electron 
gas and reflects the appearance of correlations of elec­
tron pairs with antiparallel spins (electron-hole corre­
lations). The more complete set of the quantities 
l/Jt(r1) l/1 t<r2), l/1 iCr1) l/1 t<r2), l/1 t(r1) l/1 +<!2), and I/Jt(r1)l/l i(r2) 
must thus be the set of parameters y for a superconduc­
tor and give us a kinetic description of the superconduct­
ing state. In the coordinate representation these quanti­
ties are in a natural way combined in the matrix: 

- (11lt (rl)¢+t (r.} 1Pt (rt) 1P1 (r,} ) - , 
r(rl,ro}= ¢+!(rl)1P+t (r,} ljl+!(rl)'ljl!(r,} • r=r. (6) 

It is convenient in connection of the given matrix de­
scription to use in what follows the absence of spin in­
teractions in the Hamiltonian J'e of (5) and introduce new 
canonical annihilation and creation operators of elec­
trons and holes which formally form vectors, using the 
equations 

{«pa (r}, «p; (r')} = {jla (r} «p; (r'} + «p; (r'} «p. (r} = 6.~ 6 (r- r'), 

{«p.(r},.:p,(r')} = {«p.•(r},«p,•(r')} =0. (7) 

In that case y of (6) can be written as follows: 

(8) 

Consequently the Hamiltonians J'6'0 and d'Gint of (5) can, 
apart from a c-number, after some simple transforma­
tions be written as: 

:JC = :Jlo + :JC;nt; :Jf0 = ~ dV («p+, a, f8 (i)- a,eA) + a,u, «p), 

:Jfint = g ~ dV (tp•a.«p) (tp•a_«p), :1± = 1/ 2 (ax± i:sy), 

where ax, ay, O"z are Pauli matrices. 

(9) 

To find the explicit form of the functional p( y) of (2) 
and the kinetic equations (3) describing the temporal 
evolution of the parameters y it is necessary to solve 
the integral Eqs. (21) of rllJ written so as to be applica­
ble to the present case, using Eqs. (7), (8), and (9). 
These equations can for the case of a normal metal be 
solved immediately using perturbation theory. It is well 
known£ 1l that in the case of a superconductor, notwith­
standing the smallness of the interactiona'aint. perturba­
tion theory is inapplicable and it is necessary to work 
out an appropriate method to solve these equations, 
which would take into account the effects of the pairing 
of the superconducting electrons. It is, however, more 
convenient to proceed slightly differently and to derive 
anew the equations of Llll, regrouping the terms in the 
Hamiltonian :M of (9) in such a way that we can apply 
perturbation theory to the equations obtained. To do 
this we note that for electrons near the Fermi surface 
no interaction will formally be weak because the excita­
tion energy is small. The interaction Hamiltonian :Mint 
can thus contain "dangerous" terms which have a large 
effect on the electron states near the Fermi boundary. 
These terms can be split off in the spirit of the gener­
alized Hartree-Fock approximation in a way similar to 
what was done in l 2 l to compensate the "dangerous" 
diagrams of the equilibrium perturbation theory. We 
have thus 

( ) \' ,...----, ,...----, ,...--, 
:JC1'/.t. = g J dV [(«p•a.q>) (q>•a_«p) + (q>•a.«p) (q>•a_q>) + (q> ... :s.«p) (q>•a_q>) 

+ (q>•a.«p)(q>•a_q>)] = g ~ dV[ -Tr (as(r, r))(q>•a_q>)- Tr (a_r(r, r}) («p ... :s.«p) 

+(q>•:s.r(r,r):s_q>)+ ~a(a ... ).~q>~«p ... T (:s_}ya]. (10) 

The symbol r--T denotes here the pairing of operators 
in the sense of Wick's theorem and Tr is the trace over 
the spin indices. 

After regrouping the terms the Hamiltonian :M of (9) 
has the form 

/M=/M,(y)+V(y}, 
(11) 

~.(y) = ~. + dd.~.(y), 
The Hamiltonian V(y) in (11) can now be considered to 
be a small uncompensated interaction which guarantees 
the relaxation of the system to an equilibrium state. It 
is necessary to emphasize that the validity of the split­
ting off of the "dangerous" terms in the form (10) is in 
fact confirmed in what follows by the fact that the "re­
maining" interaction V(y) leads only to a collision inte-
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gral in the kinetic equation (3) which is quadratic in the 
coupling constant g and secular terms are thus elim­
inated in that equation. 

Simple simplifications in Eqs. (9) and (10) lead to 
the following expression for the "basic" Hamiltonian 
d6's(r): 

J'e,(y) = J dV(cp+, h,(y), qo), 
(12) 

where hr(Y) is a Hermitian matrix defined by the equa­
tions 

h,(y) = cr,E(p- cr,eA(r)) + cr,u(r) + 's(r) + Li(r); 

~(r) = (gnl (r) 0 ) = 
0 - gnt(r} (13) 

=(gSp(pcp_,(r)cp_,+(r)) 0 ) 
0 -gSp(pcp,+(r}cp,(r}) ' 

i(r) =lgl [cr+Tr(cr-v(r,r)) + cr_Tr(cr+y(r,r))], (14) 

or, in the usual notation 

h, (rl = 
(~(p-eA(r))+u(r)+ gnl(r), ~(r) ) 

= ~· (r), - ~ ( iJ+ eA (r))- u (r)- gnt (r) • 

~(r) = ig!Tr(cr-v(r, r)), A•(r) = igiTr(cr+y(r, r)). (15) 

By using Eqs. (12), (7), and (8) one can then easily check 
that the operator y satisfies a linear condition of the 
form (4) also with respect to the Hamiltonian d6's(y), 
viz.: 

[J'e,(y), y] = -[h(y), y], h(r, r,; y)= h,,(y)ll(r,- r2). (16) 

The index r of the commutator [ ] r on the right-hand 
side of Eq. (16) distinguishes the commutation of the 
matrices h(rl, r2) and y(r1, r2) from the commutation 
of the operators J'Cs and y. 

The further derivation of the basic equations is com­
pletely similar to the derivation in c lll and is briefly 
reproduced here in view of the fact that Eqs. (16) for­
mally differ somewhat from condition ( 4) because the 
matrix h depends on y. It follows from Eqs. (1), (2), 
and (3) that the functional p(y) and the right-hand side 
of the kinetic equations (3) L(y) are defined by the fol­
lowing equations: 

( ap (v) ) . 
Sp, L(v)----ay -t[p(y),J'e] = 0, (17) 

L(y) = iSp(p(y) [J'e, v]), (18) 

where Spr indicates a trace of a matrix in contrast to 
Sp for operators. We must add to Eq. (17) boundary 
conditions taking into account the irreversible charac­
ter of the change in p. 

When there are no interactions (V(y) = O) we have 
from (18) and (16) 

L<'l(y) = iSp(p(y)[J'e,(y),y]) = -i[h(y), y],. (19) 

We introduce the operator S~0 l(y) for the evolution of y 
which is determined by L0 (y):2> 

2>we note that the explicit time dependence of the Hamiltonian J(8 

through the external fields A and u is unimportant for the further dis­
cussions since the characteristic frequencies of these fields must be 
rather low in order that the main synchronization condition (2) be satis­
fied. 

:, s;•> (vl = L<'l(~~·J (I·> J, s;•> (vl 1 .~. = v, 

s!')(s,-l'>(v))= s.<!>:(v). (20) 

In the absence of interactions (V(y) = O) the Liouville 
equation (1) can then be written in the following form: 

Wp(-r)/81: =[J'e,(S,<'l(y)), p(1:)]. 

The formal solution of this equation with the boundary 
condition p(T)j 7 = 0 = p(y) has the form 

p(<) = U(1:, 0; y)p(y)U+(T, 0; y), (21) 

where the integral operator U is determined from the 
equations 

. i) w 
l-i)-U(,,,,,;y)=J'e,(S,, (y})U(T,,T,;y), U(T,T;y)= 1, ,, 

(22) 

uu+ = 1, U(,,, •; v)U(T, T,; vl = u(,,, ,,; v). 

According to the basic assumption (2) about the syn­
chronization, the solution (21) must satisfy the following 
asymptotic relation: 

t-+- ""• u (t, o; vl p (v) u+ (t, o; v)-+ p<'l(S!'> (v)), (23) 

where we must take for the operator p< 01 (y), as was 
shown in cuJ, the solution of Eq. (17) with V(y) = 0, 
which can be obtained by coarse-graining by means of 
the "basic" Hamiltonian J'G s(y), i.e., a Gibbs distribu­
tion with fixed parameters y:31 

p<'l(y) = exp[Q- Sp,(X(y)y)], 

Spp<'l(y) = 1, y = Sp(p<'l(y)y). 
(24) 

Using the easily proved identity 

l.l(;,,;,; s;•J(y))= l.I(Tz+T,'t,+t; y) (25) 

and replacing in Eq. (23) y- S~01 (y) we obtain finally 
the followiq~; boundary condition for Eq. (17): 

;-+-oo, l.I(O,,;; y)p(S~'1 (y))U+(O,T; y)-+-p<'l(y). (26) 

In connection with the definitions (20) and (22) we 
note the transformation law of the quantity y under the 
action of the operator U: 

u+('T,, T,; vJvU(-r,, T,; vl = S(1:,, ,,; vrvs+(,,, ,,; vl. (27) 

where by virtue of Eqs. (22) and (16) the unitary matrix 
S is determined by equations analogous to (22): 

. i) w 
l-i) -S (;,, t,; y) = h(S,, (y) )S(-r,, t,; y)' S('T, T; y) = 1, ,, 

(28) 
ss+ = 1, S(t,, T; y)S(T, t,; vl = S(,,, ,,; vl, 

where, according to Eqs. (19) and (20) the following re­
lation holds: 

S,'(y) = S(t, 0; y)yS+(-r, 0; y). (29) 

From (27), (28), and (29) we obtain the transformation 
law for the operator p< 0 > (y) of (24): 

l.I(;,O;y)p<'l(y)U+(t,O;y)=p<'l(~\'l (y)). (30) 

To solve Eq. (17), we change it into an integral equa­
tion using the boundary condition (26). Making the sub-

3>one verifies easily by means of Eqs. (16) that p<0>('Y) in the form 
(24) indeed satisfies Eq. (17) with V('Y) = 0. 
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stitution y- S~0 >(y) in (17) and using the definition (20) 
we get 

a: P ( s,<'\v))- i [p(s;'\v) ), .16', (S~> (v))] = t(s;•> (y) ), (31) 

f(y) = i(p(y), V(y) ]- Sp, [ (L(y)- D'>(y)) a~~y) ] . (32) 

The integration of Eq. (31), using Eqs. (22), (25), and 
(30) and the boundary condition (26), gives 

• 
r(y)= p<'>(y)+ J dre"'U(O,r; y)f(S\'>(y))U+(O,r; y), TJ-++0. 

(33) 

We can check, as in l 111 , the self-consistency of the 
whole construction, i.e., prove by means of Eqs. (33), 
(27), (18), and (19) the following identity: 

y = Sp(p(y)y) = Sp(p('>(y)y). (34) 

Equations (33) and (32) together with the definitions 
(18) and (19) are the integral equations required to find 
p(y) and L(y). According to what we have said earlier 
the solution of these equations can be found by pertur­
bation theory. The statistical averages over the distri­
bution p< 0 >(y) of (24) which then occur must clearly be 
evaluated using Wick's theorem, maintaining the matrix 
order of multiplication of the averaged quantities. 

In the first order of perturbation theory we get from 
Eq. (18), using (34) and (16), the expression 

D'>(y) = i Sp(p<'J(y)[V (y ), y]) == i( LJ'6',.,- J'6~·~,( y), y]). 

Performing the standard calculations of commutators 
(Eqs. (7) to (10)) and substituting the results in the last 
expression we get after averaging 

L<'>(y) = 0. (35) 

The next important term in the kinetic equations (3) is 
thus the "collision integral" L< 2 >(y), which is quadratic 
in the interaction constant g. Using the identity ( 18) and 
Eq. (16), we have from (18) 

L<'>(y) = iSp(pP>(y)[V(y),~y]) =iSp(p('l(y)[J'6',,.,'v]). (36) 

By virtue of Eq. (35), p<1>(y) is then determined accord­
ing to Eqs. (33), (32), and (30) by the following equation: 

• 
p('~(y)= i J dre"'[p<'l(y),U(O,-r; y)V(s;•>(y))U+(O,-r; y)], 1]-++0 

(37) 

Mter substituting this expression into Eq. (36) for 
L< 2 >(y), it is useful for the further calculations of the 
subsequent statistical averages to bear in mind the 
compensating property of the Hamiltonian H ~rit of ( 10) 
(see Eq. (35)). By direct calculation one can 'check that 
this property leads in the present case to the following 
simplification: we must omitXl~t from Eq. (37) and 
when evaluating the averages forget about the pairing of 
operators according to Wick's theorem inside the Ham­
iltonian J'(int· L< 2>(y) of (36) thus has the form 

o I I 
L<•>(r)=- ~ dre.::_:([U+(r,O; y)3t'intU(r,O;y),[Jt'int•Yil>,1J-> + 0, 

-~ (38) 

where the symbol r-1 indicates that one should pair the 
operators only of the two indicated terms, while the angle 
brackets ( ) indicate statistical averaging with the op­
erator p<0 >(y) of (24). The law for the transformation 
of the operators cp(r) and cp+(r) in Hint in (9), effected 

by the unitary operator U, can easily be established as 
before (see (27) and (28)) using (22), (12), (13), and (7). 

We do not need in what follows the general form (38) 
of the "collision integral" L<2>(y). The kinetic equation 
for the generalized density matrix y thus has the form 
(see Eqs. (3), (19), (13), (16), and (35)) 

i av 1 at= [h(y), vl + iL<'>(y), 

2. RELAXATION PROCESSES LEADING TO THE 
EQUILIBRIUM STATE 

(39) 

Equation (39) enables us in principle to follow the 
transition of a system of electrons from an arbitrary 
initial state4> into a final-superconducting or normal­
equilibrium state. According to the derivation of 
Eq. (39) ~iven in the first section, the "collision inte­
gral" L< >(y) is in general small compared with the first 
term in this equation. Accordingly the relaxation proc­
ess for the matrix y contains fast changes in time, de­
termined by the first term, and a slow change due to the 
"collision integral" L< 2 >(y). Turning to a detailed study 
of these processes we note first of all that the substitu­
tion y- exp {- iaz JJ.t} y exp { iaz J1. t} leaves the form of 
this equation invariant and only shifts the zero of the 
energy e; (p) of the electron by an amount J1.. This prop­
is clearly connected with the conservation of particle 
number in the system (more generally, with the gauge 
invariance of the theory), and this substitution consti­
tutes in fact the separation of the chemical potential of 
the system in Eq. (39) in explicit form. In this connec­
tion it is convenient to separate the phase of the order­
ing parameter a of (14): 

~-+ exp (i<J',X I 2) O',d exp ( -i<J',X I 2), ~· =~. 
(40) 

v(r, r,) -+exp(i<J',x(r,) 12)v(r,r,)exp(-i<J',x(r,) 12). 

Mter simple transformations we can then write Eq. (39) 
in the following form: 

i av 1 at= [e(v). vl + W'>(vl. (41) 

where the matrix E'(y) is determined by the relations 

~(r, r,; vl = e,,(y).S(r, -r,); (42) 

;,<v> = 0', [ ~(P + O',p,(r)H u<•>+-} a~~·> ) + E<•H O',d <•>. 
p,(r)= 1/2(Vx(r)-2eA(r))= mv,(r), d(r)= 1/2lg!Tr(O'.i'(r, r)). 

(43) 
The phase x(r, t) is determined by the condition that 
the parameter ~ be real, i.e., according to Eq. (15), by 
the equation 

Tr(O',y(r, r)) = 0. (44) 

One can show that this latter equation is equivalent to 
the law of the conservation of particle number in the 
system: 

an I at + div i = o, 
n(r) = Tr.(!J,II(r- r')- O',y(r, r') ],•~,, 

j(r)=n(r)v,(r)+p-p' Tr(-2
1 b(r-r')-y(r,r')] . 

2m ''=' 

4> As was shown earlier the initial conditions for Eq. (39) must re­
fer to a class of electron distributions close to the normal one apart 
from a narrow layer (thickness -T cl near the Fermi boundary. 
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The form of the "collision integral" Lt21 (y) of (38) in 
Eq. ( 41) remains formally as before. It is only neces­
sary to replace in Eqs. (22), which define the unitary 
operator U(r, 0; y), the Hamiltonian d'8s(Y) of (12) by the 
following: 

d'e,(y) = J dV(cp+, ;,(y), rp). (45) 

The fast changes of the matrix y are now according 
to (41) described by the following equation:51 

UJy I at= [e(y), vJ, (46) 

and also by the self-consistency equations (43) and (44). 
From this equation it follows that the evolution of the 
matrix y reduces to a unitary rotation. In the general 
spatially non-uniform case we cannot follow this evolu­
tion in detail for an arbitrary initial condition because 
Eqs. (46) and (43) are non-linear. However, in actual 
fact only the matrix y averaged in a well-defined way 
has a physical meaning since all physical quantities are 
expressed through the trace with that matrix. We can, 
however, always state that after the lapse of a certain 
period of time the averaged matrix is diagonalized in the 
representation of the energy operator €. The time scale 
T 1 after which this diagonalization is realized is deter­
mined by the characteristic energies E and the class of 
initial conditions for y. If we restrict ourselves to 
those conditions which were mentioned in footnote 4, 
then we have, in order of magnitude, T 1 ~ 1/T0 • Thus, 
when t >> T1 the matrix y is asymptotically equivalent 
to the following one: 

(47) 

where the E,\ are projection operators constituting the 
expansion of unity for the Hermitian operator E: 

; = .L, e,E,, E,E,, = I'J .. .E,, 

• 
E.(r, r,) = I r,, A) (A, r,l. 

(48) 

Here I r, ,\ ) is the normalized eigenvector of the oper­
ator Er of (42): 

e,lr, .A)= e.jr, A). 

The self-consistency equations then become 

Ll (r) =I g I_E 'I, Tr( cr. I r, ).)()., r l)rp,, 

• 

0 =I giL, 'I,Tr(cr,lr, '-> (A,rl)rp,. 

' 

(49) 

(50) 

As a result we can further simplify the description: the 
system is now described by the excitation distribution 
functions cp,\ and the superconducting ordering param­
eter ~ satisfying the self-consistent field Eqs. (50) with 
non-equilibrium distribution function. 

The further slow change of the distribution function 
CfJ,\ and the parameter ~ is determined by the "colli­
sion integral" Lt2l (y). To find the explicit form of the 
equations describing the slow evolution of the functions 
CfJ,\ we may assume that in the basic kinetic equation 
(41) the relaxation process determined by the term 

5lEquations analogous to (46) and (43) written down for correla­
tion functions were used in [ 12 ] to derive the equations for the two­
fluid hydrodynamics of a superfluid Fermi-gas (see also [ 13 •14 ] ). 

[ € (y), y] is completed and that thus, as to order of 
magnitude, 

i av 1 at~ w'><v> ~ [e(v), vJ. 

Hence, if we rewrite Eq. (44) in the form 

[e(v), vJ = i(avlat-D'>(v)), 

we get in zeroth approximation the equation: 

i"dv). vJ = o. 

(51) 

The matrix ( 47) is the solution of this equation. In the 
next approximation Eq. (51) for the small correction 
y< 1 > to the matrix (47) looks like: 

[e, v<'>J+[e<'>, vJ =i(avtat-D'>(y)). 

From the condition that this equation is solvable we get 

Sp, ( E, ~~) = Sp,(E,D'>(y)), 

or, by virtue of Eqs. (47) and (48), alternatively 

acp,/at = I,{rp}, h{rp} = Sp,(E,L<'>(y)). (52) 

Using Eqs. (38), (8), (9), (22), (45), (47), and (48) we 
can find the explicit form of the collision integral 
I,\ { cp} of (52). First of all, since the matrix y in the 
form (47) is a "stationary point" of Eq. (46), we may 
assume in Eq. (22) that Xs(S~1 (y)) = df!'s(Y) = const 
for the operator U(r, 0; y), since according to the def­
inition (20) in that case S~ 1 (y) = y. Hence it follows that 

U(T, 0; y) = exp(-id'6,1:). (53) 

We expand the operators cp(r) and cp+(r) in terms of 
the single-particle states I r, -\.) of ( 49): 

(54) 

One sees easily from Eqs. (8), (47), and (48) that the 
distribution function Cfl,\ is equal to 

(55) 

Substituting expansion (54) into Eqs. (9) and (45) we get 

J'6, = .L, e,b, +b,, . 
~inf = .E M,1 '1.~; ).3). 4b'A 1+b,_Jb,_/b;.41 

AtAi·a"4 

(56) 

where M,\ ,\ . As,\ is the matrix element of the interac-
tion: 1 2> 4 

M,,,,;,,A, = g J dV()..,rlcr+lr,A,)(A,,rlcr-!r, i.,). (57) 

Substitution of Eqs. (53), (55), and (56) into Eq. (38) 
gives the following result for the collision integral 
I,\{ cp} of (52): 

o I I 
h (rp} = - ~ d'te"' < [Jfint ('t), [!ffint• bAb+AlJ >. !'] _,. + 0, (58) 

-~ 

where d'6int(T) differs from d'eint by the replacement 
of the matrix element M,\ ,\ . ,\ ,\ by 

1 2' 3 4 

M,,,,;A,>.,('t) =M,,, ,,; ,,,, exp [i(e,, + e,,- e,,- e,,)'t]. 

The remaining calculations in Eq. (58) reduce to the 
standard calculation of commutators and the subsequent 
averaging using Wick's theorem. The final result for the 
the collision integral looks as follows: 
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I,{<p} = Lno(e, + e,,- e,,- e,,) jM,,,, ,,,,- M,.,, ,,,, + M,,,, ,.,., 
'•'•'• (59) 

- M,,., ,,,,j' [ ( 1 - <p,) ( 1 - <p>,) <p,,<p,,- <p,<p,, ( 1 - <p>,) ( 1 - <p,.)]. 

By virtue of the definition (8) of the matrix y, the equi­
librium distribution function determined by this colli­
sion integral (Clcp.\/Clt = 0) is clearly equal to 

<p, = 1- f(e, / T), f(x) = (e' + 1)-'. (60) 

We must then note that because of the used definition 
(7) of electrons and holes the constant correction to the 
energy E,\ in Eq. (60) postulated by the integral (59) 
would determine a separation of the Fermi surfaces for 
electrons with opposite spins. The true chemical poten­
tial connected with the conservation of the number of 
electrons (see Eq. ( 44)) is contained in the phase 
of the ordering parameter x and in the equilibrium 
state we see from Eq. (42) that we have ox/ot ~ 2 JJ. 
apart from a small renormalization. 

It follows from Eqs. (47), (48), and (60) that the equi­
librium density matrix is equal to 

v=1-f(e/T). (61) 

Using the expansion 

1- I ( j_} = T \"I ex~ { -.iw.1]} ' 1J--+ +O, 
T ~ e-lWn 

<ol,=nT(2n+ 1), n=O, ±1, ±2, ... , 

we see easily that the equilibrium density matrix (61) 
which we have found is determined in terms of the tem­
perature-dependent Green function: 

v=G(•+O, t), (a/ih,+~)G(<., 't',) = 6('1',-'t',). (62) 

Using the definition (42) we can verify that Eq. (62) to­
gether with the self-consistency equations ( 43) and ( 44) 
is equivalent to Gor'kov's equations[s, 9 l in matrix no­
tation. 

In connection with the fact that the matrix y is non­
diagonal in the "isotopic spin" in the electron-hole 
space it is of interest to study in more detail the relax­
ation process leading to the formation of the supercon­
ducting condensate, i.e., to the appearance of the self­
consistent field of the parameter A and the quasiparti­
cle description of the excitations. In its pure form this 
process appears when there are no external fields in 
the spatially uniform case, when 

y(r.,r,)= ~r;y,exp[ip(r,-r,)], 
p 

where V is the normalization volume while Eqs. (42) 
to (45) take the form 

i av.fat = [~ •• y,], 

-~.=a,£..+ a.~. 6. = 0(p)- fl, 

fl = - _!_ ( ax + gn) ' 
2 at 

0 = J!L )1 Tr(a,y,). 
2V ...._. 

p 

(63) 

(64) 

The function ~p in (63) is clearly of the same order of 
magnitude as the electron energy reckoned from the 
Fermi boundary. 

For what follows it is sufficient to consider the 
asymptotic behavior of the solutions of Eqs. (63) and 
(64) as t- oo. In that way we shall study the relaxation 
process described by these equations. The following re­
lations for the derivatives oA/ot and ClJJ./Clt follow 
from Eqs. (63) and (64): 

p 

(65) 
~!t jg[ \"I 

117ft= -V ~ s~(p)Tr(a,y,). 

Hence we can see that as t-oo we have oA/Clt- 0, 
ClJJ./Clt- 0, and hence (see Eq. (63)) Ep -const. Indeed, 
it follows in that case from Eq. (63) that 

t-+oo, y,-+exp(-i~.t)~,exp (ie,t), (66) 

where .Bp is a constant matrix. 
Introducing the projection operators constituting the 

expansion of unity for the Hermitian matrix ~p of (63): 

E,. = '/,(1 +a;,/e,) (a= ±1), ;. = L; ae,E,., 

(67) 

;,'=e.', e, = yi;,' + !'.', E,.E, •. = li •• .E,., 2: E,. = 1, 

we write Eq. (66) in the following form: 

t-+oo, y,-+ EE,.~,E ••. exp[-i(a-a')e,t]. (68) 

Substituting this last expression into Eqs. (65) we 
obtain 

•.. 
jgj \"I - V ~ £, Tr(a,E,.~,E •. -a)exp(-2iae,t). 

P,O I 

The last term in this equation vanishes as t- oo owing 
to the fast oscillations of the function under the summa­
tion sign. Using Eqs. (67) and (63) we have thus 

~--+ _l!l_ \"I £, Tr(a,E,.~.£ •• ) = _J!L )1.5. Tr(a,E,.)Tr(jl,E,.) = 0. 
at v ~ v ""'-~ 

P, <1 P, 0 

The equation o JJ./Clt = 0 is proved analogously. 
The equations obtained are clearly a consequence of 

the fact that the ordering parameter A is a self-averag­
ing quantity. We showed that all physical quantities can 
be expressed in terms of some sums of the matrices 
Yp over p. After the lapse of a sufficiently long time 
t >> T1"" 1/Tc the oscillating terms in Eq. (68) for the 
matrix Yp therefore do not contribute to these quanti­
ties and the matrix Yp is asymptotically equivalent to 
the following one (compare Eq. (47)): 

y, = 2: <p,.E,., <p,. = Tr(E,.~.). (69) 

Substituting Eqs. (69) and (67) into Eq. (64) which deter­
mines the quantity A, we get for it the following asymp­
totic equation (in the limit as V- oo): 

d'p I'. 
~ = jgj J (2n)' 2e; ~acp,., (70) 

Le., the BCS equation[ 1 J with a non-equilibrium distri-
bution function. · 
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Using Equations (67) we can evaluate the matrix ele­
ment (57) in the collision integral (59) and find the equa­
tion determining the slow change in the distribution 
function cppo-: 

acp,.=_t_ ~ JJJ d'p,d'p,d'p,ll(p+p,-p,-p,)ll(ae, 
at (2n)' 4...1 

a2a~a, 

1 ( 6.6 .. +.1') ( + a,e,,- a,e,,- a,e,,)-8 1 - aa, 1 
8p8p.~ 

6 .. 6 •• + !!') [(1 - a,a, - cp,.) ( 1 - cp.,.,) cp.,.,cp,,., 
8p38p~ 

- cp,.<p,,., ( 1 - <p.,.,) ( 1 - <p,,.,) ] ; 

e, = l's.' + .12, '· = ~(P)- 1-1 = p'/2m- ll· (71) 
We must emphasize that notwithstanding the formal 

agreement of this equation with the usual kinetic equa­
tion for normal excitations in a metal (with a dispersion 
law E:p = '-'(~~ + ~2 )) it nevertheless differs appreciably 
from the latter since Eq. (71) contains self-consistent 
parameter ~. which depends on the instantaneous dis­
tribution function cpP<l through Eq. (70) and which re­
laxes together with that function. 

We must add to Eqs. (71) and (70) the second equa­
tion (64) which determines the parameter IJ. (the instan­
taneous value of the chemical potential) and the rate of 
change in the phase x of the ordering parameter. One 
sees easily that in zeroth approximation of (69) this 
equation is satisfied identically since it contains the 
conservation law for the particle number in the system, 
i.e., in the given case the relation anjat = 0, which is a 
relation of first order in the velocity of change of the 
quantities cppa, ~. and IJ.• The latter can be verified by 
direct calculation, starting from the correction in the 
first approximation y' 11 from Eq. (51) and substituting 
it into Eq. (64): 

lgl ~ · ( 11> 
2 ]1 4...1 Tr a,y, ) = 0. 

p 

The complete set of equations determining the evolu­
tion of the distribution functions cpP<l and of the param­
eters ~ and IJ. contains thus, apart from Eqs. (70) and 
(71), also the condition that the number of particles be 
constant: 

n=J~~ (!.--~a<p,.)=const. 
(2n)'~ 2 e, 

The characteristic time during which the equilibrium 
state is reached is, as simple estimates in the collision 
integral of (71) show, as to order of magnitude, equal to 

[ T ]-' ' T,-. (gmPF)'T,-; - 10-' cen ( ~: = ll), 

i.e., it does not differ from the electron relaxation time 
in the normal metal at the same temperatures. 

The self-consistent Eq. (70) possesses a specific 
singularity: together with a possible non-trivial solu­
tion ~I 0 it always has the trivial solution ~ = 0 de­
scribing the normal state. In this connection the prob­
lem of the choice of the solution of that equation may 
arise, for instance, for a given initial distribution cppa• 
In reality the choice of solution is realized automatic­
ally after the lapse of a time T 1 in correspondence with 
the initial conditions for the matrix yi? in Eqs. (63). 
However, only the problem of the stab1lity of this or 
that solution has a physical meaning and in that sense 

Eq. (63) is remarkable because it describes the well­
known Cooper instability[ 15 l of the normal state for 
temperatures T < Tc. Indeed, in the equilibrium nor­
mal state the matrix Yp has according to (61) and (63) 
the following form: 

-~. = + ( 1 + a, th ~·T) . 
Considering a small perturbation c5yp destroying the di­
agonality of this matrix (Tr c5yp = Tr (az c5 Yp) = 0 ), we 
get from (63) a linear equation for c5yp: 

· {) 11 E. [ ] 1 6, [ lgl ~ ] 'Tt v. = .• a,lly, ---zth2f a,,v 4...1 6y, .. .. 
The solution of this equation through a Laplace trans­
formation leads to the following expression: 

1 C+i011 

lly, = 2ni J:we"'(iw- 2a,6,)-' ( lly,(O)- th :~ a,llw(w)), (72) 

where c5yp(O) is the initial value of the perturbation 
while the quantity c5w(w) has the form 

llw(w)= ii;I_E (iw-2a,6,)-'lly,(O) [ 1- 1~1 _E w' ~·46,,th ;; r. 
p p (73) 

One sees easily that the real positive pole of the 
function c5w( w) determines the exponentially increasing 
solution for c5 Yp of (72) (c5yp '""exp w0t). After the usual 
transformations involving replacing the integration over 
momenta by an integration over the energy near the 
Fermi surface and using the definition of the critical 
temperature T c [ 1 l the equation for w0 takes the form: 

f~ ds th(s/2T) wo' T, 
0 s wo'+4s' ln-y. 

The real root of this equation occurs when T < Tc• We 
have then asymptotically 

B(T,- T) 
roo~ ; 

It 
T-+0, 

2nT, 
Wo ~ --= 2.1(0), 

v 

where ln y = C = 0.577 and 2~(0) is the BCS gap[ 1 l in 
the superconductor energy spectrum at T = 0. 

The kinetic equations for the generalized electron 
density matrix of a superconductor considered in the 
present paper enable us to evaluate various non­
stationary processes in superconductors. In particular, 
using perturbation theory we can find the linear re­
sponses, for instance, to a weak electric field. One can 
show that the corresponding results in that case are the 
same as the well-known ones.[s, SJ These equations en­
able us moreover to study the problem of the time­
dependent Ginzburg-Landau equations, [le l the viscous 
transfer coefficients in the hydrodynamic equations of a 
superfluid Fermi gas, and also to investigate different 
non-linear effects in superconductors. We hope to con­
sider a number of such problems in the near future. 

The author is grateful to S. V. Peletminskii for dis­
cussions of this paper. 
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