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The structure of an equilibrium high-frequency gas discharge under conditions of strong skin effect 
is investigated. An analytical dependence of the plasma temperature on input power is derived. It is 
shown that the power required to heat the plasma to some temperature depends on the thermal and 
electrical conductivities of the gas at a given temperature and, under conditions of strong skin effect, 
does not depend on the dimensions and geometry of the discharge. In the transition region at the 
boundary of the discharge, the temperature, the high-frequency energy flux density and the power 
absorbed in the discharge are expressible in terms of a universal function of the coordinates. The 
results are applicable to induction discharges as well as to discharges in volume resonators. 

1. INTRODUCTION 

INTEREST in high-frequency electrodeless discharges 
in gases at high pressures-of the order of one atmos
phere-has lately heightened considerably. However, in 
the available theoretical calculations (see, for example, 
the review[ 11 ) no proper use is made of the smallness 
of the temperature of the plasma in the discharge in 
comparison with the ionization potential. The greatest 
advance in the construction of the theory of gas dis
charge has been made by Gruzdev, Rovinski'i, and 
Sobolev[ 21 • But even they have not determined the 
exact structure of the boundary of the discharge. 

Assuming local thermodynamic equilibrium, we 
construct in the present paper a theory of heat ex
change in a high-frequency gas discharge under condi
tions of strong normal skin effect. The smallness of 
of plasma temperature in comparison with the ioniza
tion potential allows us to find an analytical dependence 
of the parameters of the discharge on the input power. 

Under the conditions of strong skin effect, when the 
depth to which the field penetrates into the plasma is 
small in comparison with both the dimensions of the 
discharge and the distance to the walls of the vessel, 
the conversion of the high-frequency power into Joule 
heat occurs, in the main, in a small (of the order of the 
penetration depth) transition layer on the surface of the 
discharge. Outside the discharge, the equilibrium elec
tron concentration (and, hence, the conductivity 0') 
exponentially decreases as the temperature decreases. 
Inside the discharge, because of the strong skin effect, 
the electric vector E of the high-frequency field main
taining the discharge tends rapidly to zero. Therefore, 
the power absorbed by a unit volume of the plasma 
Y2 a I E 12 rapidly vanishes with increasing distance from 
the boundary into or away from the discharge. Because 
of the smallness of the temperature compared with the 
ionization potential, the temperature itself changes 
little in a region of considerable heat release. This al
lows us to consider separately the region outside the 
discharge in which the temperature varies significantly, 
but no heat is released, and the overlapping region of 
strong heat release in which the temperature differs 
little from its maximum value inside the discharge. 
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In the foregoing assumptions, the plasma tempera
ture in the transition region, the high-frequency energy 
flux density, and the power absorbed in the discharge 
can be expressed in terms of a universal function of 
the coordinates. By matching this solution with the 
solution outside the discharge, we can construct the 
temperature profile and determine the dimensions of 
the discharge as well. The obtained formulas are ap
plicable to induction discharges as well as to discharges 
in cavity resonators. 

2. CONDITIONS FOR LOCAL THERMODYNAMIC 
EQUILIBRIUM 

We shall assume that local thermodynamic equili
brium sets in in the plasma of a discharge, so that the 
thermal and electrical conductivities are known func
tions of the equilibrium temperature. A necessary 
condition for local thermodynamic equilibrium is the 
equality of the temperature of the electrons to the 
temperature of the ions and the neutral atoms-which, 
in any case, will occur at a sufficiently high pressure. 
According to Ginzburg and Gurevich[sl, the difference 
between the electron temperature and the temperature 
of the ions and atoms can be neglected if the amplitude 
of the high-frequency field E is small compared with 
the characteristic "plasma" field Ep: 

E< E.=:= l'3mkTe-'ll(w' +v~ff ). (2.1) 

Here T is the equilibrium temperature of the plasma, 
w the frequency of the high-frequency field, lleff the 
effective number of collisions, 0 the fraction of the 
energy transferred by electrons during collisions with 
heavy particles (in elastic collisions 6 = Oez = 2m/M), 
m and e the mass and charge of an electron, and k the 
Boltzmann constant. 

It is convenient for what follows to introduce, in 
place of the "plasma" field Ep, the critical energy 
flux Sp = O"EpO. Here, 

6 = c/l'8rt(J)(J (2.2) 

is the depth of penetration of the field into the plasma, 
so that the necessary condition for local thermody-
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namic equilibrium (2.1) imposes the following limita
tion on the high-frequency energy flux per unit area of 
the surface of the discharge S0 : S0 « Sp. 

3. FORMULATION OF THE PROBLEM. THE BASIC 
EQUATIONS 

Let us consider a high-frequency discharge in a gas 
in a stationary regime, when the Joule heat released in 
the plasma by the electromagnetic field is transferred 
to the cooled walls of the vessel by heat conduction. 
We shall neglect radiation losses, which, as follows 
from numerical computations£ 41, are small at tempera
tures below 10,000°K. In the absence of convection the 
complex amplitude of the high-frequency field E and 
the equilibrium temperature T satisfy the wave and 
heat equations: 

~E + (~ _ 4niwo ) E = O, 
cz cz 

div (x grad T} +'/,olE' I = 0 

(3.1) 

(3.2) 

(a time dependence of the form eiwt is assumed). The 
thermal conductivity K and the electrical conductivity 
a of the gas entering into Eqs. (3.1) and (3.2), in the 
presence of local thermodynamic equilibrium, are 
known functions of the equilibrium temperature (de
pending, generally speaking, on the coordinates). The 
electron concentration, as a function of the tempera
ture, is found from the ionization equilibrium formulas 
([51 , Sec. 106). If the degree of ionization of the gas is 
small, then the conductivity exponentially depends on 
the temperaturell: 

o- exp(-l/2T}. (3.3) 

The thermal conductivity of gases at temperatures of 
the order of 5,000-10,000°K are less well known. 

The boundary conditions for Eqs. (3 .1) and (3 .2) 
depend on the concrete apparatus used for obtaining the 
discharge, on the mode of excitation of the high-fre
quency oscillations, and also on the conditions of heat 
exchange at the surface of the vessel. If the tempera
ture of the walls is maintained at a constant value, we 
may take, as a boundary condition on the temperature, 
T =To~ 0. 

Let us denote by Tm the maximum temperature in
side the discharge. We shall assume that Tm « I. 
Under this condition, the conductivity of the gas (3.3) 
decreases substantially when the temperature de
creases by a small (in comparison with Tm) amount 
aT = Tm - T ~ Tfn/I « Tm. This permits us to 
split the solution of the problem into solutions in dif
ferent regions. 

In the region 

Tm- T>Tm'/1 

the conductivity is exponentially small and the terms 
containing a in Eqs. (3 .1) and (3 .2) may be neglected: 

1l Formula (3 .3) is valid if the main contribution to the resistance is 
made by collisions of electrons with neutral atoms. This condition is 
more stringent than the simple requirement of smallness of the degree 
of ionization. For hydrogen at atmospheric pressure it is fulfilled at 
T<8,000°K. . 

w' 
~E+--;zE=O. 

(3.4) 

Equation (3.4), with the corresponding boundary condi
tions, determines the electromagnetic energy flux 
density S( r ). Under the condition of smallness of the 
depth of penetration (2.2) of the field into the plasma 
(at the temperature Tm) in comparison with both the 
dimensions of the discharge r 0 and the distance to the 
walls of the container R - r 0 : 

(3.5) 

the high-frequency energy flux density near the dis
charge in the region 

R - r, > r - r, > 6rn (3.6) 

may be assumed to be independent of the coordinate r 
and equal to S0 • If the flux of the electromagnetic 
energy is totally absorbed inside the discharge, then, 
in accordance with (3 .2), we find: 

x grad T = -S(r}. 

Integrating this equation with the boundary condition 
T = T 0 at the surface of the vessel, we find the tem
perature profile outside the discharge. If the discharge 
is an infinitely long cylinder, then S(r)r = Soro = const 
and the dependence of the temperature on the radius in 
the region r - r 0 ::» Om takes the form 

T R 
JxdT=S,r,ln---;:-, T=T, for r=R. (3.7) 

Let us now investigate the asymptotic behavior of 
the solution at points far from the transition layer in
side the discharge. In a region far from the boundary 

the temperature differs so little from Tm, that the 
conductivity a in Eqs. (3 .1) and (3 .2) can be assumed 
to be a constant and equal to am = a(Tm). Equation 
(3 .1) with the constant am describes the skin effect in 
the plasma. Neglecting the displacement current in 
comparison with the conduction current, we find that 
in the interior of the discharge the magnitude of the 
electric field E decreases exponentially: 

E-exp[-(r,-r)/21\m], r,-r>brn. (3.8) 

Substituting (3 .8) into (3 .2), we find that deep inside the 
discharge the temperature exponentially approaches 
Tm: 

T rn- T- exp[- (r,- r) / 6m]. (3.9) 

4. THEORY OF THE TRANSITION LAYER 

Let us now consider the transition region at the 
boundary of the discharge. Owing to the condition (3.5), 
we can assume the boundary of the discharge to be 
plane. We shall assume that the electric vector E is 
parallel to the surface of the discharge and that it de
pends only on the distance to the surface. Neglecting 
in (3.1) the displacement current in comparison with 
the conduction current, we write Eqs. (3.1) and (3.2) 
and the complex conjugate of (3.1) in the form: 
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,!.!!_ _ 4rriwcr E = 0 
dr' c' ' 

d'E' 4rriwcr 
"""dr'+-c-,-E• =0, 

!:__ (x!:!._) + ~criE'I = 0. 
dr dr 2 

(4.1) 

(4.2) 

(4.3) 

It is convenient for the solution of the problem to 
eliminate from the equations the electric field E. 
Multiplying (4.1) by E* and (4.2) by E, and then suc
cessively adding and subtracting the obtained equations, 
we arrive at the relations 

d'IE'I/dr'-2IE"I =0, (4.4) 

.!:.. (E' E' - EE•')- Bniwcr I E'l = 0. 
dr c' 

(4.5) 

Now let us multiply (4.1) byE*', (4.2) by E' and add 
the obtained equations. We obtain as a result 

diE"I 4 i --+ :rt ~cr (E' E'- EE'') = 0. 
dr c' . 

(4.6) 

Eliminating the functions I E' 12 and ( E*E' - EE*') 
from Eqs. (4.4)-(4.6), we find for I E2 1 the equation: 

d 1 d'IE'I 64rr'w'cr (4.7) 
dr ----;;-----;J;3- c' IE' I= O. 

Let us express IE 2 1 from Eq. (4.3) in terms of the 
temperature and substitute it into (4.7). After integra
tion with respect to r, taking into account the fact that 
the derivatives with respect to the temperature tend to 
zero inside the discharge (on the side r < r 0), we ob
tain the following equation for the temperature in the 
transition layer: 

d' 1 d dT 
---x--
dr' cr dr dr 

64rr'w'cr dT 
c' x--;£;" = 0. 

(4.8) 

Of interest to us is the solution to this equation for a 
given flux outside the discharge: 

xdT /dr= -S,, r-r,~ llm, (4. 9) 

which tends to some (a priori unknown) limit Tm in
side the discharge: 

T-+ Tm, r,- r~ /lm. (4.10) 

(for the moment we conditionally take r 0 as the coordi
nate of the transition layer). 

Taking the temperature dependence of the conduc
tivity (3.3) into consideration, we find it convenient to 
introduce in place of T the dimensionless temperature 
® measured from Tm: 

T = T m- 2T m'8 I I, (4.11) 

and measure the distance to the surface layer in units 
of the penetration depth: 

r=-llms· 

Limiting ourselves to the region Tm - T « Tm and 
neglecting the temperature dependence of the thermal 
conductivity, we write Eq. (4.8) in terms of the dimen
sionless variables in the form 

_!!._e• d'8 - e-• de = 0. (4.12) 
dl;;' di;' d1; 

The relation (4.9) in terms of the dimensionless vari
ables takes the form ( Km = K(Tm)): 

8'=-JS,Il,./2xmTm', ;,-·\;~1. (4.13) 

It is, however, not convenient to use it as a boundary 
condition since the temperature in the discharge Tm 
is not known a priori. Noting that, in accordance with 
(3.9), the temperature deep inside the discharge should 
exponentially tend to Tm, we find the following asymp
totic expression for ®; 

(4.14) 

Since /; enters into Eq. (4.12) only via the deriva
tives, while Eq. (4.12) itself does not contain any 
parameters whatsoever, the solution to it, having the 
asymptotic form (4.14), is some universal function of 
(/; - /;o): 

e = e(~;;- ~.). (4 .15) 

while e'(/; - /; 0 ) for I;- I;» 1 is some constant of the 
order of unity. A numerical integration yields 

8'(\;-\;o)=-1.57, 1,;,-1;;~1. (4.16) 

The results of the numerical integration of Eq. (4.12) 
are shown in Fig. 1, a, band c. In Fig. 1a is shown the 
dependence of the dimensionless temperature (4.15) on 
the dimensionless coordinate. Figure 1b shows the 
dependence of the high-frequency energy flux S( r) on 
the coordinate in the transition layer (I®' I 
= HlmS/2KmT:n), while Fig. 1c shows the heat evolu
tion in the transition layer (e" = Hifna I E2 I/4KmTinh 

The electron concentration in the discharge as a 
function of the coordinate can also be expressed in 
terms of the dimensionless function (4.15). 

N(r) = Nmexp {- e ( r~r,)}. 

Here, Nm is the equilibrium electron concentration at 
the temperature Tm. The dependence of the electron 
concentration on the coordinate is shown in Fig. 2. 

We find from the relations (4.13) and (4.16) the de
pendence of the temperature Tm in the discharge on 
the energy flux So and, inversely, the energy flux re
quired to heat the plasma to the temperature Tm: 

tl 
a I 

FIG. I. Results of the numerical integration ofEq. (4.12): a-graph 
of the function ( 4.15)-the dependence of the dimensionless tempera
ture on the dimensionless coordinate: b-dependence of the high-fre
quency energy flux Son the coordinate in the transition layer (1®'1 = 
IllmS/2KT:0): c-graph of heat evolution in the transition layer(®"= 
Io:Ua1E2 1/4Km T:U). 
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{4 .17) 

Thus, the energy flux required to heat the plasma to 
the temperature Tm is determined by the thermal and 
electrical conductivities of the gas at the given tem
perature and, under the conditions of strong skin ef
fect (3.5), does not depend on the dimensions and 
geometry of the discharge. 

For the description of the electrical characteristics 
of the discharge under the conditions (3.5), we may in
troduce the surface impedance Z just as in the case of 
a sharp boundary: 

Z = 4niw E(r) . 
R-r,::;.,.r-r,::;.,.llm. 

c' E'(r) ' 
{4.18) 

By this definition, the active part Rz of the surface 
impedance does not depend on r and has the meaning 
of a resistance of the discharge per unit surface area. 
Let us calculate the dependence of the surface imped
ance of the discharge on temperature and power. Let 
us multiply the numerator and denominator of {4.18) 
by E*'(r) and reduce with the hlep of the relation (4.6) 
the expression for Rz to the form 

R,=ReZ=_!_IE"I'. {4.19) 
2a IE" I 

With the aid of the relations (4.3)-(4.7), we find the 
identity 

(4 .20) 

where S( r) is the electromagnetic energy flux density. 
Substituting (4.20) into {4.19) and noting that outside the 
transition layer aS(r) tends rapidly to zero, we can 
verify that the active part of the surface impedance 
(4.19) does not depend on r and is equal to 

2nwl>m 
R,= c' 

IE>'(- oo) I 2n~/) m IEJ' ( _ 00 ) I· 
c 

Substituting {4.16) into {4.21), we finally obtain: 

R, = 3.Holwc-'1>m = 3.14n10-'wl>,. [ohm]. 

{4.21) 

(4.22) 

Notice that the surface resistance Rz for a half
space with the temperature Tm and a sharp boundary, 

FIG. The electron concentration dis
tribution. 

after a specular reflection, is equal to Rz = 4wwc - 2 15m, 
which is roughly 2~ higher than the correct formula 
(4 .22). 

As another electrical characteristic of the discharge, 
we give a formula for the coefficient of reflection of a 
normally incident wave from the plane boundary of the 
discharge: ill= 1- 6.28wc- 1 6m. 

5. INFINITE CYLINDRICAL DISCHARGE 

The constant of integration {; 0 in (4.15) is deter
mined from the condition that in the temperature region 

(5.1) 

the expression (4.11) coincides with the solution of the 
heat equation outside the discharge. In the case of an 
infinitely long cylindrical discharge, the dependence of 
the temperature on the coordinate (3.7) in the region 
(5.1) can be written in the form (here lim « r - r 0 

« ro): 

(5.2) 

Noting that when {; 0 - t; » 1, we have ® (t; - {; 0 ) 

= -1.57 (t; - {; 0 ) and find with the aid of {4.11) the fol
lowing expression for the temperature in the region 
(5.1 ): 

Xm(Tm- T) = S,(r- r0 ), (5.3) 

where r = -6mt; and r 0 = -15ml; 0 • Comparing (5.2) with 
(5.3), we find 

(5.4) 

The relation (5.4) together with (4.17) determines the 
dependence of the radius of the discharge r 0 on the 
input energy flux So or on the maximum temperature 
Tm. 
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