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The collapse (merging) of the spectral components due to the averaging of the field by nonadiabatic 
collisions is discussed in the special case of the Stark structure of hydrogen and helium lines. It is 
shown that the phase "memory" responsible for this phenomenon changes the scale of the broadening 
by a substantial factor in the presence of degeneracy. It is also shown that the effect of exchange nar­
rowing of the spectrum is an extreme case of collapse. 

INTRODUCTION 

WHEN shock broadening of the components of a multi­
plet is comparable with their separation the transforma­
tion of the spectrum by pressure and temperature be­
comes a very complicated phenomenon. This must be 
remembered whenever one is dealing with radiative 
transitions between groups of degenerate or quasi­
degenerate states. In atomic spectroscopy this condition 
is best satisfied by optical transitions in hydrogen and 
helium, whose Stark structure is resolved and is broad­
ened by collisions with ions and electrons, respec­
tively. [l-3J Competition between these processes at 
pressures and temperatures feasible in practice leads 
to a qualitative change in the spectra, which depends on 
which is the dominating effect. In particular, when the 
contribution of electrons to the broadening becomes 
very important, electron collisions lead to the merging 
of previously resolved spectrum components at the 
"center of gravity of the multiplet," and the side satel­
lites tend to be suppressed. An analogous collapse may 
occur in the case of a pair of lines, one of which is for­
bidden, but this leads to the opposite result, i.e., the 
two lines assume equal intensity after merging. 

The interdependent behavior of the various compon­
ents of a complicated spectrum is a general consequence 
of the nonadiabatic character of the collisions if the re­
sulting phase memory is not averaged. By inducing tran­
sitions between different sublevels such collisions not 
only modulate the phase and amplitude of the radiation, 
but also give rise to a frequency exchange. 

In the special case when frequency exchange is not 
accompanied by a change in the relative phase of radia­
tively connected states, this leads to merging and subse­
quent contraction of shock- connected components of the 
spectrum. The possibility of this type of collapse was 
demonstrated earlier in[4 J in the case of a four-level 
system in which the upper and lower level pairs were 
found to broaden in the same way. In the case of three 
levels this broadening of optically connected states was 
not possible because the lower (nondegenerate) state 
was not disturbed at all. 

However, it will be shown below that, under favorable 
conditions, when transitions between the upper terms 
proceed through an intermediate level, we again have 
the necessary conditions for collapse just as in the case 
of the four-level system described earlier,(4 l although 
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the consequences of this are somewhat different in 
character. Such conditions are realized, in particular, 
in the case of the La and L (3 lines and, to a considera­
ble extent, are responsible for the smearing out of the 
Stark structure of these lines under conditions that are 
usual in the discharge plasmaY-3 l 

1. NONADIABATIC BROADENING OF OVERLAPPING 
LINES 

The general theory of the broadening of multicom­
ponent spectra containing lines of close or equal fre­
quency was developed in[4-sJ. Its only serious limitation 
is the assumption of the shock character of the interac­
tion between the particles and the medium. This condi­
tion is well satisfied in gases whose density is not too 
high. In the case of optical spectra, the theoretical 
formalism is somewhat simplified because collisions 
cannot produce optical transitions between states Ia) 
and Ia), but merely induce relaxation within each of 
these groups of the degenerate or quasidegenerate terms 
(Ia) - Ia'), Ia)- Ia')). In such cases the form of the 
spectrum [4 ' 5 l 

1 
/(w) = --;-Re .E W.d •• ' d,~ G,;:~~ (1.1) 

is expressed in terms of the fundamental matrix 

G •• ,~= i( w -w •• )ll.,ll.~ + (ll.,ll.~- S.,s.~·), (1.2) 

whose relaxation part is equal to the product of S matri­
ces for the upper and lower level groups, respectively, 
averaged over an ensemble of binary collisions. The 
remaining symbols have the following meanings: daa 
are the elements of the dipole moment matrix responsi­
ble for the optical transitions, Waa is their frequency, 
and Wa is the statistical weight of the state Ia), which 
is unimportant for further analysis because the scale of 
the broadening and the line splitting which is compara­
ble with it is definitely less than kT and is equal for all 
the components. 

To be specific, let us consider the Stark effect in 
hydrogen and helium in the discharge plasma[HJ, which 
is a well-known phenomenon. In this case,[1 ' 2 l shock 
broadening of the line is largely due to perturbation by 
electrons of the upper levels which are readily polar­
ized. Lower-level perturbation can be neglected in 
comparison with this (this assumption is rigorous for 
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the Lyman lines because the ground state is spherically 
symmetric and not degenerate). A direct consequence of 
this fact is the linearization of the G matrix in S: 

(1.3) 

(1.4) 

Taking the interaction between the electron and the atom 
in the dipole approximation, using the classical descrip­
tion of the motion, and considering the effect of the 
collision as a resonance phenomenon/2' 71 we obtain the 
following expression for the T matrix in second-order 
perturbation theory: [2 l 

A 2 ( e'a )' 
T = -3 lipv r'. (1. 5) 

Averaging this expression with respect to the impact 
parameter p and velocity v does not alter the essence 
of the situation and affects only the absolute magnitude 
of the proportionality constant relating T and r 2 in Eq. 
(1.5): 

, 1 ( 8nm } 'I• ( li ) ' Joo e-• 
(T)=- 3 kT N --;; r' Ydy=-g.r', 

'/Jmin 

(1.6) 

(1.6a) 

In these expressions T is the temperature, N is the elec­
tron density, m is the electron mass, r 2 is in units of 
a= h2/me2, and n is the principal quantum number. 
Therefore, the form of the G matrix is determined only 
by the matrix r 2. 

The L spectrum. Neglecting the fine structure of 
then= 2 fevel which, at densities in excess of 1014 cm-3 

is negligible in comparison with the Stark structure, we 
obtain the well-known energy structure(BJ in the ion field 
8 (Fig. 1a): 

E<'J = 3eoo(n,- n,). (1. 7) 

The two extreme components of the split level corre­
spond to n1 = 1, ll2 = 0 and n1 = 0, fl2 = 1, whereas the 
central component with n1 = n2 remains doubly degener­
ate. If we evaluate the matrix elements of r 2 for the 
hydrogen functions in parabolic coordinates and use this 
result in Eqs. (1.3) and (1.6), we obtain 
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FIG. 1. Structure of the multiplets: a-101 , b-Hel 3965A., c-Lil; 
x, y, z are the components of the dipole moment inducing the transi­
tions and polarization. 

whose position and intensity are unaltered. 
The situation is quite different for the other pair of 

lines, namely, 1-0 and 4-0 whose behavior is mutually 
connected through the nondiagonal matrix element 
representing the phase memory of the system and relat­
ing the two components when the G matrix is inverted. 
This problem is a special case of the more general 
model system, namely, the coupled doublet 

G.,= (i(w-w+'/,t.)+r. -13 . ) 
-B" i(w-w-'/,t.)+r, (1. 10) 

and is obtained from it by substituting in Eq. (1.8) the 
following expressions: 

(1.11) 
"'- = "'"- w, = 6ea8 iii, w = (w,,+ w.,)/2. 

r. = r, = r = 2~ = 18g,, 

We shall show below that other pairs of lines in the 
spectra of hydrogen and helium can be fitted into the 
framework of this model. 

The spectrum of A = 3965 A Hel. It is clear from 

(

i (w- "'10) + 18g. o 0 - 9g ) Fig. 1 b that, because of collision. s with electrons, the 
G.,= o t(w-w,.)+9g. 0 o . allowed 41P-21S and forbidden 41F-21S transitions are 

0 0 1 (w- "'ao) + 9g 0 coupled through the intermediate term 41D. Because of 
- 9g 0 0 i (w- w•o) + 18g the substantial fine splitting, the Stark structure will be 

(1.8) neglected in this case. Each of the three m components 
We note that the presence of intermediate levels is of the 41P level is coupled to the corresponding 41F 

a necessary condition for the appearance of the phase component by analogy with the foregoing, so that the G 
memory (Tab> =- :Eg2racr cb = 9g2, which does not matrix splits into three identical blocks of the form 
vanish after averaging with respect to the angles. This given by Eq. (1.10). Although the exact magnitude of the 
is illustrated by the transition scheme shown in Fig. 1a. parameters will not be established in this case, the 

It is clear from the structure of the above matrix that simplification of the problem to a simple model enables 
the 2-0 and 3-0 lines are broadened independently of us to perform a qualitative analysis of the transforma-
one another. Therefore, when Eq. (1.8) is substituted in tion of the spectrum, i.e., the appearance of the forbid-
Eq. (1.1), their shape is specified by the usual shock den component. 
profile The L8 spectrum. The Stark structure of the third 

level of the hydrogen atom in a field parallel to the 
I.(w)= ld.l' r. (f.=9g, a=2,3), (1.9) z axis, and all the dipole transitions, namely, optical 

n (w- w.,)' + r.' (to the ground state) and relaxation (between the com-
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ponents) are shown in Fig. 1c. The matrix of the opera­
tor given by Eq. (1.5) is diagonal in the quantum number 
m (as is, in general, the matrix of any scalar). It fol­
lows that the G matrix splits into blocks corresponding 
to two identical doublets (2-0, 4-0) and a triplet 
(1-0, 3-0, 5-0), the central component of which in this 
quantization is forbidden. As regards transitions from 
terms with lml = 2, these are optically forbidden and 
are not relaxationally coupled to others. They do not, 
therefore, appear in the spectrum even when the colli­
sions are taken into account. Equally so, the doublets 
and triplets are not coupled in any way, so that we c!l-n 
consider them separately. Direct evaluation of the G 
matrix for the n = 3 level over the states with n = n1 + 112 
+ lml + 1 enables us to establish that blocks referring 
to the 12) - 14) doublets have the same structure as that 
indicated by Eq. (1.10}, and even with the same relation­
ship between the parameters: 

r. = r, = r = 2~ = 81g,. (1.12) 

The situation is quite different in the case of the trip­
let. The corresponding G matrix in second-order per­
turbation theory is of the form 

(
i (x - A) + r - ~ 0 ) 

Ga, = - ~ ix + r - 6 ~ , 
0 ~ i (x +b)+ r' 

~ = ll = •;3r = "f,g,. 

(1.13) 

(1.14a) 

( 1.14b} 
The appearance of the additional parameter o is connec­
ted with the fact that the width of the forbidden line is 
different from that for the side components. 

As regards splitting, its magnitude is given by the 
linear Stark effect[sJ, the theory of which yields 

A=9eaE (1.15) 

both for the triplet and the two doublets. 

2. THE SPECTRUM OF THE DOUBLET 

Let us now consider the three-level model, i.e., two 
optical transitions from different initial states to a 
common final state. It is important to note that this 
model has been discussed earlier in[4 ' 5 l in the hypotheti­
cal case where the phase memory appears in the first­
order perturbation theory. Averaging of the multipole 
interactions in odd orders leads to the fact that it ap­
pears only in the second order and this modifies quali­
tatively all the conclusions because the nondiagonal ele­
ments of the G matrix turn out to have the same signs 
rather than different signs, as before. [4 ' 5 1 

Inverting the matrix given by Eq. (1.10), and substi­
tuting the result in Eq. (1.1), we can readily show that 
the spectrum of the doublet consists of two Lorentz 
lines 

1 ( A+ A_ ) I(w)=-Re ---+--- , 
3t W- W+ W- (t)_ 

(2.1) 

the position and width of which are given by the roots of 
the determinant of the matrix given by Eq. (1.10) 

W± = fii + i(fa + f,) /2 ± Q, 

whereas the intensity is given by 

(2.2) 

A±= -i ld.l'+ld•l' 4' r.-r.+i~ ld•l'-ld.l' =l=Re(d;d,~) 
2 2Q 2 Q 

where 
(2.3) 

Q = 1/2{[~ -· i(fa- r,) ]'- 41 ~1'}1>. (2.4) 

It is readily seen that, in the absence of the phase mem­
ory, the broadening of both components of the spectrum 
would be independent, since for (3 = 0 the doublet is auto­
matically reduced to that given by Eq. (1.9}, i.e., two 
completely identical components which are obtained 
from each other by a permutation of the subscripts 1 
and 2. 

The presence in Eq. (2.4) of the phase-memory ele­
ment ensures that this radical makes different contribu­
tions to the width and shift of the components, depending 
on the relative magnitude of the competing terms, and 
the appearance of the correction term proportional to 
(3/w in Eq. (2.3) violates the permutation symmetry of 
the line for 1(3/0I ~ 1. 

The most striking effect of the phase memory on the 
transformation of the spectrum is found in the special 
case 

r. = r •. (2.5) 

to which the above doublet spectra of hydrogen reduce. 
This is clear from Eqs. (1.11) and (1.12). In this case, 
there is a strong alternative: 

Q = l'(~/2}'-1~1' (2.6) 

can be either real (.A > 21(3 I) or purely imaginary 
(.A< 21(31), so that in the first case Eq. (2.6) gives the 
shift of the component, whereas in the second it gives 
the correction to their width. 

When both components of the spectrum are allowed, 
which occurs in hydrogen, 

d.=d,=d=2-Y•e(1s,JzJ2p,) (La), (2.7a} 
-d.=d,=d=2-Y•e(1s,Jr •.• J3p±,) (L,), (2.7b} 

It then follows from the general formulas and from 
Eqs. (2.5) and (2. 7) that 

-~[r±_Q-'(w-w+Q) r=t=~Q-'(w-w-Q) l 
I(w)- n (w-w+Q)'+r' + (w-w-Q)'+r' . 

~ > 2~. (2.8a) 
ldl' ~ ) r-fJ' 

I(w) = -n- [ (1 ±QI (w- w)' +(r- Q')' 

( ~) r+fJ' ] 
+ i+QI (w-w)'+(r+Q')' 

~<2~. Q'=liQI. (2.8b) 

The upper signs in Eq. (2.8) refer to the La and the 
lower to the L8 . It is clear from these formulas that as 
long as 2 (3 < fl. the spectrum consists of two split com­
ponents which are asymmetric to an extent which 
depends on the ratio (3/n. On the other hand, when 
2 (3 2. .c. the collapse sets in, and the two lines merge at 
the center of gravity of the spectrum, i.e., their shifts 
vanish. The doublet components differ from each other 
only in their width and intensity. It is noticeable that 
with decreasing .t./2 (3 one of the components disappears 
altogether (Fig. 2) and the spectrum becomes exactly 
the same as in zero fields. As a result, the spectrum 
of La contains only one narrow component whose half 
width is given by 
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.'\wv,=f-Q'=f-l'~'-(.'\/2)'~ (f-,~)+ 1M'/4~ (2.9a) 

when t:. « 2 (3. We note that fact that when there is a 
random compensation of the first terms of this formula 
there remains only the term which is of the second 
order of small quantities in t:./2 (3, and this decreases 
with increasing (3, ensuring the narrowing of the spec­
trum by pressure: 

(f=~). (2.9b) 

This type of phenomenon is known in molecular 
spectroscopy and is, in fact, observed after the averag­
ing of the rotational structure of the nuclei [9 J and elec­
tron paramagnetic resonances[lDJ by pressure. Its 
origin was discussed in detail within the framework of 
the four-level model [4 J , and it was shown that the 
necessary condition for its realization was r = (3. It is 
not very probable that this condition will be accidentally 
satisfied and one would not, therefore, expect such a 
radical change in the nature of the broadening in atomic 
spectroscopy. However, the generality of the phenom­
enon is quite clear. This is so simply because of a 
different relation between r and (3, established in Eqs. 
(1.11) and (1.12), so that the effect which is of zero order 
in t:./2 (3 predominates: 

r .'\' r 
llwy,=-+-~- (f=2 ). 

2 4r 2 
(2.9c) 

Although line-narrowing does not occur in this case, the 
effect of the phase memory on the line width remains 
very important: it reduces it by a factor of two. Further 
increase in the ratio r / (3, i.e., a reduction in the rela­
tive importance of the phase memory, results in the fact 
that the disproportion in the line width under the collapse 
conditions is smoothed out, as illustrated in Fig. 3. 

A diametrically opposite effect in the sense of the 
behavior of the intensities of the narrow and broad com­
ponents is obtained for L(3. It is clear from Eq. (2.8b) 
that when t:. « 2 (3 the spectrum of L(3 retains only the 
broad component whose half-width is given by 

llw•" = r + Q' ~ (r + ~) - 1 /2!1'/4~ ~ '/,r (r = 2~). (2.10) 

The narrowing of the line in this case is impossible in 
principle, even when the necessary condition r = (3, 
mentioned above, is satisfied. The difference in the 
behavior of the collapsing doublets of the LQI and L(3 
lines is connected with the sign of Yab in Eq. (2.3) 

which is conserved under any unitary transformation of 
the adopted representation (with the z axis along the 
field). 

The quantity y ab can be interpreted as the mutual 
coherence function:[UJ the value Yab = 0 corresponds 
to two independent oscillators ((3 = 0), whereas the 
state with full coherence IYabl- 1 corresponds to a 
correlated behavior of the two oscillators, and the spec­
trum of the collapsing doublet reduces to the form which 
it has in the absence of the field (t:. « 2(3). 

When (3 is positive definite it can be interpreted as 
the frequency of the transitions between the fine- struc­
ture sublevels Ia) and lb), and da and db are the oscil-

FIG. 2. Change in the intensities of 
the doublet components: broken curve­
hydrogen (both transitions allowed), 
solid line-helium (one transition for­
bidden). 

FIG. 3. Doublet line widths: 
a-r = ,B (effect of narrowing), b- o 
r = 2,6, c-r = 6,6. The collapse re~ 
gion lies between the ordinate axis 11 
and the broken line. 

lating polarizations at frequencies Wa and wb. Collisions 
produce exchange between these frequencies without 
affecting the phase of the oscillations, but only when da 
and db have the same sign (Yab > 0). This leads to the 
narrowing of the line. On the other hand, when da and 
db have different signs, each collision results in a 
change of both frequency and phase (Yab < 0) and this 
in its turn results in a monotonic broadening of the 
lineY'12 l It is interesting to follow the behavior of the 
intensities of the doublet components, one of which is 
initially forbidden, as in the case of the helium atom: 

d, = d, d.= 0. (2.12) 

Using the simplification given by Eqs. (2.5) and 
(2.12), we find from the general formulas that 

l(w)= 1~1' [(1 - 1~,1') r + IPI' r ] 
.. Ll (w-w,.)'+I'' ~-(w-w.)'+f' ' 

21 ~ 1 « ll, (2.13a) 

ldl' [ 1 f-[~'+(2Q')-'Il{w-ii}) I ( w) = -- - ___ ..:__....:.......___:__....,.___.:-
rr 2 (w-w)'+(f-Q')' 

+ _!:_ r + Q'- (2Q') _, ll ( w- ii}) ] 

2 {w-ii})'+(f+Q')' 

2l~l>ll, Q'=liQI. (2.13b) 

Although the widths and shifts of the lines behave in the 
same way as before, the spectroscopic picture in both 
limiting situations is substantially different. In the 
allowed structure [Eq. (2.13a)J there are two symmetric 
lines of equal intensity and the forbidden component is 
allowed/1 depending on the ratio 1(31 2/ t:. 2• 

As the phase memory increases, the intensities grad­
ually become equal and eventually become identical when 
collapse sets in (Fig. 2). However, the shape of the 
spectrum remains relatively complicated because of 
the different widths and the asymmetric distortion of 
the merging components. 

1 lThi~ conclusion is unaffected when Eq. (2.5) is not satisfied, 
which is the case of a helium atom. All we need do is introduce the re­
placements r ..... Re ra. Re Ib and, correspondingly, Wa ..... Wa + Im ra, 
Wb ..... Wb + Im rb in Eq. (2.13a). 
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3. THE SPECTRUM OF THE TRIPLET 

Inverting the matrix given by Eq. (1.13), and using it 
together with the formulas 

d=d,.=d,.=2-~'~e(1s,jzj3p,), d,.=O (3.1) 

in Eq. (1.1), we obtain 
ldl' 2z'-2~z-4B' 

l{w)=-n-Re (z'+8'){z-ll)-2~'z ' (3•2) 

where z = ix + r = i(w- w) + r. It is clear from this 
result that when the phase memory is neglected ({3 = 0) 
the spectrum is always a doublet consisting of the two 
extreme components of equal intensity, since the cen­
tral component in Eq. (3.1) is forbidden. 

The situation is completely modified when phase 
memory is taken into account: the central line is par­
tially allowed and it remains after the collapse. How­
ever, it is difficult to investigate this transformation of 
the spectrum in the general case and we shall simplify 
the problem by using the random coincidence of the 
parameters (o = {3) established in Eq. (1.14b). 

Since the mutual disposition of the lines in the spec­
trum is determined by the roots of the denominator in 
Eq. (3.2), the analysis of the structure of the spectrum 
reduces to the analysis of the discriminant of the cubic 
equation. Simple algebraic transformation yields 

8 6 7 ) 3 ( 10 ) 2
] ~ D(TJ)=- 21 [(1- 3 lJ2 +3TJ2 1+--gTJ2 , TJ=-::\. (3.3) 

So long as the phase memory is small ( TJ < 1J 0 ) the dis­
criminant is negative and the equation has two complex 
and one real root: 

Z±=±i!\(1-tj2), Zo=~{1+2TJ') (TJ~Tjo). (3.4) 

The first two represent a doublet (two lines of equal 
intensity, separated by ±A) and the last represents the 
central component. When TJ increases the discriminant 
decreases in absolute magnitude, passes through the 
point D(TJo) = 0, and changes sign. When 1J > TJo all the 
roots are real: 

1 2 u 
z+ = ~ (z-"ii'), z_ = ~ ( -i+"3'), z, = -'2" (TJ ~ TJo)." 

TJ TJ TJ (3.5) 

Thus, here again we encounter collapse: the total merg­
ing of the spectrum components at the ''center of 
gravity." The point at which collapse occurs is defined 
by the condition 

D(tjo) = 0, flo= 1,55, (3,6) 
which is similar to that which we have in the case of the 
doublet ( TJo = %). 

If we now consider the above roots of the denomina­
tor in Eq. (3.2) we can readily establish from this form­
ula the spectra which correspond to the two limiting 
situations: 

ldl 2 [· 2 r 
l(w)=-;- (1-2TJ) (w-1il-~)'+f2 + (3.7a) 

+ (1 2 ') r + 4 , zrts ] 
- TJ (w-w+8)'+f' lJ (w-1il)'+{2f/3)' 

when {3/ A « TJo, and 

I w - ~ [ (z _3 ) r 
( )- n + 2TJ2 (w-iii) 2+r' (3. 7b) 

f/3 4 4f/3 ] 
3TJ' (w-1il•) 2+(4f/3) 2 (w- iii) 2+(f/3)' 

when {3/ A » 1] 0 • The line widths are determined here 
with allowance for Eq. (1.14b) (r = 3 {3). In the first 
case, as the ratio ({3/ A) 2 is allowed to vary the intensity 
is transferred to the forbidden component of the spec­
trum and all three components are quite symmetric and 
have the Lorentz shape. In the opposite case, collapse 
is eventually (when 1J » TJ 0 ) found to result in a single 
line of twice the intensity, but as we return to the point 
TJo from the side of large TJ the spectrum is found to be 
transformed. Because of the second term in Eq. (3.7b) 
(narrow line with negative weight) there is a valley at 
the center of the spectrum which becomes deeper as 1J 
decreases, and only after passage through 1J 0 when the 
extreme lines separate by ±A do we find at this point 
an additional maximum corresponding to the forbidden 
component. 

CONCLUSIONS 

The phase memory of an atom represented by the 
nondiagonal elements of Gab was shown above to produce 
exchange between the corresponding spectral lines by 
analogy with the situation when the nondiagonal elements 
of a Hamiltonian mix different energy states. It is, 
therefore, natural that its role increases when close 
frequencies are involved in the exchange. Since the 
phase memory scale is determined by the line broaden­
ing ({3 :5. r), it is clear that this must be taken into ac­
count whenever one considers poorly resolved structures 
or radiation from a degenerate term. 

When the phase memory is taken into account the re­
sult is that collisions do not simply smear out the struc­
ture and broaden its components but, in fact, transform 
it to the form which one would expect in the absence of 
splitting. In other words, collisions completely average 
the field acting on the atom. This was to be expected: 
exchange between the multiplet components takes place 
because nonadiabatic collisions take the atom from one 
Stark level to another, change the sign of the dipole mo­
ment, and thus average the energy and remove the 
polarization of the states which appears in the field. In 
this sense, the collapse of the Stark structure is quite 
similar to the averaging of local magnetic fields because 
of exchange[9 J or rotational structure and reorientations 
of the angular momenta due to collisions. [13 ' 141 The ap­
pearance of the effect is not therefore connected with 
the number of levels involved in the process but with the 
fact Gab= Gba (a/: b) (whereas in[4 •8 l Gab=- G~a)· 

However, the narrowing of the lines is possible only 
when (Taa> = (Tbb) = (Tab), 'Yab > 0, Eqs. (2.9b) and 
(2.11). 

The authors are indebted to V. M. Galitskii:', who 
pointed out to them the possibility of the specific broad­
ening of degenerate terms. 
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