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Stability of self-similar solutions of the kinetic equation in a rarefied quasineutral plasma is investi­
gated. The existence of a new branch of undamped ion-acoustic oscillations related to the specific 
form of the self-similar distribution function is demonstrated. The behavior of the solution in the 
vicinity of a singularity arising on breaking of a simple wave front is investigated. It is shown that 
if the finiteness of the Debye radius is taken into account an oscillatory structure develops in the 
plasma behind the overturning point. A class of distribution functions is indicated for which sta­
tionary solitary waves (solitons) exist even if allowant::e is made for the thermal motion of the ions. 
In this case an equation of the Korteweg-de Vries is valid near the breaking point. 

1. INTRODUCTION 

IN a preceding paper [1l we found a rather extensive 
class of exact solutions of the collisionless kinetic 
equation for a quasineutral plasma. This class is ana­
logous to simple waves in ordinary hydrodynamics. It 
was noted in[il that the obtained solutions have, gen­
erally speaking, a singular point with respect to the 
time. When the solution is formally continued beyond 
this point, the distribution function becomes a multiply­
valued function of x and t. The purpose of the present 
paper is to investigate the solution near the singular 
point. 

In hydrodynamics, this point is the point where the 
front of a simple wave breaks. Beyond this point, the 
flow tends to become one with multiple velocities. The 
density becomes in this case a multiply-valued function 
of x. In single-velocity hydrodynamics, such solutions 
are impossible. Therefore a strong discontinuity arises 
beyond the singular point and a shock wave is produced. 
In kinetics, however, there is an essential departure 
from hydrodynamics. First, the kinetic theory has in 
essence a multiple-velocity character. Therefore the 
tendency to produce a multiple-velocity flow beyond 
the singular point means here only the occurrence of a 
region where the particle velocity distribution function 
experiences a rapid change, and no fundamental diffi­
culties arise here. Moreover, even if regions where f 
is not uniquely dependent on x and v arise, the distri­
bution function can be imparted a perfectly defined 
meaning. (This circumstance was first noted by 
Stoker[ 21 ). 

Let us consider for concreteness a case of import­
ance for the following exposition, when the distribution 
function f becomes a multiply-valued function of the 
coordinate x. In other words, if the plot of f(x) has 
the form la at the initial instant, it acquires the form 
lb in the course of time. To explain the physical 
meaning of the "multiply-valued" plot b we note that 
the area bounded by the curve f(x) is the total number 
of particles N = Jfdx. It is easy to prove that this is 
valid also for the area bounded by the "multiply­
valued" curve b, since the area is in general constant 
in time. But then the number of particles in the inter-

FIG. 1 

val dx is, on the one hand, by definition f(x)dx, and 
on the other hand it is the area of the shaded strips in 
Fig. lb. We see therefore that 

f(x) =f,(x) +f,(x) -f,(x), (1) 

where f 1 and f 3 are the largest and smallest values of 
the distribution function in the region where the distri­
bution function is triply-valued, and f2 is the inter­
mediate value. The same rule applies also when f is 
a multiply-valued function not only of x but also of v. 
(To prove this it is necessary to consider the volume 
bounded by the surface x = f(x, v).) 

We now proceed to our immediate problem-the in­
vestigation of a simple wave near the turning point. We 
recall first some information from earlier papers[ 1• 3• 41. 

The equation for the dimensionless ion distribution 
function is 1> 

ag ag 1 ag a¢ 
-+u-----=0. at a; 2 au as 

(2) 

Here 

s=x(~J'', u=v(~,)"', ¢=erp/T., g= ;,( 2;J•)"'. 
In the quasineutral case, for electrons having a Boltz­
mann distribution, 

N, (J• du) 1jl=ln-=ln g-= =lnn. 
N, -00 'fn. 

(3) 

It is shown in[ 1l that the system (2)-(3) has a solu­
tion in the form 

g=g.[u, 't'(s, t)], (4) 

where T is connected with ; and t by the relation 

lJFor an explanation of the obvious notation see [1]. 
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6=-r:t+p(-r:), 

p( T) is an arbitrary function, and ga( T) satisfies the 
equation 

a g. 1 a g. d ( J du) (u--r)------ In g.=- =0. 
o-r: 2 au d-r l'n 

(5) 

(6) 

Dividing this equation by u - T and integrating with 
respect to du, we obtain the ilmportant identity 

n.= Jg. d~=~J-1- 0g"du. (7) 
l'n 2l'n U - T OU 

The solution of (6) is determined by the boundary 
values at T - ±oo: 

g,(u), t->- -oo, 
g.-.. 

gu (u), T->- +oo. 

In what follows, a uniquely distinguished case is one 
in which one of the functions, for example gu, is equal 
to zero. The corresponding solution ga(u, T) at 
T = Vt describes self-similar expansion of plasma in 
vacuum. It was investigated in detail in [31 • The solution 
for gi,II ;t! 0 (flow of a plasma into a plasma) was con­
sidered in[ 4 l 

The density n depends only on the parameter T, 

which is defined by relation (!5). Thus, the dependence 
of n on x and t is exactly the same as for a simple 
wave in hydrodynamics (see[sl, Sec. 94). It is known 
that in the course of time the front of the simple wave 
in hydrodynamics becomes steeper and steeper and at 
a certain instant the wave breaks. At this instant a 
singular point (I anjax I - oo) appears in the density 
distribution. This singular point arises in the solution 
of (4) and (5) at the value T = T 0 , at which p"(T0 ) = 0, 
at the instant of time t 0 = -p' ( T0 ). The solution near 
this point is 

g ~g.(to)+t" ~;(-ro), n ~~ n.(to)+l'' ~>to), (8) 

where T* = T - T 0 satisfies the approximate equation 

~ = s'- Tot'= ·r't'- a<'', 
t'=t-to, s'=s-so, s•=toto+p(to), (9) 

a= -'j,p·'" (To). 

It is seen directly from (9) that at t* > 0 the solution 
becomes multiply-valued-the same values of ~* and 
t* correspond to three values of T*. One must not 
think, however, that at t* > 0 it is possible simply to 
use formula (1 ). The point is that by virtue of the non­
linearity of Eq. (2), the sum (1) will no longer be a 
solution, even if each of the terms satisfies the equa­
tion. The solution at t* > 0 will no longer have the 
character of a simple wave and the continuation of the 
solution beyond this point is a. separate problem. We 
shall show later, however, that in some cases formula 
(1) gives a correct approximation of the solution. 
Another difficulty which we encounter is that the plasma 
can no longer be regarded as quasineutral near the 
singular point. Indeed, it is seen from (9) that at t* 
= 0 we have T* ~ ~* 113, so that I an; a~ 1 ~ ~*-:l/3- oo. 
Therefore at small ~* and t* one can no longer 
neglect the second derivatives in the Poisson equation 
and use the quasi-neutral approximation for the poten­
tial. In other words, it is necessary here to take into 
account the finite length of the Debye radius rn. The 
appearance in the equations of a new parameter with 

the dimension of length, rn, is the reason why oscil­
lating density distributions can be produced beyond the 
point where the wave breaks. 

On the other hand, in the vicinity of the singular 
point we can use the simplifying circumstance that the 
distribution function is close to ga(u, T 0 ), and small 
deviations from this value move with a velocity close 
to T 0 (see (9 )). Therefore it is very important to in­
vestigate the dynamics of such perturbations. This 
problem, as will be shown below, is of independent in­
terest in connection with the problem of the stability of 
self-similar solutions[sl. 

2. PROPAGATION OF SMALL DEVIATIONS FROM A 
SELF-SIMILAR DISTRIBUTION FUNCTION 

In accordance with the foregoing, we put 

g(u, x, t) = g.(u, To) + g, (x, u, t) ==g.' (u) + g, (10) 

and, assuming that I g1 l << g~, we linearize the system 
(2)-(3) relative to g 1• We obtain the linear equation 

We now seek a solution in the form of plane waves 2> 

g, - exp (i[ks- wt]). 

(11) 

(12) 

(13) 

Proceeding in the usual manner, we obtain the disper­
sion equation 

o 1 J k ag: 
n. =-= du, ll---->- + 0, 

2l'n ku- (I) - ill au 

or, introducing the phase velocity of the waves = w/k, 

o 1 J ag.0 du ( ) e(s,k)=---- - , cr=llk, ll->-+0. 14 
2l'nn.' au u-s- icr 

(Actually, 10°(s, k) depends only on the sign and not on 
the value of k.) 

Comparing this equation with the identity (7), we 
see that (14) will be satisfied if we substitute To for 
s. In other words, in a plasma described by a distribu­
tion function ga(u, T 0 ) there is an undamped branch of 
ion sound propagating with a velocity equal to T 0 • We 
emphasize that this, generally speaking, is precisely a 
new branch. It exists even when the distribution func­
tion is close to Maxwellian almost everywhere (as is 
the case for expansion in vacuum at T 0 <<- 1). In this 
case the usual branch, as is well known, has a damping 
on the order of unity. 

The result has a simple physical meaning. Indeed, 
if we subject the boundary functions gi and gn in (7) 
to an a:rbitrarily small change, then we obtain a solu­
tion in which the particle density differs from the 
initial one by an arbitrary small function n1(x/t). Any 
such function should therefore be a solution of the 
system (11)-(12). On the other hand, such a function 
satisfies the equation 

2lOf course, the representation of gin the form ( 1 0) is meaningful 
only at t and ~close to t 0 and ~0 • We can therefore consider in any case 
only sufficiently large k and w. It is necessary to have k~0 l!> I and 
wt0 l!> I. 
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an, an, 
t-=x- or at ox (15) 

so that it can be interpreted as a density wave propa­
gating with velocity T. We note also that in Eq. (7) the 
rule of circuiting is immaterial, since 31 

(16) 

This equation has different meanings in different prob­
lems, If we are dealing with expansion in vacuum, then 
the distribution function is equal to zero below the 
separatrix, which passes above the line u = T every­
where in the (u, T) planer31 • In this case, (16) is satis­
fied identically in a finite velocity region near u = T. 

In all the remaining cases ga has at u = T either a 
maximum or a minimum. In the concrete example of 
plasma flow into a plasma, considered in [ 41 , ga has at 
u = T a maximum for T < T1 ~ 0.28 and a minimum 
for T > T141 • 

So far we have written the dispersion equation using 
the quasi-neutrality condition (12), a procedure which 
is correct in the lim it as k - 0. To take deviations 
from quasineutrality into account, we replace (12) by 
the Poisson equation 

or 

a'¢ = _ 8nN,e' (n _ e•) 
a~;' M 

a' iJ'¢, = e•• - 1 - _!l!_ 
o£2 n.'' 

where a 2 = M/87TN0e 2 n~, n~ = na(To), n1 = n- n~. 
Linearizing, we have 

,o'¢,- n, 
a~-¢,- n,'' 

( 2a 2 rl is the plasma frequency of the ions at the 
point To. 

(17) 

(18) 

From (11) and (18) we get the dispersion equation 

1 f ag,' du 
e(s, k) = 1 + a'k'- -_- ---- = 1 + a'k' 

2l'nn,0 au u-s-icr 

__ 1_ [fag,'~+ni(oga') }!_]=o. 
2l'nn,0 au u-s au u~•iki 

(19) 

At small k, the root of (19) is close to T 0 • Introducing 

s*=S-'to 

and expanding in terms of s•, we obtain 

e(s,k)=(ak)'- (~+iyi:IJs', 
where 51 

(20) 

1 f ag,' du 

f.t= 2l'nn,0 au (u--r,)' 
(21) 

3l Actually, according to formula ( 16) of [ 3), the equation of the 
characteristics for u""' r has the form (u - r) 2 = F(f)(r -f) (f is con­
stant), and therefore 

ag, dg, a'T dg, 2(u- <) 
-~--""----->-0, 
au d,; au d,; F[i') 

asu-+r. 
4lr 1 is the value of r at which the characteristic u0 = 0 crosses the 

line u = T (see [4 ), Fig. 2). 
5>we recall that by virtue of (16) the integrand in (21) has a pole of 

only first order. 

Equating (20) to zero, we obtain 

s'= (ak)' 
~ + iyk/1 ki, 

(ka)' . 
w=ln:o+---,:--+ ,(~k-tylkl). 

~ y 

We see therefore that the sign of y coincides with the 
sign of (Cl 2 ga/Clu 2 )u=To· But a negative sign of y de­
notes instability. Therefore the self-similar solutions 
in question are stable if the distribution function has a 
minimum at u = T, and unstable if ga has a maximum 
at u = T. 

If ga corresponds to expansion in vacuum, then ga 
= 0 at u ~ T, y = 0, and we can omit the principal­
value symbol in 1.1. and integrate by parts, so that 

1 r 0 du 
·~ = l'nn,'J g, (u- To)' ' ~ > O. 

We note also that a gap of finite width 6. is pro­
duced between the speed of sound T 0 and the separatrix 
in the problem involving expansion of plasma in a 
vacuum. The distribution function ga below the 
separatrix is identically equal to zero. The presence 
of the gap 6. leads to definite singularities in the de­
velopment of small perturbations. The most important 
of them is the possible existence of stationary solitary 
waves-solitons. It is known[7 J that solitons exist in a 
plasma with cold ions, Ti = 0. Such a plasma is de­
scribed by the equations of isothermal hydrodynamics[6 J. 
In kinetics, the ion temperature is finite, Ti >" 0, and 
solutions of the type of stationary solitary waves are 
generally speaking impossible because some of the 
ions are reflected from the soliton. In our case, how­
ever, the distribution function has an important singu­
larity--it is identically equal to zero in the region of 
finite width 6. in the vicinity of the speed of sound. 
Because of this, not only are waves of infinitesimally 
small amplitude undamped, but perturbations of finite 
amplitude, propagating with velocity close to that of 
sound, likewise do not reflect ions. This means in fact 
that solutions of the type of solitary waves can exist. 
Indeed, we shall find stationary solutions for the 
kinetic equation for ions (2) jointly with the Poisson 
equation for the field (17). From (2) we have 

g(u, £) =go[(u'-1/J)'h], 

where in our case g0 = ga ( T 0 , u). It follows therefore 
that the stationary density of the ions in a coordinate 
system moving together with the wave is 

1 I g,(,;,,u)du 

n =)in [1-ljl,/(u- To+ u,)'J"' . 
'o 

Here u0 is the velocity of the stationary wave under 
consideration relative to the speed of sound To (uo 

(22) 

> 0 denotes that the wave moves in a direction oppo­
site to the growth of T ), and </J 1 is the potential of the 
wave relative to the potential </Ja( To). 

Substituting (22) in the Poisson equation (17), we 
obtain 

Here b = Va and T 0 + 6. is the separatrix ( ga = 0 at 
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u < T0 + ~). Integrating this equation once, we rewrite 
it in the form 

1 d1jl ' 2 ~ [ 1jJ ]''• -(-'} =e"•+--- J (u--r,+u,)' 1- 1 

2 d\, 'Inn.' ,,+• (u--r,+u,)' 
Xg.(-r,,u)d:u+C. (23) 

We seek a solution in the form of a solitary wave. In 
this case di/11/d' - 0 as 1/11 -· 0. It then follows from 
(23) that 

2 ~ 

C =- 1---=- J g.(To., uf(u- To+ u0 ) 'du. 
lrt nao't'o+-1. 

In addition, 81/11/8' = 0 at the maximum of the solitary 
wave, i.e., at 1/11 = l/lm: 

2 
e•m- 1 + --=-­

'inn.' 

;<,I {U-'to+uo)'[( 1---=-~-,)''• -11g.(To,u)du=0.(24) 
••+• ( U To + .~0 } 

This condition determines the dependence of the 
velocity of the solitary wave u0 on its amplitude l/lm· 
The result of a numerical solution of Eq. (24) is shown 
in Fig. 2 for different values of T 0 for ga correspond­
ing to flow of an isothermal plasma with Ti = Te into 
vacuum. We see that at small soliton amplitudes l/lm 
- 0, the velocity u0 - 0, i.e .. , as l/lm - 0 the soliton 
moves with the velocity of undamped sound T 0• The 
velocity u0 > 0, i.e., the soliton always moves towards 
decreasing values of T. 1/im = 1/ik = ( Uok + ~ )2-is the 
maximum possible amplitude of the soliton. When 
1/1 > </Jk, the reflection of the ions from the soliton be­
gins and the soliton "breaks." The dependence of the 

maximum soliton amplitude l/lk on T 0 is shown in 
Fig. 3. At large positive values T 0 » 1 we have 1/Jk 
- 1.3, just as in hydrodynamics[7 J. This should be the 
case, for when T 0 >> 1 the ion distribution function 
degeneratesintoao function[ 3l. With decreasing T 0 , the 
value of 1/ik decreases rapidly. At negative To the gap 
width ~ is small. In this case 1/ik ~ ~ 2 , i.e., there 
exist only solitons of very small amplitude. 

If the soliton amplitude is small, l/lm « 1/ik, then u0 

<< ~, and, expanding the exponential and the radicand 
of (24) in a series, we can readily find a solution of 
(24) in the form 

1 v-1 
Uo=3-~-1 -1jlm, 

[! = -~- j g,('to, u) da, v = 3 .. j g,(t:o, u) da. 
l'nn,0 (a-To)' 4ynn.' (u-T,)' 

'"o+.1. t 0+A 

The parameters iJ. and 11 and the ratio u0 /l/lm as a 
function of T 0 are shown in Fig. 36> 

3. BREAKING OF THE FRONT WHEN PLASMA 
FLOWS INTO A PLASMA 

In order to take into account the influence of the 
finite nature of the Debye radius on the properties of 
the solution near the singular point, we shall use the 
linearized system of equations (11) and (18). We have 
to find for this system a solution that goes over far 
from the singular point into the usual simple wave 
(4)-(5f>. 

To find this solution, we note that at t = 0 the sim­
ple wave satisfies the initial condition 

g(u, s,t = 0) = g,[u, i' (5)], 

where 7( 0 is a function inverse to p( T ): 

s=p(i'J. 

Accordingly, we shall solve the system (11) and (18) 
with the initial condition 

g,(u, 5, t=O) =g,[u, 1: (5)]-g.0 (u) == g,(a, 5). (25) 

The obtained solution will first follow (4) and (5), but 
near the singular point the left-hand side of (18), i.e., 
the finite character of the De bye radius, will come 
into play. 

The general solution of the linear problem with 
initial conditions, as is well known, was obtained by 
Landau[ 9 l. To simplify the notation, we shall use, 
unlike[9 l, not the Laplace transformation, but the uni­
lateral Fourier transformation, introducing the corre-

6>we note that in the present kinetic analysis of the solitary waves we 
have made essential use only of the fact that the self-similar distribution 
function of the ions is cut off in the vicinity of the speed of sound. This 
analysi~ is therefore valid not only for self-similar but also for arbitrary 
cut-off distribution functions. Such distribution functions arise in 
reality, for example, in Q-machines [ 8 ). 

7>At the same time we must be sufficiently close to the point r0 to 
make the linearization meaningful. It may seem strange that the solu­
tion of the linear system (II) and (18) has a point where the front 
breaks, while in hydrodynamics such a phenomenon is connected with 
nonlinearity. It must be borne in mind, however, that linearization of 
the kinetic equation has a meaning different from the linearization of 
the equations of hydrodynamics. Thus, the linear kinetic equation for 
free motion of particles of/ot +vox/ox = 0 is equivalent at f = li(v- v 1 ) 

to the nonlinear hydrodynamic equation ovrfot + v1ovrfox = 0. 
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sponding components by means of the formulas (see, 
for example, [el) 

~ ~ 

g,.(u) = J dt J d£g,(a, £, t)e'<"''-'''>, 

"''"' = J dt J d£¢, (£, t) e'<•'-">, w-+ w + io. 

The inverse transformation can be written in the form 

1 s . '" (~ t) = -- dkdw•" e-•(w<-h<) 
'j't "' (Z:rt) 2 'j'hw • 

We obtain in place of (11) and (18) 

. 1 . iJg.' 
1(ku- w)g,.,- Z !k¢••--a;- = g,(u), 

1 J du -(ka)'ljl •• =ljl,,.-- g,.-=, 
na0 l'n (26) 

where ~( u) is the three-dimensional Fourier trans­
form of the initial function (25). From (26) we obtain 

1 1 J g,du (27) 
"''"' = e(k, w/k) tyn- ku- w-ill · 

where E: is the "dispersion" function (19). If we put 
a = 0, i.e., we return to the quasineutral case, then we 
obtain 

(Hl 1 1 fJ g, du 
¢ •• = . 

e0 (k, w/k) il'n lku- w- io 
(28) 

Taking the inverse Fourier transform, we can show by 
means of straight-forward but rather cumbersome cal­
culations that the solution in ( ~. t)-space has in this 
case the form 

for t >to 

(29a) 

(29b) 

(here 1/l~a> = 1/la(r) -I/Ja(r0 ), and T 1, T2, and T 3 are 
three successive roots of Eq. (5) at t > t 0 ) in accord­
ance with the general result (1 ). This could be expected 
beforehand, since by virtue of the linearity of the sys­
tem (11) and (18), the sum (29b) is an exact solution of 
this system if each of the terms is a solution. When 
the nonlinearity is taken into account, this, naturally, 
will no longer be the case. 

Comparing (27) and (28), we obtain the connection 
between 1/Jkw and ifJ(H): 

kw 
B0 (k, w/k) (H) 

¢•·= e(k,w/k) ¢••· 

Let us calculate ,~o(H) We have 
'~'kw · . ~ 

ljlh~H) = s dte1"'1 s ljl(H\s, t) e-'''d£, 

(30) 

(31) 

The calculation of the integral with respect to ~ in (31) 
is made difficult by the fact that 1fi(H) ( 0 is multiply­
valued at t > t 0 • This difficulty, however, can be cir­
cumvented by integrating by parts and changing over 
from integration with respect to ~ to integration with 
respect to T. This simplifies the matter, since ~ and 
1/J are single-valued functions of T. It is important to 
emphasize, however, that integration by parts can be 
carried out only when 1/1 in the region of ambiguity is 
taken to have the meaning given by (29b) (or, what is 

the same, by (1)81 ). Therefore the formulas obtained 
below already contain automatically the correct choice 
of the roots. Thus, we have 

lfl,~Hl = - 1k J dte'"'' J ¢<H>(s, t) de-'" = 1k J dte'"'' J e-"'<'> d¢<">( <) 
l 0 l 0 

1 ~ ~ d•h (o) 1 ~ d•t• (o) -ihp(<) 
= - s dte'•' s e-ih[<l+p(<)]_'l'_l_ a, = - ~ s d-r: 'j'i -,...-e-:---:-

ik 0 -~ d-r; ik_oo dt i(w-kt+ill) 

(32) 

Substituting (32) in (30) and taking the inverse 
Fourier transformation, we obtain after differentiation 
with respect to ~ 

o¢,(6,t) = __ 1_Je'l''-'P<•>-••J d¢~'> e"(k,w/k) dkdwdt 
iJ6 (2n)' dt e(k,w/k) i(w-k-r:+io) 

1 . JkJ e0 (k s) dljl(o) 
= - --S as at Jake''['-P<·>-·'J- • --' 

(2n)' i(ks- kt +ill) e(k, s) dt 

1 J ooJ 1 e"(s) d¢;"1 
=-Re- dsdt dk--------

2n' 0 i(s-t+ill) e(k,s) d-r: 

1 d¢~') 
= -Re-Jdkdti--

2n' dt ' 
(33) 

where E: 0 (s) denotes E: 0(k, s) at k > 0. According to 
(14), E: 0 depends only on the sign of k. Further calcu­
lations cannot be carried out in general form, and we 
must use the circumstance that the values of s and T 

close to T 0 are significant near the singularity in the 
integrals. Using (20), we have 

e0 (s) s' 
e(k,s) ""'s'-rk'' 

so that 

Joo e-"•' e"(s) 
I= e"l'-P(•Jl ds --- :=::; exp[ik(s'- t 0t' 

-oo i(s-t+ib) e(k,s) 

00 

f ds-s*e-iks•t + m;'' + t 0t')] . . 
-oo t(s'- 1:' +ill) (s'- rk') 

Closing the contour of integration with respect to 
s* in the lower half-plane, we obtain 

I=_ Zn exp[ik(s'- t 0t'- t'-r' -t-a-r'')] 
-r*- rk 2 

X {t'- rk' exp[- ik (rk'- t') (to+ t') ]}. 

(34) 

(35) 

The second term in the curly brackets in (35) depends 
explicitly on t 0-the spill-over time, reckoned from 
the instant of time at which the initial conditions (25) 
are specified. For large t 0 this term is small and can 
be omitted. Indeed, by virtue of the proposed stability, 
Im r < 0 and the second term decreases exponentially 
with t 0 • Substituting I in (33 ), we get the final answer: 

iJ¢, _ R 1 d¢, ( ) soo d ·soo dk t' exp[ik(~- t't' +a<")] 
-i) s- - e -Jt- -d-'{ 'fu '( L _ _:_::___.:_::c'-- rk'l. l 

-oo 0 

(36) 
~= s'- tot'. 

8>Indeed, as explained in Sec. I, the choice of the roots in accordance 
with (I) means that S = Jfdx is the area bounded by the curve f(x) 
(even in the region where the function f is multiply valued). But the same 
area can be represented in the formS = fxdf, which is equivalent to in­
tegration by parts. 
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We have replaced, with the required accuracy, 
dif!a(T)/dr by diJia(T0)/dT in (3:6). Formula (36), de­
rived fvr the case y > 0, is meaningful also in the 
case of an unstable system y < 0. The integral with 
respect to r* in (36) should be taken in any case along 
a contour circuiting the pole T* = rk 2 from above. 
Physically, the answer in this case corresponds to an 
experimental setup in which the perturbations are so 
small that the instability does not have time to develop 
before the instant t = t 0 • The singularity at the point 
t = t 0 is, however, a strong perturbation that leads to 
an intense growth of the oscillations at t > t 0 • 

The integral in (36), generally speaking, must be 
calculated numerically. It is easily seen that the term 
rk2 in the denominator leads to a smearing of the 
singularity at t* = 0, ~* = 0 and to the appearance of 
oscillations. When t* > 0 these oscillations grow in 
the unstable case and attenuate in the stable one. 

The asymptotic behavior of 8IJI 1/8 ~ at large t* 
turns out to be quite complicated in the general case 
of complex r. In the next section we shall investigate 
this asymptotic behavior for the particular case when 
the imaginary part of r is small. We confine ourselves 
here to estimating the field intensity at ~* = t* = 0. 
From (36) we find readily that in this case 

o¢, 1 1 ar- .- !rJ 211 ,_. r·~7 ' 
where ro is the Debye radius in the plasma. In the 
quasineutrallimit ro- 0 the intensity 81J11/o~ tends, 
as it should, to infinity at this point. 

4. ASYMPTOTIC BEHAVIOR OF THE POTENTIAL 

In the present section we investigate the asymptotic 
behavior of the integral (36) at large t 0 • As already 
mentioned, we shall assume here that the imaginary 
part of r is small: 

jimrj~Jrj. (37) 
This can mean either that the breaking of the front 
occurs near a point where (8 2 ga/8u2 )u=T = 0 or that 

0 

when plasma flows into a plasma the concentration of 
the particles on one end is much smaller than on the 
other, gi » gu9 > Assumption (37) is used by us only 
to simplify the formulas; in principle it is possible to 
carry out a sufficiently complete investigation also 
without this assumption. 

Under the condition (37 ), r can be taken in the sensP. 
of 

r - iii, li -+ +O, (38) 

where r is a real number. For concreteness, we 
assume that r > 0, as is usually the case. We shall 
show first of all that for real r the integral (36) can 
be reduced to a single integral. To this end we turn 
the contour of integration with respect to k about the 
imaginary axis, i.e., we put 

k= ±he, 

With the sign coinciding with that of the expression 

S = ~ - t•r:• + ar:''. 

9lJt should be borne in mind, however, that this assumption cannot 
be used for the problem in which plasma escapes into vacuum (see the 
next section). 

b 

FIG. 4 

When turning the contour, we must pay attention to 
the positions of the poles in k, and in particular when 
s > 0 and T* > 0 it is necessary to add an integral 
along an infinitesimally small contour. The position 
of the poles and the new integration contour in the k 
plane are shown in Fig. 4. Contributions are then made 
only by the residue of the pole at r* > 0 and the cir­
cuits around the pole at r* < 0. The integral along the 
imaginary axis is, on the other hand, pure imaginary, 
and therefore makes no contribution. As a result 

E = o¢, I o£ = E, + E,, (39) 

( r:• ) •;, [ ( r:• ) •;, ] r exp i r s d-r:', (40) 

We introduce the new variables 

J-r:•j = ( ta• ) •;, y', z =~a'!,= (s'- -r:,t')a'f, 
t•3f2 t•~/2 

Then 

Q(y)= zy + y'- y', 

P(!i)>O 

P(y) = zy- y' + y', 

Let us investigate the asymptotic behavior of E at 
large positive values of t*, or more accurately under 
the condition l >> 1, i.e., t* » 01. 317r217. 

The main contribution to E1 and E 2 is then made 
by the singular points, at which P and Q, respectively, 
vanish, and the saddle points, in which the derivative 
a P/o y or 8Q/o y vanishes. The contribution of the 
roots of P and Q can be readily obtained. Expanding 
the exponential about these points and integrating, we 
readily reduce E to the form 

oiJl, ~ -~ ~ I a-r: I (42) 
a~; d-r: 4 d£ ' 

where T'!' are the roots of the equation 
l 

which coincides, with the required degree of accuracy, 
with the quasineutral solution (29b). The latter is 
shown in Fig. 5. Curve 1 gives the course of the poten­
tial IJI, and curve 2 the field intensity E( -Ea/t*f1. 
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FIG. 5 

With increasing t* (i.e., with increasing l ), the field 
intensity decreases like 1/t* ~ 1/L 417• 

In the region "behind" the spill-over, with z < 0, 
E2 has no saddle points. The contribution of these 
points to E 1, generally speaking, is exponentially 
small. A singular situation takes place near the point 
z 3 = -2j3 /3. Here two roots of Q(y) coalesce, corre­
sponding, as seen from Fig. 5, to the limit of the 
region where the solution is multiply valued. The 
quasineutral formula (42) ceases to hold here, since 
ilTi/ili; - oo as z - z 3 • Expanding the exponent in (41) 
with accuracy to terms of second order and integrating, 
we obtain 

I e'' J. e-•' du + e-'' J e"' du, 
R,(x)= x o 

1/ 21/tte-"', u < 0 

u>O (43) 

U=Z- Za. 

Thus, near the point z = z 3 there is a maximum of the 
field intensity. Its height is finite and not infinite as in 
the quasineutral theory, but decreases quite.slowly, 
like t*-J/ 8 • The width ofthe maximum is t.~~a 11~ 112 t*- 114 • 

When z > 0, of course, a contribution is made to E 
by the roots of the polynomial P in accordance with 
(42). But besides this "smooth" contribution there is 
also a contribution from the saddle points of the 
exponential in E2 in (41). This contribution oscillates 
like a function oft* and i;*, and must be taken into 
account separately. The saddle points of the integral 
E2 are determined by the conditions 

!!._ = 0, y > 0, p > 0. 
oy 

(44) 

A simple investigation shows that these conditions are 
compatible in the region of values of z 

(45) 

In this entire region of values of z, the exponent of P 
has a maximum at a certain value y = YM(z). Expand­
ing P( y) near the maximum and calculating the inte­
gral, we find the corresponding contribution to E2, 

(46) 

where 

p "- (fJ'P) _\( - a 2 ' 
y Y."<f 

In the range of values of z 

Tt 
<{l.u=~;· 

z, ~ z ~ z,, z, = z;vr z, = 2/31'3-:- (47) 

P(y) also has a minimum at y = Ym(z). (In the remain­
ing part of the region (45) the minimum lies at negative 
values of P(y).) The contribution of this minimum to 
E differs from (46) in that M is replaced by m, with 
'Pm = 31l/4. 

The derived formulas cease to hold when z- z 1, 

where the maximum approaches the minimum. In this 
case E2 can be expressed in terms of the Airy function. 
We present this formula without derivation: 

_. 2'1•rr'f, . ( 81 ) . ( l'1•u ) E.t•'l, 
E, "'-. -sm -- · Q> -.- --

Tt~3~h 771• 31i341f3 alf2r1fa ' 
(48) 

where <I>( x) is the Airy function defined in accordance 
with[Iol (formula (c, 3)). Finally, when z "=' z 2 (z < z 2) 
there is a contribution connected with the fact that the 
roots and the minimum of P coincide. The correspond-
ing formula is 

Thus, after the breaking of the front, oscillations 
are produced in the plasma and move forward from the 
spill-over point z = 0 (!; = 0). The amplitude of the 
oscillations increases with increasing '. It is maxi­
mal in the vicinity of the point z = z 1• There are no 
oscillations beyond this point. The dimension of the 
region occupied by the oscillations is t.' ~ t* 3/ 2 • The 
amplitude of the oscillations in the region 0 < z < z 1 

decreases slowly with time, like triis, and is the 
larger, the smaller the Debye radius ( ~rrr4 ). The 
order of magnitude of the wave vector in this region is 

i.e., it increases with increasing t*. The oscillations 
constitute a sum of two deformed sinusoids with vari­
able amplitudes and wave vectors. 

In a small vicinity near the singular point z = z 1 

(with width t.~ ~ t* 173 ), the amplitude of the oscilla­
tions even increases with the time, like t*J/ 6 • This is 
seen from formula (48 ). It is interesting to note that 
in the quasineutral solution there is nothing to dis­
tinguish the point z = z 1' In essence, this is the caustic 
point for the resultant oscillations, beyond which they 
cannot pass. We note also that in accordance with (48) 
the maximum amplitude itself oscillates rapidly with 
time, as a result of beats between the aforementioned 
sinusoids 10>. 

The results of a numerical tabulation of formulas 
(41) are shown in Figs. 6a-e. We see that up to the 
breaking point ( t* < 0) the intensity of the electric 
field is a smooth function of {; and increases as this 
point is approached. Beyond the point t* = 0, in the 
region {; > 0, an oscillatory structure develops 
gradually. We see that the amplitude of the oscillations 

1 0lJn order for the employed approximations to be valid, it is nec­
essary that t* be small, t* <{ CL It turns out here that krY2 <{ I, as was 
assumed in the derivation of (34). 
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FIG. 6 

is maximal near the point z 1 (Fig. 6e). The oscillations 
terminate abruptly beyond this point. 

In the derivation of the obtained formulas we have 
assumed r to be real. It can be shown, however, that 
they remain valid in the main also if r has an imagi­
nary part. In this case l likewise acquires an imagi­
nary part, so that the oscillations attenuate or grow 
exponentially, depending on the sign of y. 

5. NONLINEAR EFFECTS. THE KORTEWEG-DE 
VRIES EQUATION FOR EXPANSION IN VACUUM 

So far we have solved the problem in the linear ap­
proximation, i.e., we took into account only the influ­
ence of small spatial dispersion on the rate of propa­
gation of the perturbations. We shall now take into 
account the influence of the nonlinear effects. This 
influence is particularly significant for a problem such 
as expansion in vacuum, where the effect is equal to 
zero in the linear approximation. 

The problem is to solve the system (2)-(17) with 
accuracy up to terms of second order in the amplitude. 
From (17) we obtain at this accuracy 

n, ¢,' , 0 '¢• (49) 
-, = "'' +-2 -a --::;-:2· na v; 

We rewrite Eq. (2) and separate explicitly the terms 
of first and second order: 

ag, ag, 1 ago' a.p, 1 ag, a.p, A 
--at+uar-2--au--Of=Ta;- a~ == · 

We apply the Fourier transformation 
1 ag • 

i(ku- w)g., ---' tk.p., =A.,+ g,, 
2 Du 

A.,=_!__ ( ag, a¢.) 
2 Du iJ1; "''. 

(50) 

We divide by i (ku- w) and integrate with respect to 
du/ ...ri. We obtain 

r k ago' du ) A~,+ g, du 
n.,-Ji(ku-(t)) a;'~'·'y1t = i(ku-(t)) l'rr: (51 ) 

We shall henceforth deal with problems of the type 
of expansion in vacuum, where the distribution function 

is equal to zero in a finite vicinity of the point u = T. It 
is easy to show that in this case it is necessary to set 
equal to zero the term containing the initial distribu­
tion function 

o f g, du 
71 = i(ku-w) l'n. 

Indeed, this term is simply the Fourier component of 
the concentrations of the particles that would have a 
distribution function g at t = 0, and move freely from 
then on. The distribution function of such particles 
satisfies the equation 

(u- -r:)8g''> I a,= o 
or 

Dg<'>/8-r: = B(u)ll(u --r:) 

(see[ul, formula (27)). Since the function g' 01 should 
vanish at u ~ T, we see therefore that a g< 01 ;aT = 0, 
dn' 01/ dT = 0. Taking this circumstance into account and 
substituting (49) in (51), we have 

f A., du 1 
eljl., = -(IJl,') ••. 

i(ku- w) Yn 2 
(52) 

We now recognize that we are considering perturba­
tions moving with a velocity close to T 0, and can there­
fore regard s* = s - T as a small quantity, on a par 
with the amplitude. We transform the term Awk· In the 
zeroth approximation we have 

ik ag, ag. 
g.,= 2i(ku- w) Du ljl.,,""" 2(u --r:,) Du ¢ •• , 

so that 
ag, 

g I ,::::; -c:-----.., ljl,. 
2(u- To) iJu 

Here 

and Eq. (52) takes the form 
v-1 

e(k, s)IJlwk =-2- (¢').,, (53) 

v=-3-f g, du 
4ynn. (u--r,)' · 

(54) 

We now use the approximate expression (20) for E: 

and change over to the coordinate system moving with 
velocity T 0• In this coordinate system we have 

a 
---+iffi' = i(w-k-r:,), 

Dt 

so that s* = w*/k. We obtain 

a 
----+ik, 
a~· 

[ (ak)'-ll ~·]¢ ... = v;-1w) .. 

or, taking the inverse Fourier transforms, 

OIJl, - a' a•¢, = Lv - 1] a¢. 
ft ae· a~" "¢• a~· · (55) 

The stationary solutions of this equation, of the type of 
solitary waves l/i 1 = l/i 1 ( ?;* - u0t* ), naturally coincide 
with those considered in Sec. 2. 

We note that the integral J..L can be expressed in 
terms of 

d1jl, 
E,=~(-r=-r,). 
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To this end, we differentiate (7) with respect to T. We 
have 

dn. 1 s 1 a g. du 1 J 1 i)'g. du 
---a:;-=2 (u--r)' au in +2· (u~t') auat -.'n' 

or, expressing a 2gafauaT from (6) and putting T = T0 , 

we obtain 

( 1 dn.) E.(1-v)=f.t, E,= -- , 
na d-r: t•to, 

(56) 

so that finally the equation for ljJ 1 takes the form 

E iJ¢, - a'E. iJ'¢• iJ¢,- (57) 
• at• fl a~·' + ¢•-af- 0· 

This is the Korteweg-de Vries equation. It was investi­
gated in detail in a number of papers (see, for exam­
pleP2-151 and the review[ 16l). As a 2 - 0, this equation 
reduces to 

E iJ¢, + iJ¢, -0 
"""""OF" ¢• iJ!;' - ' 

which, in particular, has a solution of the type 

which coincides with (8) and (9). 

(58) 

The general problem is to find a solution (57) that 
goes over into (58) as ?;* - ± oo, i.e., that behaves like 

1jl1 =E,-r', -r'-+(~'/a)'i•, !;'-+±oo. (59) 

No such solution has been obtained as yet. Investiga­
tions carried out in[ 12- 15 l show that, qualitatively, the 
solution should have at ?;* < 0 a tail consisting of in­
dividual "soliton" pulses, the existence of which is 
connected essentially with the nonlinearity. Forward, 
on the other hand, there should exist a region of oscil­
lations that are little influenced by the nonlinearity and 
whose properties should probably be close to those of 
the oscillations obtained in Sec. 4. 

In conclusion we note that, as seen from (57), the 
smaller Ea the more important the nonlinearity. 

We note also that with decreasing Ea the gap be­
tween the line u = T and the separatrix also decreases. 
In this case the soliton can fall in the velocity region 
where there are particles, and then break in turn. The 
result is a nonstationary picture similar to that inves­
tigated in the numerical calculations of Alikhanov, 
Sagdeev, and Chebotarev[171 for hydrodynamics 
(Ti = 0). 

In the case when T 0 >> 1 we have 

fL = 2"}''2, '1/ = 3, (60) 

and Eq. (55) coincides identically with the equation for 
a plasma with cold ions (T· = 0), described by iso­
thermal hydrodynamics[6•16t. This is as it should be, 
for when To>> 1 the self-similar distribution functions 
of the ions are close to o functions. It is important that 
the Korteweg-de Vries equation (55) obtained here does 
not presuppose in any manner that the distribution 
functions of the ions are close to o functions. There-

fore the constants v and J.1. can differ from (60) by as 
much as desired (see Fig. 3). In the derivation of (55), 
the expansion is actually in powers of lj! 1 /lf!k, where 
lf!k = ( Uck + a )2 is the critical amplitude of the soliton 
(see Sec. 2)w. 

ll)We note that the same equation can also be obtained with other 
(not self-similar) ion distribution functions. It is only necessary that 
these functions be cut off, that the speed of sound c fall in a region 
where fi = 0, and that a finite gap exist between c and Uk(fi(Uk) =I= 0). 
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