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It is shown that the kinetic equation for the calculation of the rotan part of the viscosity and thermal 
conductivity in superfluid helium with the complete collision integral can reduce an equation in the T 

approximation. An expression is derived for the raton viscosity and thermal conductivity in terms of 
an unknown cross section for rot on- rot on scattering. 

THE viscosity and thermal conductivity of superfluid 
helium have been found theoretically in the works of 
Landau and Khalatnikov.l1' 2 J Both these quantities can 
be divided into phonon and the roton parts. For the cal­
culation of the roton part, Boltzmann's equation has 
been solved in[l'2J in the T approximation, where T is 
the mean time between roton collisions. Such an ap­
proach makes it possible to calculate the desired quan­
tities with an accuracy to within a constant factor of the 
order of unity. In the present research, it will be shown 
that the kinetic equation can be solved for rotons with a 
complete collision integral; this solution is identical 
with the solution of Landau and Khalatnikov. The resul­
tant solution makes it possible to obtain an expression 
for the viscosity and thermal conductivity in terms of 
an unknown cross section of roton- rot on scattering. 
The comparison of these quantities with their experi­
mental values imposes some restrictions on the law of 
roton interaction. 

1. VISCOSITY 

The linearized kinetic equation for the roton distri­
bution function, which may be written conveniently in 
the form n = 11o(1 +g), where n0 = e-F/kT is the equili­
brium distribution function, and E = t:. + (p- p0) 2/2p. is 
the roton energy of the rotan with momentum p, has the 
form 

1 no ae (au, au.) 2:rt J ---P• -+- = -- w(p,p,;p,p,) (1) 
2 kT ap, ax, ax, li 

X .S(p, + P2- p,- p,).S(e, + e,- e,- e,)n,(e,)no(ez) 
dp,dp, dp, 

X(g,+g,-g,-g,) (2:rtli)' . 

Here ui is the i-th component of the normal motion, 
gl = g(pi) and so on. 

The roton scattering probability w(p1p2; p3p4) is 
normalized so that it goes over into %1V(Pt- p3) 
+ V(p1- p4) 12 in the Born approximation, where V(p) 
= j eiP. rv(r)dr is the Fourier transform of the inter­
action potential. 

It is clear from the symmetry of the problem that the 
solution (1) can be sought in the form 

( au, au.) 
g(p)="•"• ---a;,+a;, q(p), 

where "i = PiiP is a unit vector in the p direction. The 
velocity field can be so chosen that the angular depen­
dence of g(p) is described by the Legendre polynomial 
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P2(cos 8) (for brevity, P2(8) in what follows), and the 
following equation is obtained for q(p): 

1 ae 2n f 2kTappP,(fJ,) = -T w.S(p, + Pz- P•- p,) 

X 6 ( e, + Ez- e,- e,)no ( ez) [q (p,)P,(fJ,) + q (p,) P2 (8,) 

( P ) dp, dp, dp, 
-- q p,) ,(8, - q(p,)P,(8,)] . (2) 

(2:rtli)' 

Integration over dp4 in the collision integral removes 
the o function of the momenta. In the remaining integ­
rals, it is convenient to transform to other variablesYJ 
in the integral over dp2, to spheroidal coordinates with 
the polar axis along p1, and integration over dp3 is re­
placed by p3p4P-1dp3dp4dcp, where P is the absolute value 
of the vector P = Pt + P2 = p3 + p4, and cp is the angle 
between the planes (p1, p2) and (p3, p4). Because of the 
Boltzmann factor 11o( E), the integration actually goes 
over the region in which all the momenta are close to 
the value po, as a consequence of which we can set 
Pt = P2 = PJ = P4 = Po in all non- special functions. This 
corresponds to the expansion in (p- p0)/p0 , and, inas­
much asp- Po ~ v' p.kT in the problem, then v' p.kT/p0 

~ 0.1 is a small parameter. 
It is convenient to introduce the dimensionless varia­

bles 

p, -Po= tl12flk1', P2 -Po = xY2itkT, p, -Po = uY2ftkT, 

P•- Po= zY2!'kT. 

Because of the rapid convergence of the integrals, we 
can carry out the integration over dx, dy and dz from 
-oo to +oo; then the kinetic equation is written down in 
the form 

Po (2!LkTJ"1'Po' f w ( 2 2 , 2 2 
-=t=- --no x)cS(t +x -y -z) 
f2l'kl' (2:rt)'li'kT P 

X [ q (t) + q (x) P, (0,)- q (y)P2 (8,)- q (z) P,(8,.)] 
X sin 8, d8, dcp dx dy dz. (3) 

In the transition from (2) to (3), the formula for addi­
tion of Legendre polynomials is used, and integration 
is carried out over dcp2, as a result of which there re­
main in the equation functions of the angles 812 (between 
p1 and p2), 813, and 814 • Tl,e cross section of roton scat­
tering w can be assumed to depend only on cp, P and the 
total energy of the colliding rotons E = E1 + E2 = 2t:. 
+ kT(x2 + e) (this will be discussed in more detail be­
low). Then the kernel of Eq. (3) becomes an even func­
tion of x, y, and z and upon substitution in the integral 
of any odd function q(t), the terms containing q(z), q(y) 
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and q(z), vanish in integration over dx, dy and dz, 
respectively. Equation (3) takes on here the form of 
the kinetic equation in the T approximation: 

p,tf¥2JJ-kT = -q(t) /-r, 

where 

(4) 

J, w dodx 
iii= 'e-x cos(a/2) 4n yn (4') 

and the number of rotons per unit volume is 
N _ 2p02 (JJ-kT)'f•e-41• 

' - (2n)'1•1i• • 

If we describe the interaction of the rotons by the 
potential V0 o(r1 - r2), as was done inl1l, then 

1 /1;, = 2/Voi'Po!J-N, / li'. 

This is smaller by a factor of two than the similar 
quantity inuJ ; the difference is connected with the fact 
that in the given work the statistical weight of the final 
states of the rotations was taken to be twice as large 
as is necessary. 

The solution of Eq. (4) q(t) = p0 rrt/v'2p.kT is an odd 
function of t and therefore also satisfies the initial 
equation (3). From the general theory of the Boltzmann 
equation, it is known that the homogeneous equation 
corresponding to (3) does not have solutions; therefore 
the found solution is the only one. 

By substituting 

(au, au.) 
6n = n,v,v, -+- q(t) ax. ax, 

in the expression for the momentum flux 

formula J as dp 
n,. = ap/'6n (2nli)'' 

we find the viscosity 

TJ = 2p,li' I 15JJ-'iii, (5) 

where w is taken for t = 0. 
As has already been mentioned, Eq. (3) is described 

with accuracy to terms ~ vp.kT/p0 ; the function q(t) is 
found with the same accuracy. A more detailed analysis 
shows that if we keep in the equation two terms of the 
given small parameter, then corrections appear for the 
even part of q(t) of the order of v'p.kT/p0 and to the odd 
part of order p.kT/pg, In the calculation of the momen­
tum flux, the even part of q(t) acquires the additional 
factor v';:ikT7po in comparison with the odd part. There­
fore, the corrections to the coefficient of viscosity will 
be of the order p.kT/pg ~ 1%. 

2. THERMAL CONDUCTIVITY 

For the calculation of the thermal conductivity, terms 
proportional to VT should be kept in the left side of the 
kinetic equation. We get 

no VT ( ST as) --- p--s- =-l(bn) 
kT T p. ap 

(Sis the entropy of a unit volume of helium, Pn the 
normal density, I the collision integral). We seek a 
solution in the form n = no(1 + g), where 
g = q(p)T-1(vVT), 11 a unit vector in the p direction. 

(6) 

On the left side of Eq. (6), there remains only the prin­
cipal term in the small parameter vp.kT/p0 , and the 

transformation of the collision integral as in Sec. 1. As 
a result, we have 

ae (2JJ-kT)'1•p • w 
-s-= 0 J-6(x'+t'-y'-z')n,(x') ap (2n)'li' P 

(7) 

X [q(t)+ q(x)cos a .. - q(y)cos a.,- q(z)cos a,.]dx dy dz do. 

By reasoning the same way as in the case of viscosity, 
we come to the conclusion that 

4n'1•1i'e41" (8) 
q (t) = , ;kT t(A + kTt') 

Po!J- W 

is a solution of Eq. (7). However, the homogeneous 
equation corresponding to (7) now has a solution. It is 
easy to prove that q = const causes the collision integral 
to vanish. In order to make the solution completely de­
fined, we make use of the condition of the absence of 
mass flow 

J p6ndp = 0 (9) 

and note that on, which is proportional to the left side 
of (6), satisfies this condition. Therefore, 
q ~ (EoE/ap- p0ST/pn): however, the ratio of the 
second term to the first is of the order of vp.kT/po for 
(p- p0 ) ~ v p.kT and one can neglect it; then (8) is the 
solution of Eq. (7) with the necessary accuracy. 

Computing the energy flow 

Q = Je!!.n,q (p, VT) ~ (10) 
ap pT (2nli)' 

with the function q from (8), we find the expression for 
the thermal conductivity: 

= 21i'A' [ 1 ~ 15 (!_)']. (11) 
x 3JJ-'p,Tw + A + 4 A 

The accuracy of the resultant expression, as in the 
case of the viscosity, is of the order of 1% and T/ t:. in 
the roton region ~ 1/5; therefore, terms of order 
(T/ t:..) and (T/ t:..) 2 are kept in (11). 

The unknown cross section enters into the expression 
for the viscosity and thermal conductivity averaged with 
the same weight. This allows us to write down a rela­
tion not containing unknown quantities: 

_2_ = 5A' [ 1 + ~ + ~ (!__)'] . 
TJ p,T A 4 A (12) 

This relation agrees well with experiment. 
Figure 1 shows the theoretical temperature depen­

dence of the ratio of the damping of second sound 0'2 to 
the square of the frequency w2 in the roton region 
T ;::: 1. 6° K, in comparison with experiment. l4 l The 
principal contribution to 0'2 is made by the thermal con­
ductivity. The values of the thermal conductivity were 
computed from data on the viscosityl5 J with the help of 
Eq. (12). The experimental points lie on or close to the 
computed curve, which confirms the relation (12). 

3. ROTON-ROTON SCATTERING CROSS SECTION 

The unknown function w, in terms of which 11 and K 

are expressed, is connected with the vertex part for 

-~J«tEBz/W2) .. 
-fJ 

-!¥ 
f,fl tfi f.6 !.II 

T,D K 

FIG. I 



ROTON VISCOSITY AND THERMAL CONDUCTIVITY 639 

6 
P-~ 

FIG. 2 

roton- roton scattering: 

w(-p,p,; p,p,) = 1hlf(p,p,; p,p,) + I'(p,p,; p,p,) I'· (13) 

Here Pi is the 4 vector (Ei, p) i = 1, 2, 3, 4 and in the 
arguments of r, Ei = E(Pi) everywhere. As Pitaevskir 
has shown[SJ, r has a singularity for E = El + E2 = 2t. 
and goes to zero at this point. For this reason, it is not 
possible to assume that all IPi I = Po in the arguments of 
the function w, and the energies of all rotons are exactly 
equal to t.. 

We shall now make clear the quantities in which 
w (4') is expressed. The singularity at the vertex arises 
because of the logarithmic divergence of the roton loop 
for E - 2t. (see Fig. 2). The behavior of r near the 
singularity is determined from the condition 

r (p,p,; p,p,) = IX'l(p,p,; p,p,) + 2~ J rt'l(p,p,; q,P- q) 

d'q 
xG(q)G(P- q) I'(q, P- q; p,p,) (2nli),, (14) 

where G(q) = [ E- E(q) + io rl is the Green's function of 
the roton, and r 10 the set of diagrams for the vertex 
not containing the special loop. 

The integral over lql in (14) diverges at the upper 
limit. In order to avoid this divergence, we split the 
range of integration into two: near lql =Po and near 
IP- ql =Po (the integration, and over them is denoted 
by A) far from them (correspondingly, B). l?J Then Eq. 
(14) can be rewritten in the form 

r = r• +:PAr, r• = rt'J + rt'JBfl, 

or in explicit form, after integration over the fourth 
component q, 

r (p,p,; P•P•> 

= f'(p,p,; p,p,) + s f'(p,p,; q, p- q) I'(q, p- q; p,p,) dq 
.. E-e(q)-e(P-q)+icS (2nli)' 

(15) 

In the integral over dq, it is convenient to transform to 
the coordinates lql, IP- ql, cp (see Sec. 1) and expand r 
in a Fourier series in cp: 

(16) 

Then equations are obtained for each m separately; 
their solutions near the singularity depend only on the 
total energy E and the total momentum P of the colliding 
rotons, i.e., 

2nli'P ( 2nli'P 5 -• 
r m (E, P) = --,- ---,--r , +In E m2 \ +in ) 

flPo flPo m ' - c 
(17) 

Here E > 2t.. 
The parameter ~ m divides the regions A and B. For 

weak interaction r~ transforms into the corresponding 
Born amplitude. The imaginary part of the denominator 
of (17) is chosen from the condition of realness of the 
vertex for E < 2t.; this corresponds to neglect of the 
possibility of conversion of two rotons into a single 

roton and an energetic phonon, or into two energetic 
phonons. The contributions of these processes to the 
imaginary part of the denominator of (17) contain the 
factors (t./!Lc2)v'2!Lt./p6 ~ 0.5 and (t./j.Lc2)(t./cp0) 2 ~ 0.1, 
respectively; these can be neglected in comparison 
with 1T. 

Taking (13), (16) into account, as well as the defini­
tion of w, we get 

_ ~ J sin 8 dB dx ~ J dP dx 
w= ~ II',ml'e-''---==2~ lr,ml'e-•'--=-· (18) 

m~-oo COS ( 8/2) l'n m Po frt 
Because of the identical character of the rotons, only 
even (2m) harmonics enter into (18), and from the sym­
metry property r(p1p2; P3P4) = r(p3p4; P1P2), the contri­
butions of the 2m and- 2m harmonics are equal. 

Integration over dx in (18) is easily carried out by 
noting that the important region is x ~ 1. In the subse­
quent integration over t, the region t ~ 1 is important; 
therefore, one can neglect ln(x2 +e) in the denominator 
of (17) after the substitution E- 2t. = kT(x2 +e) in com­
parison with large ln(~ n/kT), or in comparison with 1T. 

Finally, we have 

(19) 

where 

( 2nli'P )'[( 2nli'P • )' ]-' I r 2m 'I' = --,- ---:;--1' '+ In k:Tm + lt2 • 
fiFo flPo 2m 

(20) 

As T - 0, the quantity ln(~ m /kT) - oo and from this 
arises an additional temperature dependence of the roton 
parts K and TJ of the form (ln T)2; however, the contri­
bution of the rotons to the transport coefficient becomes 
comparable with the phonon only for T 2: 1.4°K, and the 
logarithm is insufficiently large in this region. 

For the harmonic r 2m with very strong or very weak 
coupling r~m• one can com~lete the integration over dP 
in (19). For 2fl3P/ ILP~ « r 2m(P) we have 

j'lrzm'l dP = 332n:li',[(In ~T)'+n']-'' (21) 
0 Po fl Po 

in the opposite case 2h3P/ ILP~ « dm(P), 

T II'zm'l'dP ='JII'zm'(P) l'dP, 
0 Po 0 Po 

(22) 

however, the contribution of these harmonics is small 
in comparison with (21). 

Using the experimental value of the viscosity in the 
roton region, which amounts to TJ = 1.3 x 10-5 poise, l5 J 
one can determine the minimum number of terms in the 
sum (19). If we assume that each harmonic makes the 
maximum possible contribution 32f16/3iJ. 2p~, then the 
sum (19) should contain no more than four terms. 

In connection with the possibility of formation of a 
bound state of two rotons/ 6 J one should note that, as is 
seen from (17), several such states can exist, corre­
sponding to different m. However, it is not possible to 
draw definite conclusions as to the presence of these 
states in helium on the basis of data on the viscosity. 

The author thanks L. P. Pitaevskil for comments on 
the singularity of the vertex part of the rotons and for 
interest in the work, A. F. Andreev, I. E. Dzyaloshin­
skil and I. M. Khalatnikov for useful discussions. 
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