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A simple model of a collision between two atomic particles, which leads to oscillations in the total 
cross sections for processes with high resonance defect, is considered. According to Rosenthal's 
hypothesis, these oscillations are due to interference between two energetically close inelastic 
channels appearing as a result of term interaction at large distances between the nuclei. It is 
assumed that two vacant excited levels are successively populated from the ground state in ac­
cordance with the Landau-Zener scheme, and then interact as the particles fly apart. The condi­
tions necessary for the appearance of oscillations in the total cross-sections are analyzed, and 
expressions are obtained for their amplitude, period, and phase. It is shown that, under certain 
definite conditions, the oscillations are harmonic on the reciprocal velocity scale. The phase of 
the oscillations is determined by the nature of the excited-term interaction as the particles fly 
apart. Two variants of this interaction are considered, namely, term crossing and close approach. 
More complicated models are also considered, including the interaction between a number of terms 
at large nuclear distances, and it is shown that each closed "loop" formed by these terms corre­
sponds to an oscillation mode in the collision cross sections. The results are compared with some 
experimental data. 

1. INTRODUCTION 

IT is well known that the differential cross sections 
for inelastic processes during collisions between 
atomic particles are oscillating functions of energy. [11 
These oscillations were predicted by Landau and 
stiickelberg[ 2l and are due to double transits of the 
point of pseudocrossing of terms along two alternative 
paths during the collision process. The oscillatory 
structure of the total cross sections for the resonant 
and almost-resonant charge-transfer process has been 
discussed in the literature in recent years )Sl The ob­
served structure appears as a result of interference 
between the inelastic and elastic reaction channels, and 
integration with respect to the impact parameter does 
not result in the disappearance of the structure only 
when there is an extremum in the difference between 
interference terms or "cores" in the scattering po­
tential)4l 

Oscillations in the total cross sections as functions 
of energy have also been observed for processes in­
volving the excitation of different spectral lines during 
atomic collisions.rs-sJ The essential feature of these 
excitation processes is the large resonance defect and, 
therefore, the interaction of the elastic and inelastic 
channels can occur only near the pseudocrossing of the 
terms. This leads only to the Landau-stiickelberg-type 
oscillations in the differential cross sections. 

In 1969 Rosenthal[9l suggested that the reason for 
the oscillations in the total excitation cross sections 
is the interference between two vacant excited states 
of the quasimolecule which are coherently excited 
during collision. According to Rosenthal, the interac­
tion between these states occurs after collision as a 
result of the crossing of the corresponding quasimo-

lecular terms at large nuclear separations. This hy­
pothesis was used to explain the structure of the exci­
tation functions for the 31S- and 33S-levels of the He• 
+ He process. [sJ 

One of the present authors[7l has found regular 
oscillations in the excitation functions for the reso­
nance lines of neon during collisions with Na+ ions, 
and suggested that these oscillations may have been 
the result of interference between the excitation 
channel and a charge-transfer channel close to it in 
energy. It is noted in [?J that the term interaction at 
large nuclear separations may occur as a result of 
term approach when the colliding particles fly apart. 
In actual fact, when the terms at infinity are almost 
degenerate, this approach and the associated modifica­
tion of the wave functions must necessarily take place, 
and term crossing is not necessary for term interac­
tion. [ 1, 10] 

In the present paper we shall obtain expressions for 
the inelastic cross sections, taking into account non­
adiabatic interactions at large nuclear separations for 
two inelastic channels. We shall suppose that, when two 
atomic particles approach one another, the ground­
state term for the system crosses successively two 
vacant excited terms of the quasimolecule. These 
terms are populated in a coherent fashion, and when 
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the particles fly apart they interact either by pseudo­
crossing or as a result of approach at large distances. 
The probability of each of the two inelastic channels 
turns out to be a harmonically oscillating function of 
the reciprocal of the relative velocity of the particles. 
The oscillation frequency is a slow function of the im­
pact parameter. This is so because the impact parame­
ters which are important for the excitation process 
are much smaller than the distances at which the term 
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interaction occurs as the particles fly apart. The os­
cillations therefore persist in the total cross sections 
as well. 

Analysis of more complicated models involving the 
interaction of a number of terms at large nuclear 
separations shows that each closed "loop" formed by 
these terms corresponds to an oscillation mode in the 
total cross sections. 

The term interaction at large nuclear separations 
should, of course, affect the differential cross sections 
as wellY1 In contrast to the Landau-Stuckelberg oscil­
lations, the oscillations due to this interaction have a 
much greater period and appear only in the energy de­
pendence of the differential cross sections. 

It also follows from the results reported below that 
if the ground te1·m crosses successively two excited 
terms then the differential cross section for the exci­
tation of the lower term and for elastic scattering 
should exhibit the Landau-Stuckelberg oscillations 
corresponding to the upper term, as well as oscilla­
tions connected with the Landau-Stuckelberg phase 
difference for two inelastic channels. These oscilla­
tions are not connected with term interaction during 
the separation of the particles. If such interaction 
does exist, the "difference oscillations" will also ap­
pear in the differential cross section for the excitation 
of the upper term. 

2. LANDAU-ZENER TRANSITION IN THE THREE­
TERM MODEL 

Consider the collision of two atomic particles A 
and B which results in the appearance of particles A' 
and B' or A" and B". We thus have the interaction 
between the two inelastic processes 

A+B~A'+B', A+B-+A"+B". (1) 

The excitation of an atom by an ion and charge transfer 
are examples of this :[ 71 

Na+ + Ne -+ Na+ + Ne', Na+ + Ne-+ Na + Ne+. 

Let us suppose that the term scheme for the quasi­
molecule produced during the collision is of the form 
shown in Fig. 1. In this figure 0 denotes the ground 
term of A+ B, whereas 1 and 2 indicate the excited 
terms of A'+ B' and A"+ B". As the particles ap­
proach one another during the collision process, the 
energy of the quasimolecule varies along the curve 0. 
At the pseudocrossing points R1 and R2 the excited 
states 1 and 2 become populated. In region R3 , shown 
by the rectangle in Fig. 1, these states interact as the 
particles fly apart. We shall assume that the term in­
teraction occurs near R 1, R2, and R 3• For other 

FIG. I 

nuclear separations the wave function for the system 
develops adiabatically and is of the form 

'iJ = b,(t)\f'o(R)+ b,(t)•P,(R) + b,(t)1jJ,(R), (2) 

where 1/lo(R), 1/1 1(r), and 1/1 2(R) are the wave functions 
for states 0, 1, 2 of the quasimolecule for a nuclear 
separation R, and b0(t), b 1(t), and b 2(t) depend on 

t 
time only through the phase factor exp{ -ifi-1 jEi(R)dt}, 
where Ei(R) are the energies of the corresponding 
states. 

We shall solve the problem in two stages. Firstly, 
we shall find the amplitudes b 1 and b2 directly after 
the states 1 and 2 become populated at the point R 1, 

and then we shall consider their interference due to 
term interaction for large nuclear separations R3 as 
the particles fly apart. 

We shall suppose henceforth that the colliding parti­
cles move uniformly in a straight line, i.e., the kinetic 
energy associated with the relative motion of the par­
ticles is greater than the potential energy of the inter­
action between them. 

We shall divide the time interval - oo < t < oo into a 
number of subintervals, and investigate the coefficients 
bi(t) in Eq. (2) as these regions are traversed. It will 
be convenient to take the term scheme in the form 
shown in Fig. 2, where the left-hand side corresponds 
to the approach and the right-hand side to the separa­
tion of the particles. As the particles A and B ap­
proach each other ( t < 0) the ground term 0 of the 
quasimolecule crosses the two terms 1 and 2 at times 
t~ and t~, where the two terms correspond to two 
vacant excited states; t = 0 corresponds to the turning 
point. When the particles separate, the pseudocross­
ings R2 and R 1 are traversed again. As a result, the 
system is a superposition of states 0, 1, 2. State 0 
need not be considered henceforth. Each pseudocross­
ing will be treated within the framework of the ''two­
level" model in accordance with the Landau- Zener 
scheme, assuming that the pseudocrossing points are 
sufficiently isolated from each other and are far 
enough from the turning point. 

Following Zener ,E 111 we can establish the relation 
between the amplitudes for the states 1 and 2 to the 
left of the point of intersection t = tk (which we shall 
denote by b~ and b2) and to the right of this point 
(bi and b; ): 

b,+ = g,b,- + s,'b,-, b,+ = -s,b,- +,g,b,-. (3) 

In these formulas 

FIG. 2 



492 ANKUDINOV, BOBASHEV, and PEREL' 

g.= exp(-ny.), (4) 

l'2ny. { n n } ( ) s.= . exp --y.+iy.lny.+i-4 , 5 
r(i + IV•) 2 

where Yk is the Landau-Zener parameter 

V• = V.'{hvRiM•i• (6) 

Vk is the matrix element of the interaction connecting 
the two intersecting terms, ~Fk is the force difference 
corresponding to these terms at the point of intersec­
tion Rk, and VR is the radial relative velocity at this 
point. To obtain the expressions for the amplitudes of 
states 1 and 2 directly after the population at Rh we 
must successively apply the transformation given by 
Eq. (3) to all the crossings which occur between 
t = - oo and t = t 1, inclusive, subject to the initial 
conditions lb0(-oo)l = 1, b 1(-oo) = b2(-oo) =0. More­
over, we must, of course, take into account the adia­
batic phase change between the crossings. 

The system may reach each of the states 1 and 2 in 
various ways. State 1 can be reached along the three 
paths OA'AoA1, OA'B'BoBA1, or OA'B'C0BA1, whereas 
state 2 can be reached along OA'B'BoB2 or OA'B'CoB2. 
The expressions for the amplitudes are given below, 
where each of the terms corresponds to a definite path 
in the order indicated above: 

~ . ~ 
b,(t,)=s,•g,exp(- ~ J E,dt)-g,s2's,exp(--7t J E,dt 

'•' t{ 

- ~ f E,dt- ~ J E,dt)- g,g,'s, exp (- ~ J E,dt), (7) 
~ ~ ~ 

• fa' • ta 

b,(t,) = g,s,•g, exp (- -7; J E,dt- -7;- J E,dt) 
'•' '2' 

. i . •• i 
-g,g,s,exp -/i. J E,dt-/i. E,dt . (8) 

'•' '2 

We can now write down the expressions for the 
probability of excitation of states 1 and 2 after a 
double transit through the pseudocrossing region in the 
three-term model: 

lb,(t,)i' = 2p,(1- p,){i- P•+P•'- (1- p,)cos(x,-x,) 
+ p,(1- p,)cos X•- P• cos X,}, 

lb,(t,) I'= 2p,p,(1- p,) (1- cosx,). (10) 

In these expressions Pk = gk = exp ( -2nyk) is the 
probability of remaining in a given state during the 
k-th pseudocrossing, 

' 1 • 
x.=2ql.+h f (E.-E,)dt, (11) 

••• 
and SOk is the phase of the coefficient Sk defined by 
Eq. (5): 

(12) 

In the special case where one of the terms is absent 
(p2 = 1 or p1 = 1), Eqs. (9) and (10) reduce to the well­
known Landau-Stiickelberg expression[2l when the 
potential energy of the interaction is much less than 
the kinetic energy of relative motion. 

It is clear from Eq. (9) that when the interactions 
of all three terms are taken into account, the result is 
that the population probability for the lower term ac­
quires some additional components. In addition to the 
usual oscillations connected with the phase x1 we also 
obtain oscillations connected with the phase x2. The 
most interesting effect is the appearance of interfer­
ence oscillations described by the phase difference 
x1 - x2• These additional oscillations appear. as a re­
sult of interference along OA'AoA1 and OA'B'BoBAl. 
If the ,te1·ms 1 and 2 are energetically close to the 
ground term in the pseudocrossing region, then the dif­
ferential cross section for inelastic scattering may 
exhibit low-frequency modulation of the Landau­
StUckelberg oscillations. The same modulation will 
obviously appear in the case of elastic scattering. 

Equations (9) and (10) describe the populations of 
states 1 and 2 which would appear after collision if the 
terms 1 and 2 did not interact during the separation of 
the particles. However, in this case, integration with 
respect to the impact parameter will ensure that there 
will be no oscillations in the total cross sections. We 
note that, when Eq. (9) is averaged over the oscilla­
tions, the result is identical with Eq. (6) of[12l, 

3. ALLOWANCE FOR THE INTERACTION DURING 
PARTICLE SEPARATION 

Let us now return to the region t = t 3 ( R = R3) 
where, according to the hypothesis formulated above, 
there is an additional nonadiabatic interaction between 
the separating particles. 

Near the point R3, and to the left of it, the ampli­
tudes b1(t3) and b3(t3) differ from the amplitudes 
b 1(t 1) and b2(t1) given above merely by the phase fac­
tors 

b,-(t,,)=b,(t,)exp{- ~ fE,(R)dR}, 
., 

(13) 
t ,, 

b.-(t,)= b,(t,)exp{ -h J E,(R)dR }· 

'• 
Near the point R3, and to the right of it, the amplitudes 
for these states will have different values, namely, 
bi(t3 ) and b;(t3), each of which is a linear combina­
tion of b1(t3) and b'2(t3). 

Let us consider two variants of the interaction, 
leading to the shift of the states during the separation 
of the particles. 

If we follow Rosenthal [91 and assume that terms 1 
and 2 cross at large nuclear separations R = R3 (Fig. 
3a), the relation between bt(t3), b;(t3) and b1(t3), 
b2(t3) is given by Eqs. (3)-(6). 

In the second variant, where the sharp approach of 
the terms in region R3 is responsible for the nonadia­
batic interaction, we can employ the results of Dem­
kov[ 101, who used this approach to construct a theory 
of charge transfer for small resonance defects. The 
only difference is that, in our case, the system traverses 
only once the region of term approach (as the particles 
fly apart). 

Following Demkov[ 101, we shall suppose that the 
diagonal matrix elements of the Hamiltonian, Hu and 
H22, are constant in the region R3, whereas nondiag-
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onal elements are proportional to e-AR. Since the ap­
proach occurs at large nuclear separations, we may 
suppose that R = vt. The point R3 (and hence t 3) is 
conveniently chosen so that the nondiagonal element of 
the Hamiltonian at this point is equal to the half-differ­
ence between the diagonal elements. Let us therefore 
write 

H" = H" = 1/2k(H22 - Hu)exp{-A.(R- R,)}, (14) 

where k = ± 1. The adiabatic terms of the quasimole­
cule are then of the form 

E,,, = 1/2(H11 + H,) ± 1/2(H,- Hu) (1 + e-"-<"-"•>) '1'. (15) 

The terms approach for R ~ R3 (Fig. 3b). Their adia­
batic wave functions l/JI and l/J 2 are modified during the 
approach in such a way that they become equal to the 
half-sum and half-difference of the functions prior to 
term approach. The modification corresponds to a 
transition from the molecular wave functions to func­
tions for a system of isolated atoms. 

Let us now summarize the results of our solution of 
the Schroedinger equation for the term-approach 
region. For the appropriate choice of the phases the 
relation between the wave functions before and after 
the approach is 

,p,+ = ~(,p,- + ,p,-)exp (- iflln~- i9 + i6 ), 
¥2 2 

,p,+ = ~ (,p,-- ,p,-)exp (iflln~ + i9- i6), 
¥2 2 

where () is the argument of the gamma function 
r(%- i5) and 

(16) 

6 ='(H,- Hu)/21iA.v. (17) 

The coefficients bi( t 3), b;( t3) and bi:( t3), b2(t3) are then 
related by Eq. (3), except that g3 and s 3 are now given 
by 

g, = (1 + e-"•)-v., s, = (1 + e"•)-lle"•. (18) 

It is clear from these two expressions that when 
A - 0 (very smooth term approach) we have s 3 - 0 
and there are no transitions. For large A (sharp term 
approach) the states are fully mixed and g3 = I s 3 j 

= 1/{2. 
According to Eqs. (3) and (13), the probabilities of 

population of the states 1 and 2 after the particle col­
lisions can be written in the form 

l I a 

~ 
1 I 2 

I 
I 
I 

1 ' 
b 

1' ! 

RJ 

FIG. 3 

where 
W, =I b,(t,) l'g,' +I b,(t,) !'!sal'. 
W, = jb,(t,) !'!sal'+ jb,(t,) !'g,'. (20) 

The squares of the moduli of bi(ti) and b2(ti) are given 
by Eqs. (9) and (10 ). The interference term A W de­
pends on the behavior of terms 1 and 2 in the region 
between the pseudocrossing RI and the interaction 
point R3, and is given by 

. ,, 
AW = 2 Re sagab,(t,) b,' (t,)exp{ -i-J [E,(R)- E, (R) )dt }· (21) 

'• 
We recall that g3 and s 3 are given by Eqs. (4) and (5) 
if the terms cross in region R3, and by Eq. (18) if 
they approach one another. 

Using Eqs. (7) and (8), we obtain 

AW= 2p,[p,p,(1- p,) (1- p,) (1- p,)]"'{cos(x+ x.- X•) 

- cos(x + X•)+(1- p,)cos(x + X•)- p, cos (X- X•)- (1-2p,)cos x}, 

(22) 

where p3 = g;. The phases XI and X2 are given by 
Eq. (11) and 

1 ,, 1 11 

x=h J (E,-E,)dt+h J (E,-E,)dt+cp,-cp,+cp,. (23) 
tl f2 

In this expression cp 3 is the phase of s 3 which, in the 
case of term approach, is equal to + 25, whereas in the 
case of crossing it is given by Eq. (12). 

4. OSCILLATIONS IN TOTAL CROSS SECTIONS AND 
DISCUSSION OF RESULTS 

The total cross sections for the inelastic processes 
are obtained by integrating Eq. (19) with respect to the 
impact parameter p. Since the phases XI and X2 are 
very dependent on the impact parameter, the terms 
containing cos(x +XI), cos(x + X2), and cos(x- x2) in Eq. 
(22) do not contribute to the total cross sections. The 
term containing cos ( x++ XI - X2 )Il will also be ignored. 
Therefore, we retain only the last term in Eq. (22). 

To obtain explicit expressions for the total cross 
sections, let us consider the case where /'I and y 2 are 
small. This may occur, for example, because the 
ground-state term of the system in the region of RI 
and R2 varies much more rapidly than terms 1 and 2. 
The oscillating part of the total cross section is then 

AQ=8n'[p,(1-p,))''• J yy,y,cosx(p)pdp. (24) 
• 

Let us consider the behavior of x in more detail. 
For small 'YI and Y2 we have cpi = cp2 = 1T/4. The sec­
ond integral in Eq. (23) is much less than the first, 
since E2 - E0 does not exceed E2 - EI in the interval 
(t2, ti) and the interval ti - t 2 is itself much less than 
t 3 - ti. To transform the first integral in Eq. (23), let 
us replace t by the nuclear separation 
R = (p 2 + v2e )112• We then have 

l)The difference XI -x2 may turn out to be small, if terms I and 2 
are close for R < R2 as well. The term including cos (X+ XI-X2 ) must 
then be taken into account and must be combined with the last term in 
Eq. (22). 
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1 ., [ p' ] _.,, 
X(P)=hv f[E,(R)-E,(R)] 1- R' dR+Ii'•· (25) •. 

If cos x(P) undergoes a large number of oscillations as 
p varies from 0 to R2, then .:lQ will be small, and the 
oscillation structure of the total cross sections will 
not appear. To ensure that integration with respect to 
the impact parameter does not lead to the appearance 
of oscillations, it is necessary for the phase x(p) to 
be a slow function of p. We recall that cp 3 is independ­
ent of p. 

Let us write 

x(p) = [u, + u(p)) I v +~p,, (26) 

where 

1 ... 
Uo=h JM(R)dR, (27) 

•. 
1 •• [( p')-'1' ] u(p)=h s~E(R) 1- R' -f dR, (28) 

"' 
M(R)=E,(R)-E,(R). (29) 

Assuming that R3 >> R1 and that p < Rl> we can use 
Eqs. (27) and (28) to show that 

Uo ~ R,~E /li, u(p) ~ R,~E' /li. (30) 

In these expressions, .:lE and .:lE' are certain mean 
values of the difference E2 - E 1 , where for .:lE' the 
important region of distances is of the order of R1 • 

For R3 >> R1 we can find an interval of the velocity v 
in which 

R,M' /li < v < R,,t.,.E /li. (31) 

In this velocity interval we can neglect u(p)/v inside 
the cosine so that cos x can be taken from under the 
integral sign in Eq. (24). So far, we have assumed that 
the colliding particles move uniformly along straight 
lines. This restriction is, however, unimportant. In 
the region of threshold energies, integrals of the form 
f(Ea- Eb)dt were replaced by action differences 
Sb - Sa. Equation (24) is not affected by this because 
it has already been averaged over the oscillations con­
nected with double transits of the crossing points R1 

and R2. 
After integration with respect to p in Eq. (24), we 

finally obtain 

(32) 

where 

(33) 

is the Landau cross section/ 131 iJ. is the reduced mass 
of the colliding particles, and the quantities vJi, Ek, 
and illFk I are taken at the pseudocrossing point 
R = Rk. 

The total cross sections for the inelastic processes 
in this approximation are given by 

Q, = QtLP3 + QzL(1- p,)+ .A..Q, 

Q, = Q,L(1- P•)+ Q,Lp3- ~Q. 

(34) 

(35) 

In Eqs. (32), (34), and (35) we have neglected the dif­
ference between R1 and R2 and between the energies of 
the terms E 1 and E2 at the crossing points. It is not 
difficult to take these differences into account but the 
final formulas are much more complicated. Equations 
(32)-(35) are valid at energies exceeding the threshold 
energy by an amount greater than E2 - E 1 at the 
crossing points. _2 

We recall that p3 = e 1ry 3 in Eqs. (32), (34), and 
(35) if the term interaction during the separation of the 
particles occurs as a result of crossing. Here we have 
y 3 = V~/ti11 illF3 1. On the other hand, if the interaction 
during the particle separation is connected with term 
approach, then p3 = ( 1 + e-1ro f\ where o is given by 
Eq. (17). 

It is thus clear from the final formulas given by Eqs. 
(32), (34), and (35) that, in the velocity interval defined 
by (31), the interference of the two states during the 
separation of the particles leads to oscillations in the 
total cross sections for the inelastic processes de­
fined by Eq. (1). 

Since the contribution to the oscillating part of the 
total cross section gives only the last term in Eq. (22), 
which is due to interference between paths OA'B'BoB2 
and OA'B'BoBA1 in Fig. 2 (so that the interfering paths 
coincide before B), the phase of the oscillations in the 
total cross sections is independent of the behavior of 
the terms for R < R2• Therefore, if in this region there 
are term interactions which are not taken into account 
in this model, this will not change the phase of the os­
ciHations although their amplitude may be modified, 

Let us now consider the oscillation phase as a func­
tion of velocity. In the case of term approach, the 
phase of the oscillations is 

(0)=-1-s"·~E(R)dR+ H.,-Hu (36) 
X liv "• liJ..v · 

It is clear that, in this case, the total cross sections 
are harmonic functions of the reciprocal of the velocity. 

In the case of term crossing, the quantity cp 3 which 
is present in the definition of x(O) is a complicated 
function of velocity (see Fig. 12). The oscillations can 
then be harmonic as functions of 1/v in two limiting 
cases, namely: if y 3 << 1 then cp3 = 1T/4, and 

1 ... 
x(O)=-Ii J M(R)dR+..:._; (37) 

v., 4 

while for y 3 > 1 we have cp3 = y 3 , and 

x(O) =Iii s"' ~E(R)dR + 1i r·· 
v., v ~F,I 

(38) 

We note that if y 3 or o is large in comparison with 
unity, then p3 is small, and this means that term inter­
action during the separation of the particles does not, 
in fact, occur. Consequently, if the experimental modu­
lation depth is not small [according to Eqs. (32), (34), 
and (35), the maximum modulation depth is 50%], we 
may conclude that the second terms in Eqs. (36) and 
(38) are small, and the period of the oscillations on the 
reciprocal velocity scale is practically equal to 21r/u0 , 

where u0 is given by Eq. (27) and is determined by the 
area between the interacting terms in the interval be­
tween the population point R 1 and the interaction point 
R3 (shown shaded in Fig. 2). 
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When the experimental energy dependence of the 
total inelastic cross section is analyzed, the following 
conclusions, drawn from our calculations, are useful. 
If the experimental curve exhibits a large number of 
oscillation periods, one would expect the extreme to be 
equally spaced (on the 1/v scale), at least for high 
velocities. 

If the reason for the term interaction during parti­
cle separation is the term approach, the modulation 
depth at high velocities should be velocity-independent 
(if 6 - 0, p3 - 0). If, on the other hand, term crossing 
occurs during the separation of the particles, the modu­
lation depth may decrease at high velocities ( p3 - 1 
if y 3 - 0). At low velocities, the oscillations in the 
total cross section may become irregular and not so 
well defined after averaging over the impact parameter 
[violation of (31 )] and as a result of the reduction in 
the effectiveness of the interaction with decreasing 
velocity ( p3 - 0 when y 3 - oo and p3 - 1 when 
6- oo; in both cases the mixing of states disappears). 

Equations (32), (34), and (35) were obtained on the 
assumption that y 1 and y 2, describing the population of 
terms 1 and 2, were small. For arbitrary y 1 and y 2 

the corresponding expressions are rather complicated. 
There is, however, an interesting qualitative effect 
which may occur in this case. The coefficient of 
cos x in Eq. (22) contains the factor ( 1-2p2 ) which 
vanishes when p2 = ?'2. Therefore, in the neighborhood 
of the corresponding energy, the regularity of the os­
cillations may be violated, and the phase may change 
by 1fo 

It is important to note that, in this paper, we have 
considered only a simple model which leads to oscilla­
tions in the total cross sections for two inelastic chan­
nels. 

The appearance of oscillations in the excitation 
probability for a given state of a set of two atomic 
particles is, in fact, the result of the existence of a 
number of alternative paths leading to this state (this 
also refers to Landau-StUckelberg oscillations). To 
each pair of paths there corresponds an oscillation 
mode whose phase is determined by the area ( J t.Edt) 
bounded by these two patches on the diagram showing 
the energy of the system as a function of time. If this 
area is a slowly varying function of the impact parame­
ter, then the oscillations will appear in the total cross 
sections as well, and the frequency of these oscillations 
on the 1/v scale will be proportional to the area bounded 
by these two paths on the diagram showing the energy 
of the system as a function of the nuclear separation. 
Consider the case shown in Fig. 4, where three terms 
interact at large nuclear separations. This situation 
differs from that shown in Fig. 4 only by the fact that 
the coherent population of states 1 and 2 is achieved 
not directly from the ground state 0 but through the 

FIG. 4 

term 3. Oscillations in the probability of population of 
states 1 and 2 are, in this case, connected with the 
presence of the closed loop ABC. If the behavior of the 
quasimolecular terms at large separations leads to the 
formation of such a loop, the probability oscillations 
are repeated in the total cross sections for the inelas­
tic channels 1 and 2 because the area of the loop is 
practically independent of the impact parameter. The 
final formulas for the cross sections are then similar 
to those obtained above. 

If a number of inelastic channels interact at large 
nuclear separations, there can be a number of groups 
and, correspondingly, a number of oscillation modes on 
the cross sections for these channels. These cases can 
be treated by a simple application of Eq. (3) at each 
point of the nonadiabatic term interaction. 2> 

We note that one would expect to see the oscillations 
on the total cross sections not only when the term in­
teraction leading to the formation of a closed loop oc­
curs during the separation of the particles, but also 
when this interaction occurs during their approach. 
An example of this is afforded by transitions from 
states 2 or 1 to states 0 in Figs. 1 and 4. 

In conclusion, let us consider some experimental 
data. There are a few examples in the literature of the 
oscillation structure of the total inelastic cross sec­
tions for processes with large resonance defects in 
slow collisions of heavy atomic particles.r5- 8• 14• 15 l 

Very regular oscillations were found in[7 J for the 
process 

Na+ + Ne-+ Na+ + Ne" -16,85 eV (39) 

Figure 5a shows the intensity of the >.. 736 A line of 
Ne I corresponding to the excitation of the resonance 
level 2p5 ( 2P~;2 )3s 1P~ as a function of the reciprocal 
velocity of relative motion of the colliding particles. 
The points in Fig. 5b show the experimental values of 
t.Q!Qm, where Qm is the smooth part of the measured 
cross section and t.Q is the oscillating part. The solid 
curve is the graph of the function 0.25 cos (u0 /v + 1T/4) 
for u 0 = 2.30 x 10 8 em/sec. The parameters of this 

Q, rei. units 

.!a[ 

s 

Z5 

FIG. 5. Intensity of the A. 736A line of Nei as a function of recipro­
cal velocity for the process Na+ Ne-+ Na+ + Ne* [7 ] (upper curve) and 
the oscillating part of this line intensity referred to the smoothly varying 
component (lower curve). Points are experimental, solid line represents 
the function 0.25 cos (2.3 X 108 /v + 7r/4); the broken line represents 
the part of the lower curve corresponds to high velocities for which ex­
perimental data are not available. 

2)Three-channel interaction was considered in [ 16 ] in connection 
with oscillations on the charge-transfer cross section for Na+ in neon. 
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function are chosen so that it provides the best fit to 
the observed oscillations in the velocity region where 
they are most regular. It is very clear from this figure 
that the oscillations are, in fact, regular. The modula­
tion depth is quite high (25%) and is not very sensitive 
to the velocity. This shows that the population proba­
bilities for the interacting levels are not very different, 
and the interaction during particle separation is suf­
ficiently effective. It is clear from Fig. 5b that the 
phase of the oscillations tends to 1r/ 4 as v - oo, so 
that it would appear that, in this case, the term inter­
action at large distances is connected with term cross­
ing [see Eq. (37)]. The quantity u0 taken from experi­
ment enables us to relate R3 to the mean energy dif­
ference ~E between the interacting levels. According 
to Eq. (27), u0 Rj R 3~E/ti and, if we suppose that ~E 
Rj 1 ev, then Rs Rj 15A. 

It is suggested inr 71 that the second inelastic channel 
for the reaction (39) is the charge-transfer process 

Na++Ne-+Na'+Ne+-16.42 eV (40) 

and that, therefore, the charge-transfer cross section 
should exhibit oscillations in antiphase with the oscil­
lations in the total cross section for the excitation 
process defined by Eq. (39). Latypov and Shaparenko[161 
have recently measured the charge-transfer cross 
sections for Eq. (40) and have shown that it does, in 
fact, exhibit these oscillations. However, the oscilla­
tion period is smaller by a factor of two as compared 
with the reaction (39). They suggest that this change 
in the period is associated with the influence of the 
third channel. 

The excitation function for the 'A 584,3 A resonance 
line of He is reported inr 17l for the process 

Na+ + He-+Na+ +He'- 21.22 eV (41) 

These results are shown in Fig. 6 on the 1/v scale 
together with the excitation cross section for the yellow 
sodium doublet Na( 3p2 P 112,s12) during the process 

Na+ +He-+ Na' +He+- 21.55 eV (42) 

which is taken from the early paper by Maurerr1a] after 
conversion to the 1/v scale. It is clear that the two 
cross sections oscillate in antiphase. The three 
maxima on the curve for reaction (41) are approxi­
mately equally spaced. 

We are indebted to V. M. Dukel'skii for constant 
interest in this work, and to Yu. N. Demkov for useful 
discussions. 
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