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The set of equations for propagation of second sound in He II with an arbitrary difference between 
the normal and superfluid velocities is investigated. For internal motion velocities of the order of 
the second sound velocity, shock wave formation becomes possible. The temperature dependence of 
the critical velocities is found. 

J. The problem of the effect of helium flow on the 
propagation of first and second sound was solved in 1951 
by Khalatnikovlll for the case of values of the normal 
and superfluid flow velocities that are small in com
parison with the velocity of second sound (vn, Vs << U2o). 

In the present work, investigations are presented of 
linearized equations of propagation of second sound 
without the mentioned restriction on the velocities vn 
and Vs· [2J For values w = vn- vs ~ u20 , critical 
phenomena appear that are associated with the degener
acy of the phonons of second sound. 

2. The set of equations of superfluid hydrodynamics 
can be written in the form 

!P_+ oi< =0 a;, +~=O, 
iJt ox, iJt ox. 

iJv,. +!..._( +~) =0 
iJt ox, fl. 2 ' 

as a 
fit+ ox, (Sv.,) = 0, S = pa, 

where 

P = Pn + p., j, = p,v., + p,v,,, 

rr .. = p.v.,v .. + p.v .. v •• + pll .. , 

d 1 ~ 
fl.= -adT+-dp--w,dw,. 

p p 
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Most interest attaches to the excitation of the second 
sound type. For their consideration we shall assume 
p = const, i.e., we shall neglect the compressibility 
ap/ap and the thermal-expansion coefficient ap/aT, 
which is anomalously small in He ll. In this case the 
equations become uncoupled, Eq. (1) is satisfied iden
tically and the pressure can be expressed in terms of 
vn and vs by means of (5). 

We choose a set of coordinates in which the total 
flow of the liquid is zero; we can then connect Vn and Vs 
uniquely with w. It is simpler to transform Eqs. (2) and 
(3) into the variables a and v s· By seeking a solution for 
all variables in the form of a simple plane wave 
~ exp(k · r - wt), we get, after lengthy transformations, 
the dispersion equation for w(k): 

, _ k [ 4 P• + ST u, ( iJT) a ( op. ) ro row - --~- -- -- --
P p.w' T iJv, • p. iJa , 

(7) 

-(1+cos'~>~(~) ] +(wk)' r~-~(~) ] 
p. iJv, • p p. iJa Ju 

[ p, ST v, ( iJT ) v, ( iJp. ) ]• X 3-+--,- - -(1+cos'tl-)- --
P p.w T iJv, • Pn iJv, • 

=~w'k'~(iJT) (t-...£.._cos'tl-~(iJp.) ]· 
p T iJa • , p, p. iJv, • 

X [ ST, -(1 +cos' it)_!_ ( iJp.) ] . 
p.w p. iJT ., 

A quadratic equation is obtained for the phase velocity 
w/k, with coefficients that are anisotropic because of 
the dependence on the angle ~ between w and k. 

The thermodynamic functions and their derivatives 
entering into the equation are transformed to the varia
bles T and w in the usual fashion. l3 J In the phonon parts 
of the thermodynamic quantities, one can neglect thew 
dependence, since the corresponding effects ~ w2/ c2 
« 1. The solutions of Eq. (7) were machine-tabulated 
and the diagrams ux = aw/akx and uy = aw/aky (com
ponents of the group velocity of the propagation of sec
ond sound) were constructed for various values of T 
and w (the x axis is drawn along thew direction). 

For example, the diagrams of u(k) are given in Fig. 1 
for a temperature T = 1.6°K, w =3m/sec and 
w = 18 m /sec. The presence of internal friction in 
He II makes the propagation of second sound in it essen
tially anisotropic. 

Examination of the diagram for a velocity of 
w = 18 m/ sec shows that it is critical; the Landau con
dition for phonons of second sound is satisfied in it: the 
velocity of the normal component is equal to the propa
gation velocity of the excitation u2(wLT) = wL. 

Two critical mechanisms are still logically possible. 
The curve for the sound velocity u = aw/ak, which is 

symmetric relative to the x axis, can be located on one 
side of the origin; the minimum critical velocity Wo for 

~~y, m/sec 

FIG.! 

1114 



CRITICAL PHENOMENA IN THE PROPAGATION OF SECOND SOUND 1115 

w,m/sec 

5f/ 

Jf/ 

I 

FIG. 2 

which this occurs is determined from the condition 
w(wo, T) = 0 for cos .J = 1. 

Finally, complex solutions can appear in the quadratic 
equation (9) when its discriminant passes through zero 
when w increases to the corresponding critical value 
WJm· 

Figure 2 shows all three critical velocities as a 
function of temperature; these were obtained by compu
ter calculation. The calculations were carried out in 
the temperature interval 0.2-2.0°K. At lower tem
peratures, the paths of the elementary excitations are 
too long and the macroscopic analysis is not suitable. 
Close to the ~ point, the formulas for the thermody
namic functions for an ideal gas of excitations do not 
apply. 

Figure 2 also gives the curves of the velocity of 
second sound in stationary helium and the critical tem
perature, which is determined from the condition of the 
vanishing of the density of the superfluid component 
Pn(Ws, T) = p. Thanks to the strong exponential depen
dence of the roton part Pnr on w, the formula for the 
normal density of a roton ideal gas can be used with 
sufficient accuracy for the determination of w: 

~= 13 (~)'" e-•!Tg chx-x-'shx p,w 
P T x' x=T, 

whence we have, for T << t:., 

w ~ w,.(t+~ln~)· 
2~ 7.2T ' 

For T = 0, Ws =Woo= t:../po, a maximum Wsm = 1.1 Woo 
occurs at T = 0.4; it then falls off monotonically. 

It is seen from Fig. 2 that all the calculated curves 
lie in the superfluid region (w < w sl. The minimum 
critical value gives the Landau criterion. The minimum 
corresponding to the curve wL min = 11 m I sec is loca
ted at a temperature T ~ 0.9° K. 

We now discuss the mechanism of the instability con
sidered above. At a fixed temperature, the increase in 

w (Fig. 2) to values greater than WL (point A) makes the 
flow supersonic. As also in ordinary hydrodynamics, 
the appearance of a shock wave of second sound is possi
ble here, transforming the flow into subsonic (point A') 
with w < wL and a different temperature. The resulting 
shock wave moves relative to the liquid. Only for w = w0 

is its velocity equal to zero. 
3. The obtained critical velocities are much greater 

than those corresponding to the appearance of vortices. 
Therefore, the considered mechanism can play a decis
ive role near the ~ point, where the corresponding 
critical velocities become very small. The Landau 
criterion suitable for the vicinity of the ~ point was used 
for phonons of second sound by Mikeska, l4 J who treated 
with its help the results of experiments on the critical 
phenomena near the ;\. point. However, quantitative 
treatment requires the consideration of the formation 
of shock waves in "supersonic flow," which has not 
yet been done. In particular, in connection with the 
consideration of thermal flux near the ~ point, one can 
attempt to interpret the experiments of PeshkovlsJ on 
the visual observation of a density jump in helium in the 
propagation of heat near the ~ point as the observation 
of a stationary shock wave of second sound. 

The proposed mechanism should also play a role in 
the determination of the structure of a vortex tube, 
although here the specific mechanism of the collapse 
of superfluidity is not completely clear. An estimate of 
wL ~ fl/mrL for T = 0.9° and wL = 11 m/ sec gives rL 
= 1.5 x 10-7 em. In particular, this means that ring vor
tices, which form in the motion of ions in helium, leJ 
have a tube thickness and ring radius of the same order 
as the dimensions of the ions on which they form. 

I express my gratitude to R. M. Magaril for carrying 
out the machine calculations. 
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