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The deviations from the quasistatic (Holtsmark) profile of hydrogen spectral lines, due to thermal 
motion of the charged plasma particles, are calculated. The effects connected with rotation of the 
vector of the electric microfield, and leading to non-adiabaticity and to amplitude modulation of the 
light wave radiated by the atom, are considered for the first time. It is shown that amplitude modu­
lation and the non-adiabaticity of the rotation play a decisive role in the deviation from the Holtsmark 
line profile. For example, for the "binary" wing of the LCI! line the correction for the thermal motion 
with allowance for all the indicated effects exceeds by almost two orders of magnitude the heretofor.e 
considered correction due only to phase modulation. The theory is generalized to include the multiple 
case, which takes into account simultaneous action of all the perturbing particles on the radiating 
atoms, and the total profile of the line is obtained with allowance for deviations from quasi- static 
behavior. The results of the calculation are used to analyze and to correct the criteria for quasi­
static and adiabatic approximations, on which the theory of the stark broadening of lines is based. 
A number of other effects related to those considered is discussed, namely, the role of ions in the 
broadening of the central stark component, amplitude modulation at an arbitrary broadening mech­
anism, etc. 

1. INTRODUCTION 

THE basis for the analysis of the broadening of spec­
tral lines of atoms in a plasma has for a long time been 
the model of an oscillator with a variable frequency (see, 
for example£11 ). In this case allowance for the rapidly­
alternating electronic component of the electric micro­
field was carried out within the framework of the impact 
approximation, whereas the contribution of the slow 
ionic component was taken into account in the quasi­
static approximation. Further development of the im­
pact approximationl2 J proceeded mainly along the line 
of foregoing the oscillator model, whereas the quasi­
static approximation was connected as before with this 
model1 >. For the broadening of the hydrogen lines, a 
fundamental role in this model is played by Holtsmark's 
quasistatic theoryr41 • Subsequent generalizations of 
this theory were connected with allowance for effects of 
the Debye screening and of ion-ion correlations£5- 71 , 

the inhomogeneities of the ionic microfieldraJ, and also 
the effects of thermal motion of the perturbing ionsre-nJ. 
Whereas the first ones of the aforementioned effects 
can be treated within the framework of the oscillator 
model, the last effect touches directly on the very 
foundation of this model. It was precisely this effect 
which was not taken into account in papers£9-nl devoted 
to the generalization of the Holtsmark theory, connec­
ted with the thermal motion of the ions. Therefore the 
effects due to this motion deserve a new analysis. 

The model of oscillator with varying frequency is 
based on two fundamental assumptions: 1) adiabaticity 
of the action of the ionic microfield on the atom, and 
2) the presence of only phase modulation of the light 
wave radiated by the atom. These two simplifying as-

l) For a rigorous quantum-mechanical justification of both approxi­
mations, see [ 3 ). 
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sumptions mean the neglect of certain other effects, 
also due to the thermal motion under investigation. 

As to the phase modulation, it is actually the decisive 
factor in the limit of quasistatic broadening, and this, 
apparently, is the reason why it was assumed that it 
remained the same when account was taken of the 
thermal motion of the ions. Yet an electric field of the 
ions F changes in the course of time not only in magni­
tude (which indeed is the cause of the phase modulation), 
but also in direction. If the rotation of the vector F is 
sufficiently slow, then the dipole moment d of the atom 
follows adiabatically this rotation, maintaining all the 
time a constant projection on the direction of F. At 
such a reorientation of the atom, the projection don the 
direction of propagation of the light wave k changes, and 
since the square of this projection determines the inten­
sity of the light radiated by the atom, some amplitude 
modulation of the light should take place. The impor­
tance of taking such a "rotation of the quantization axis 
of the atom" into account in radiation processes was 
demonstrated inu21 , where it was possible to explain on 
this basis the anomalous behavior of the polarization of 
radiation from atoms excited by electron impact. In the 
present paper we shall show that amplitude modulation 
plays no less an important role than phase modulation 
in that part of the stark broadening of the spectral 
lines which is due to thermal motion of the ions. 

Besides amplitude modulation, rotation of the quan­
tization axis is accompanied also by a non-adiabaticity 
effect. Indeed, rotation of the quantization axis of the 
atom is equivalent, according to the Larmor theoremu31 , 

to the appearance (in a coordinate system rotating to­
gether with the field F 2 >) of an additional interaction 
between the atom and some "magnetic field." This 

ZlWe note that the model of the oscillator is connected precisely 
with this rotating system (see [ 1) ). 
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interaction leads to a change of the wave function and 
the energy of the stationary state of the radiating atom, 
which evidently affects the magnitude of the correspond­
ing matrix elements of the dipole moment and the phase 
of the radiated wave. We shall show below that these 
effects also make a considerable contribution to the 
deviation from the quasistatic profile of the line. 

Thus, the question of the role of thermal motion of 
ions in the broadening of spectral lines can be formula­
ted in its entirety, and the analysis of the effects indica­
ted above can be used to clarify the region of applicabil­
ity of the classic-adiabatic model of the oscillator and 
the closely related quasistatic approximation of 
Holtsmark3 '. 

The present paper is devoted to the realization (both 
in the binary and in the multiple case) of the aforemen­
tioned program of systematic consideration of the influ­
ence of the thermal motion of the ions on the deviation 
of the spectral-line profile from its quasistatic limit 
and the derivation of the corresponding adiabaticity and 
quasistatic-behavior criteria. 

2. PHYSICAL PICTURE OF COLLISION OF A RADIA T­
ING A TOM WITH AN ION 

We start with a consideration of the character of the 
evolution of the dipole moment d(t}, an evolution res­
ponsible for the effect of amplitude modulation, and for 
simplicity we shall frequently resort to the simplest 
binary picture of collision (the results, as will be shown 
below, are not connected with this limitation). 

Let us consider the collision of an excited hydrogen 
atom with a charged particle. We assume that the 
trajectory of this particle is linear: r(t) = r 0 + vt, and 
"does not penetrate" into the atom: lr(t) I ~ n2ao. In 
the stationary (laboratory) frame, the vector of the 
electric field F = er(t)/ lr(t) 13 produced by the passing 
charged particle changes in magnitude and, in addition, 
turns through 180° in the plane of the vectors r 0 and v 
(the collision plane). Let us changeover to a coordinate 
system in which one of the axes (for example, the x axis) 
is directed at each instant of time along the field F(t). 
In this rotating coordinate system, the electrostatic 
interaction of the atom V(t) =- d · F is determined by 
only one projection of the dipole moment dx, and there­
fore cannot cause transitions between states with differ­
ent magnetic quantum numbers m. 

However, besides the electrostatic field we have here 
also a "magnetic" interaction due to the rotationusJ. 
For the particular case of rotation through an angle <p 
about the axis z, it is given by (the field is directed 
along the x- axis!): 

Vmagn= fil,a,p /8t=lll,;i(t), (1} 

3lWe note in this connection that the first indications about the need 
for taking into account the effects of the rotation of the field F are con­
tained in the papers of Spitzer [ 14], where these effects were considered 
within the framework of the impact approximation and the hypothesis 
was advanced that the effects of non-adiabaticity and reorientation of 
the atom may cancel out. Within the framework of the quasistatic ap­
proach, these questions were investigated by Wimmel [ 11 ] , where, in 
particular, an attempt was made to establish the relation between the 
adiabatic and quasistatic approaches. However, both Spitzer and 
Wimmel confined themselves to semiquantitative estimates of the dis­
cussed effects, without calculating their influence on the line contour, 
which is the only way one can judge their true role. 

Stationary (xyz) and rotating (x'y'z') coordinate systems. The ori­
gins of both systems coincide with the center of the radiating atom; the 
position of the perturbing ion is given by the vector r(t) and its velocity 
is -v. The Euler angles 'Po, 80 , and 1/l(t) and the vector n = r X v/lr X vi 
determine the collision plane; k is the wave vector of the radiated wave. 

where J is the operator of the orbital angular momen­
tum of the atom. 

Obviously, this interaction can cause transitions be­
tween sublevels with different m (Stark sublevels}, but 
at sufficiently slow (adiabatic) passages of the ions, 
the characteristic value of this interaction is small 
compared with the electrostatic interaction, so that it 
can be accounted for by perturbation theory (see Sec. 3). 
In the zeroth approximation, neglecting the magnetic 
interaction, so that it can be accounted for by perturba­
tion theory (see Sec. 3). In the zeroth approximation, 
neglecting the magnetic interaction, we can regard the 
magnetic quantum number m as an integral of the mo­
tion. 

For "nonpenetrating" trajectories of the perturbing 
charged particles, the principal quantum number n of the 
atom will also be conserved, so tl:).at only transitions 
between states with fixed n can take place. If we direct 
one of the axes of the rotating coordinate system along 
the field F, then the electrostatic interaction, as already 
noted, will not have nonzero nondiagonal matrix ele­
ments for the transitions between the Stark sublevels. 
This means that at such adiabatic collisions the excited 
hydrogen atom precesses about the direction of the vec­
tor of the electric field of the passing particle in such a 
way that the projections of the angular momentum J and 
of the electric dipole moment d on this direction are 
conserved. 

The radiation processes are determined, as is well 
known, by the evolution of the vector of the dipole 
moment of the atom. Since in practice the criterion for 
the adiabaticity of rotation is satisfied for all the ions 
of the plasma, the evolution of the vector d(t) will con­
sist of a rotation of its precession axis so as to follow 
the electric microfield of the ions F(t) (see the figure). 
Observation of the shape of the spectral line is carried 
out in the laboratory system, relative to which the 
direction of the microfield can have at the initial instant 
of time an arbitrary orientation. On the other hand, the 
examination of the interaction of the atom with micro­
field F is best carried out in a coordinate system whose 
symmetry axis rotates in the collision plane together 
with the vector F(t). The transition from the initial 
laboratory system to these rotating quantization axes 
can be realized in two stages: at first the laboratory 
system is rotated through the Euler angles <p0 , 8 0 , and 
1/1 0 , which determine the positions of the quantization 
axis at the initial instant of time, after which rotation 
is carried out through an angle 1/1 1(t) about the vector 
n = r 0 x v/lro x vi. The direction of this vector, which 
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determines the plane of collision for our choice of the 
coordinate system, coincides with the axis z' (see the 
figure). Accordingly, the rotation operator, which 
transforms the wave functions from the laboratory sys­
tem to the rotating coordinate system, can be written in 
the forml151 

R(t) =R,(O,O,'¢,(t))R0 (<po, So, ·¢o) =e".•e".'e".~. (2) 

Here cp = cpa, e = eo, </! = 1/!o + </! 1(t) 
The evolution of the operator of the dipole moment 

of the atom can now be represented in the form 

(3) 

where A(t) is the matrix of the rotation of the vector 
through the Euler angles cp, e, and 1/J l16 '17l, and d' is the 
dipole-moment vector expressed in terms of the projec­
tions on the quantization axis of the atom. 

It follows from the foregoing that the evolution of 
d(t), described above, leads to a change in the amplitude 
of the light wave for a given Stark state of the atom 
(i.e., with fixed m) (effect of amplitude modulation). On 
the other hand, the interaction of the atom with the 
"magnetic field" leads obviously to a change of the 
Stark state itself (the non-adiabaticity effect). We shall 
construct below a perturbation theory that takes both 
these effects into account. 

3. CORRELATION FUNCTIONS THAT TAKE THE 
ROTATION OF THE PERTURBING :MICRO FIELD 
INTO ACCOUNT 

Let us find the expression for the distribution of the 
intensity in the line (line profile), which would take into 
account, besides the ordinary phase modulation, ampli­
tude modulation and the non-adiabaticity effect. We con­
fine our analysis to the "near static" 4 > and "near­
adiabatic'' regions. It is therefore meaningful to speak 
of the profile I(w) of a certain Stark component pro­
duced when the atom goes over from the initial state i 
to the final state f; for simplicity, we assume the latter 
to be unperturbed. The profile of the component in ques­
tion is given by(l,nJ 

1 ~ 

1,1 ( w) =-;:;- Re J d,;e\•-•,)•<IJ,1 ('r), ( 4) 
0 

where w0 = (E1°l- E ~ 0 l)/ 1i. is the unperturbed frequency 
of the transition, and <I>if( T) is the correlation function: 

<D,t('r) = {<x<'(O) Jdlx/(O))<x/(-r) Jdlx.'(-r))},p. (5) 

Here xi and x£ are the wave functions of the initial and 
final states in the laboratory frame, and the symbol 
{ ... } av denotes averaging over the ensemble. 

We now transform the right-hand side of (5) into a 
rotating coordinate system. The connection between the 
wave function Xi f in the rotating system and the func­
tion xi f is given by the relation 

' 
l(i, I= R(t)X:, J, (6) 

where R(t) is the above-described operator of rotation 
through the Euler angles cp 0 , eo, 1/J(t). Carrying out the 

4lWe shall use this term to designate the region in which the devia­
tions from the quasistatic (Holtsmark) limit, due to thermal motion, 
begin to play a noticeable role; it is probably better to use simply 
"static" limit in place of the "quasistatic" limit. 

corresponding transformations in (5), we obtain 

<D,t('r) = .E {.L, A,m(O)A,.(-r)(x,(O) ldm'Jx,(O))(x,(-r) Jd.'lx•(T))} . 
m n 11. cp 

. (7) 
We average in (7) over the Euler angles cp0 , eo and 1/! 0 • 

Using the explicit expressions for the matrices A(O) and 
A( T), we obtain 

{.EA•m(O)A,.('r)} ='/,[1-i-2cos'¢1 ('t)]6mn, (8) 
k av (IPtJ, eo, 11'o) 

whence 

<D,,(-r) = {1/a[i + 2cos¢,(•)l<x•(O) Jd'lxt(O))(x,(-r) Jd'Jx,(T))},p. (9) 

We now proceed to find the wave functions x(t) in the 
rotating coordinate system. The Schrodinger equation, 
in accordance with the figure and relations (2) and (6), 
is 

iliox/ot=H(t)x== [Ho+d.F(t) -1-lil.~.(t)]x, (10) 

where Ho is the unperturbed Hamiltonian of the atom. 
It is seen from (10) that in a rotating system there is 

both an electrostatic perturbation (dxF) and a "mag­
netic" perturbation ( 1i.J z </! 1). Since the unperturbed 
state is degenerate, we can choose as the zeroth ap­
proximation the wave functions that diagonalize either 
the electrostatic or the "magnetic" perturbation. In 
the near- static region under consideration, it is natural 
to choose as the zeroth approximation the Stark wave 
functions that diagonalize the Hamiltonian Ho + dxF(t), 
regarding the "magnetic" interaction as a perturbation. 

We determine first the complete system of "adia­
batic" states uk(t): 

H(t)u,(t) =E,(t)u,(t). (11) 

We seek the solution in the form of a series 

X•(t) = .E a,.(t)u,(t)exp (-if w,dt'); 
• 0 

w,(t) == E,(t) I li. (12) 

Substituting (12) in (10), we arrive at the system[laJ 

ti;.=.E'Iia,. exp(ifw •• dt')(fJH) ; (13) 
Wkn 8t kn 

n o 

w-. == (E,- E.) I li. 

We shall seek the solution of the system (13) by per­
turbation theory. It must be borne in mind here that 
perturbation theory is applied also to Eqs. (11), the 
solutions of which give, obviously, a contribution to the 
corresponding orders: aik ~ alk + a£~ + a£~, and also 
determine the changes in the phases (energies) of the 
wave functions. We choose as the zeroth approximation 
in (11), as already indicated, the Stark wave functions. 
Then the solution of Eqs. (11) is obviously a perturba­
tion-theory series whose only difference from the series 
of the ordinary stationary perturbation theory is the de­
pendence of the corresponding frequencies on the time 
as a parameter: 

wk (t) ~ w~o) (t) + w~2) (t) = w~o) (t) -1- ~' (t) ~' I (Jz)km I' . (14) 
~ Wk':/,(t) ' 

We have taken into consideration here the fact that wk_1l 
~ (Jz)kk = 0; 

(15) 
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(The indices k and m denote matrix elements taken over 
the unperturbed (Stark) wave functions). 

Further, according to the described solution proced­
ure, we have 

iJH) ( iJH,)<'> ( iJH)<'> · 1 
(- ~ - + - =(d,) •• P(t)+(J,) •• Iiljl 1t) 

iJt kn i)t kn i)t kn 

+<u~•> \d.\u~') )F(t)+(u~') \d.\u~·> )F(t). (16) 

It is easy to verify that the term (BH /ot)< 2 > vanishes 
upon averaging over the angle between r 0 and v, and 
therefore it makes no contribution to a< 2> when the 
corresponding orders are equated in (13). The terms 
containing (BH /at)k:ri likewise make no contribution in 
either the first (a< 1 >) or the second (a< 2 >) order of per­
turbation theory, since the quantities (oH/at)k~ are 
proportional to Okn• and the expressions for a 
a< 1> and a< 2> contain only the non-diagonal matrix 
elements. Thus, a< 1 > = a( 2 J = 0, and accurate to terms 
of second order of smallness inclusive we have akn 
= a<O> = 1\. kn -Kn' 

As a result, the wave function Xi(t), accurate to 
terms of second order, is given by 

i 

x,(t) ~ (u/')+ u,<·> + uf') )exp ( -i I rwr) (t') + wf) (t') ]dt'). (17) 

Substituting ( 17) in (9), we get 

(18) 

X (u/'>+ u,<•>(O)+ uf'>(O) \d'\x1)(xt\d'Juf'l+ uf'l ('t')+ufl ('1'))} . 
av 

The calculation that follows is connected with the use 
of the "slowness" of the perturbation, i.e., with the ex­
pansion of the obtained correlation function in a series 
in powers of T. We shall first carry out this expansion 
and the corresponding averaging in the binary case. 
Certain results not connected with the binary approxi­
mation will then be used in the consideration of multiple 
interaction. 

4. PROFILE OF LINE WING 

We consider first the influence of the amplitude 
modulation, neglecting the effects of non-adiabaticity, 
i.e., assuming in (18) w~2 > = 0 and u~1 > = u1 2 > = 0. Then, 
carrying out in (18) the expansions 

"'1 ('t')::::: ljll (0) '1', wl") (t):.::::: w\0) (0) + wl") (0) t + wl") (0) t'/2 

etc., we obtain an expression for the adiabatic correla­
tion function Q>~l(T); this expression takes into account 
the effects of plfiase and amplitude modulation: 

!D~ ('1') ~ <DYt)ad('t') + !D~;>ad ('1') = \ d,t \ '{exp( -iw\') (0)'1' 

- exp( -ioi/'\0)'1') ('/,ffi/')2 (0)'1'' + '/,iciii'> (0)'1'' + 'f,¢.'(0)'1'']}... (19) 

We have taken here into account the fact that the terms 
that ar~ line:u; in wt>(O) and ~iO)' and also the crossing 
terms w<0 >(0) lj! 1(0), give zero after averaging over the 
angle5 >. 

5lThis is valid also in the multiple case (see Sec. 5). 

The first term in (19) gives, with allowance for ( 4), 
the usual quasistatic profile of the component. 

The terms connected with the change of the phase 
(proportional to T 4 and T 3), lead after averaging in the 
binary scheme (see (22) below) to the well known cor-

:~~~~~ t~~~et:~~~t;:;~ir~:~~:9~:oJ, which takes into 

J (z)P( )- \d 1,5n Na'l•v02 
tt co-- "f 

'32(w-m0)'i•' 
(20) 

where N is the density, v0 is the most probable 
(Maxwellian) ion velocity, and a is the Stark constant of 
the component in question. 

The correction to the spectrum I~~>A(w), due to the 
lJ 

amplitude modulation, can be easily obtained by noting 
that in the binary case 

· \(r,v]\ v . /'o, 

ljl,(O) = -.-,- = -sm(r,v). 
ro ro 

(21)* 

Putting further wt>(t) = (a/e)F(t) = a/r2(t), using (4), 
and averaging over r 0 , we obtain 

1,~2)A (w)=\di!\'Nvo'Joo4nr,'dr,{~{)"(w-w,-~)}, (22) 
0 3r0 r0 

This gives ultimately 

J,\')A(w) = Jd,1\25n Na'!tv,'' . 
2 (w-w,)l' (23) 

From a comparison of (20) and (23) we see that the 
correction Iir'~(w) has a sign opposite to the correction 

Iif'p(w), and exceeds it in absolute magnitude by 16 

times. 
We now take into account the non-adiabaticity effect. 

A direct calculation of the sums in (14), (15), and (18) 
is in the general case quite unwieldy. At the same time, 
the characteristic features of the effect of non- adia­
baticity can be revealed by means of a concrete exam­
ple of the line La, to the analysis of which we now turn. 
In this case the sums in (18) can be easily calculated 
(we shall henceforth have in mind the lateral Stark com­
ponent with positive frequency shift wt = (a/e)F, which 
is denoted by the index 1, the lower state being denoted 
by the index 0): 

~ · I (l,hm I' = 1 
~ wi~ (0) 2 (a/e) F (0) ' 

~' (d)· {J,)ml ~-,' (d) (J,)nl _ J d1o I' 
4;:" mo wi~ 4" on w\~! - [(a/e) F (0)]' (24) 

In addition, as can be readily verified, (x 0 \d\ui2 >) ;= 0. 
We then obtain for the correlation function <I>f~momd( T), 
corresponding to the non-adiabaticity effect, 

!D~~nonid('t') = \d"\'{ exp(-iJ:> (0)'1') (25) 

X [- 2(a/;;F(O) + [(a/e)~(O)]']} av, 

The first term in (25) is due to the change of the energy, 
and the second to the change of the wave function of the 
Stark state6 >. Carrying out in (25) averagings similar to 

6J We note that the presence of this term in (25) is determined by 
the value of x1 (0), which we have taken to equal u~o) u~1l 0) (formula 
(17)), i.e., we assumed that at the initial instant of time the atom is not 
in a definite Stark state u\0 ). Such a choice of the initial conditions is 
dictated by the fact that we implicitly assume the density matrix Pik 
to be diagonal ( -liikl· This has been justified, as a matter of fact, for 
the here-employed eigenstates of the atom in thermal equilibrium with 
the medium. 

*[r0 v] = r0 X v. 
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(22), we obtain for .the spectral correction for the non­
adiabaticity I~g>nomd(w) the expression 

J~~nonid (w) = ld10 1'nNa'l•v,'/(w- w,)'l•. (26) 

It is seen from (26) and (23) that ~~~monid(w) has the 
same sign and order of magnitude as I~g>A(w). It follows 
therefore, incidentally, that cancellation of the effects 
of non-adiabaticity and reorientation of the atom, of the 
type proposed by Spitzeru4 J, actually does not take place. 

It is clear from the foregoing that it is precisely the 
effects of microfield rotation considered here (ampli­
tude modulation and non- adiabaticity) which determine 
the bigger part of the total deviation from the quasi­
static profile. For the wing of the La line, the ratio of 
the cont.J:"ibution of the effects of rotation J1~>A(w) 
+ 1gmomd(w) to the previousl~known contribution of the 
effect of phase modulation 11~> (w) amounts, according 
to (20), (23) and (26) to-44.8. 

5. COMPLETE NEAR-STATIC LINE PROFILE 

The use of the binary approximation is justified only 
for the wings of the spectral line, where the main effect 
of broadening is due to the nearest perturbing ion. In 
considering the total line profile, it is necessary to take 
into account the multiple character of the electric 
microfield F(t) produced by the plasma ions. The 
multiple character of the perturbation excludes the 
possibility of using the parameters r 0 and v of one 
(nearest) ion in order to fix the collision plane and de­
termine the rotation angle 1J!l(T) of the quantization axis 
of the atom. We shall therefore first discuss the method 
of determining, in the multiple case, the plane of colli­
sion and the parameters over which the averaging will 
be carried out in (5). 

As will be shown below, the effect of rotation of the 
field vector F(t) is determined, i_n the near- static reg­
ion, by only the first derivative F(O) at the initial instant 
of time. Therefore it is possible here, too, by way of a 
natural generalization of the binary case, to define with 
the aid of the two vectors F(O) and F(O) the collision 
plane. Just as in the binary case, specification of the 
collision plane determines uniquely the Euler angles 
cp0 , 00 , and 1/! 0 , through which it is necessary to rotate 
the laboratory frame in order to orient it along the 
quantization- axis system. One of the axes of the latter 
system is directed, as above, along the vector F, and 
the other along the vector n = F(O) x F(O)/ I F(O) x F(O) 1. 
With such a choice of the axis, the angle of rotation 1/! 1 

can. be approximately represented in the form 1/J 1( T) 
~ 1/!1(0)T, where 

~,(0) 
I [F(O)F(O) ll 

F'(O) 

IF1.(0) I 
IF(O) I . 

. . 
(27) 

The vector F 1(0) ~s the component of the ':ector F(O) 
perpendicular to F(O). The component of F(O) parallel 
to F(O) will be denoted by F II· 

When averaging in (5) it is necessary to average not 
only over the three Euler angles cp0 , 00 , and 1/Jo but also 
over the angle between F(O) and F(O), as well as over 
the two moduli IF I and IF 17 >. We shall henceforth write 

7lThe listed six averaging parameters correspond, obviously, to the 
six independent components of the vectors F(O) and F (0). 

simply F and F, if the values of these vectors are taken 
at the initial instant of time. 

In light of the foregoing it is easy to see that the ex­
pressions (19) and (25) for the correlation function are 
actually valid also in the multiple case, and the symbol 
{ ... } av should now be taken to mean the above- des­
cribed averaging over the ensemble of all the perturbing 
ions, whi~e the frequency shift, the angular velocity of 
rotation 1/! 1, and their derivatives are to be taken to 
mean the corresponding multiple analogs of (27) and 

F = (FF)/F = IFn 1. F = (FF)/F- F}JF. (28) 

It is easy to verify, in addition, that after averaging 
over the angles between F and F and F, the correspond­
ing mean values in (19) and (25) will contain only { F~1 }av 
and { FDav· The calculation of these mean values is 
best broken up into two stages (seeruJ ): first we aver­
age the quantities F~ and :Ff1 at a fixed value of the 
modulus of the ion field F, and then integrate over all 
the F with the Holtsmark distribution function W,(F). 
It is then possible to use during the first stage of aver­
aging the results of Chandrasekhar and von Neumannr19J 
(see alsor11 J ): 

{Fn'}av<">="/,(wFFo)'p'i>G(p) / ~{~), (29) 

{FJ.'}avcF>="/,(wFFo)'p'i•[GW -T(~)] /~(M. (30) 

where wF = .\. 112v0N113 is the characteristic scale of the 
frequency at which the ion field changesruJ, F0 = .\.eN213 

is the "normal" Holtsmark field(.\. = 2.603), {3 =~F/F0 , 
~({3) is the Holtsmark functionu 9J, and G({3) and 1({3) 
are functions introduced by Chandrasekhar and 
von Neumannr19 ' 10J: 

2 Dll 3/2 

G(p) =---;I exp{- ( : ) } y-•;, sin y dy, 

2 ~ '!. 
TW=---; Jexp{-(;) }y-'!.(siny-ycosy)dy. (31) 

We change over in (4) and (18) to the dimensionless 
variables z = Llw0 T, w' = (w- w0)/ Llw0 (Llw 0 = (a/e)F0). 

We then obtain for the correlation function cl> 1o(z) the 
expression 

<D (z)=ld l'{e-'''[ 1 -~-1-(z'~';, rm + iz' G(~)-J{~) 
10 10 8 'J..h'h 8 ~(~) 6 ~·;·~(~) 

+ z' G(~)-T(M +iz G(~)-J(~) + G(~)-J{~) )]} .(32) 
3 ~'/,~<M ~·"~<~l ~·~·~w 

We have introduced here the characteristic dimension­
less parameter of the problem h113a/v0 , which is the 
ratio of the Stark shift aW13 to the frequency at which 
the ion field changes N113v0 • The effects of phase modu­
lation, amplitude modulation, and non- adiabaticity are 
described respectively by the first two, the third, and 
the last two terms in the round brackets of (32). It is 
seen from (32), in particular, that all three effects have 
the same order in smallness in the parameter h-113 • 

To obtain the dimensionless profile of the Stark com­
ponent Ih(w'), defined by the relation I(w)dw 
= ld10 I2Ih(w')dw', it remains to calculate the mean value 
of (32) with the aid of the Holtsmark function~( {3) 
= F0W,(F), and then carry out a Fourier transformation 
in accordance with (4). The resulting profile of the 
component 1 - 0 (which determines, in this case the 
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profile of the entire line when w' > 0) then assumes the 
following final form: 

/,(oo') =~(oo') +h-'1•II(oo'), 

II(x)=~{-~~[x'i•T(x)J+~[ G(x)-T(x)] 
16A 4 dx' dx' x'l• 

(33) 

+ 2~[ G(x)-T(x) ]-s__t!_[ G(x)-T(x) ]+B[ G(x)-T(z) ]}· 
~ ~ ~ ~ ~ 

(34) 

In (34), just as above, the first two terms correspond to 
phase modulation, the third to amplitude modulation, and 
the last two to non-adiabaticity. 

Let us consider the contributions of the phase modu­
lation and of both rotation effects to the total correction 
for the quasi static line contour, due to the thermal mo­
tion of the ions, for different regions of w'. To this end 
:ffe shall use the expansions of the functions G(x) and 
I(x): 

{ "f2/n, z :> 1 { '/,"f2/n, z :> 1 
G(z) ~ (4/3n)x''•, x < 1; T(x) ~ (4/9n)x'". x < f (35) 

On the wing of the line (w' » 1) the distribution of the 
intensity (34) coincides, as it should, with the results 
obtained from the binary analysis, see (20), (23), and 
(26). 

In the central part of the line (w' » 1) we have 

II(oo') ~ 8/nA,ro". (36) 

Such a behavior of the "thermal" correction is due 
entirely to the contribution of the terms connected with 
the non-adiabaticity. On the other hand, the terms in 
(34) connected with the phase and amplitude modula­
tions, for w' ~ 1, as can be readily verified, tend to a 
constant value and consequently are relatively small. 

6. DISCUSSION 

1. Our analysis shows that the change of the direc­
tion of the electric-microfield vector of the ions turns 
out, in spite of the usual opinion (explicitly expressed 
or tacitly implied) L9-ul, is not only not secondary, but 
on the contrary, is the decisive one among the effects 
of thermal motion of the perturbing ions. The result 
(33) makes it possible to reformulate the quasistatic 
criterion: 

(37) 

On the line wing (w' >> 1) this criterion turns out, as 
already noted in Sec. 4, to be numerically more strin­
gent (to be sure, by almost 45 times!} than the well 
known Holstein criterion£91 (see also 101 ). 

In the general case ( w ~ 1) the corrections consid­
ered here, being connected with derivatives of different 
order of the Chandrasekhar-von Neumann functions 
G(w') and l(w'), should generally speaking have also 
different functional dependence. 

In the central part of the line (w' ~ 1) the criterion 
(37) differs from that obtained earlier£10 qualitatively 
(by a factor h116 » 1, also on the more stringent side): 

oo' ~h-'1• or oo- roo~ "faNv., (38) 

Here, as indicated, this more stringent character of the 
criterion is due to the non-adiabaticity effects. 

For practical estimates of the region of applicability 

of the quasi- static approximation it is convenient to 
establish that value of h = h* (h = N(OI/v0) 3), at which the 
total "thermal" correction becomes comparable with 
the contribution of the zeroth (quasistatic) approxima­
tion. According to Sec. 4, for the L01 line wing there 
occurs an appreciable increase (by a factor (45) 312 

::::: 300) of h* compared with its value when account is 
taken of only the phase modulationuoJ. Thus, for exam­
ple, for w = Wo = (3-4) .1.w0 we have h* ~ 1, whereas 
according to£101 we would obtain h* ~ 0.003. It is diffi­
cult to obtain a convenient criterion for the central part 
of the line, since here h* depends strongly on w- w0• 

However, we can indicate by way of an example that 
when w - w0 S .1.w0 the value of h* also amounts to 
several units (according to 001 we have here h* ~ 0.004). 
Thus, the quasistatic approximation becomes violated 
"integrally" already at h* ~ 1, and not at h* ~ 1 as in 
the case when only the phase modulation is taken into 
consideration, so that the region of applicability of this 
approximation h >> h*, becomes much narrower. 

2. Our analysis was based on a systematic allowance 
for the "adiabatic" non- static character of the effects 
(phase and amplitude modulations) as well as for the 
non-adiabaticity effects. Therefore the criterion (37) is 
simultaneously also the adiabaticity criterion. We see 
hence that on the line wing the effects of non- adiabaticity 
and of the "adiabatic" non- static character turn out to 
be of the same order of magnitude, so that satisfaction 
of the quasistatic condition implies adiabaticity, and 
vice versa. In contrast, at the center of the line, the 
decisive effects are those of non-adiabaticity. 

The foregoing consideration enables us also to 
analyze the tentative criteria obtained by Wimmel£111 

on the basis of interesting physical considerations8 >. 
The effect of amplitude modulation is recognized inlul 
to be secondary compared with the effect of phase 
modulation, which, as we have seen, does not corre­
spond to reality. The adiabaticity criterion formulated 
inLuJ is in the main correct, but unfortunately during 
the course of its comparison with the quasistatic criter­
ion, owing to the transition from a spectral criterion to 
an integral one, an unjustified conclusion was drawn 
that the adiabatic approximation is applicable all the 
way to the center of the line. 

3. The foregoing analysis pertained to the case of 
broadening due to the linear stark effect. It can be 
shownl221 that the results of Sec. 4 for amplitude modu­
lation9> admit of a generalization to the case of a gen­
eral interaction law V(t) = Ck/rk(t). The formula ob­
tained thereby is a generalization of the Holstein 
formula£ 91 , which takes only phase modulation into ac­
count. The ratio of the contribution of the effect of 
amplitude modulation to the corresponding contribution 
of the effect of phase modulation is-16/(k- 1); for 
k = 2 this result goes over into that obtained in Sec. 4. 
It follows therefore that for any arbitrary broadening 
mechanism amplitude modulation plays no less impor­
tant a role than phase modulation also in the deviations 
from the quasistatic line profile. 

8l The question of the corrections that take into account only phase 
modulation is exhaustively treated in [ 2o, 21 ] , in agreement with [ 10]. 

9l Allowance for the non-adiabaticity effect is difficult in this case, 
owing to the difficulty in calculating the sums contained in (15 ). 
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4. The phenomenon of amplitude modulation should 
lead also to a broadening of the central (C2"" a = 0) 
Stark components of the line, for which there is no 
phase modulation connected with the Stark splitting. 
Usually the broadening of the central components is 
associated only with the impact action of electrons on 
the atom, without considering the contribution of the 
ions. Yet the thermal motion of the ions, which leads to 
the effect of amplitude modulation, should impose a 
definite limitation on the applicability of such an ap­
proach. This limitation can be found with the aid of the 
results of Sec. 3, by putting in them a= 0. Simple con­
siderationsl221 lead to the following condition: 

Peffi' / Vo > 1, (39) 

where y is the impact electronic width of the central 
component; Peff is the effective impact parameter of 
the ion; in our case Peff ~ N"113. A condition of this 
type is violated for the L01 line in a plasma with tem­
perature Ti = T e ~ 2 eV already at an electron concen­
tration Ne ~ 6 x 1016 cm-3l8l, thus pointing to the im­
portance of the aforementioned effect. 

5. A criterion of the type (39) has the clear meaning 
of the condition for the smallness of the ''lifetime'' of 
the atom 1/ y compared with the characteristic time of 
variation of the ionic field Peff/v0, and was already 
introduced in the literature on this basisl23 '24 '2J as a 
criterion for the quasistatic behavior of the ions upon 
their "convolution" with electrons, and in all cases it 
was assumed, from intuitive considerations, that Peff 
~ N-113. Yet in the general case C2 = a r< 0 (non­
central components), the problem includes besides N-113 
one more characteristic length, namely the Weisskopf 
radius a/vo, so that it is not at all evident beforehand 
which of these lengths (or their combination) plays in 
each concrete case the role of Peff; the latter can be 
found only from a direct calculation of the contribution 
of the corresponding broadening mechanism. Thus, ac­
cording tol251 , for pure phase modulation Peff ~ a/vo. 
It is easy to verify that allowance for the amplitude 
modulation leads only to some numerical decrease (by 
approximately a factor of four) of this value of Peff· As 
to effects of non-adiabaticity, only one of them-the 
change in the energy of the Stark state, connected with 
the explicit time variation of the phase, is amenable to 
analysis in terms of the criterion (39) 10>. The corre­
sponding estimate based on calculating the corrections 
for thermal motion (seel25 ' 261 ) gives a value Peff 
~ N-113 « a/v0 , so that the non-adiabaticity effect 
leads, as in Sec. 1, to a more stringent "adiabatic" 
criterion of quasistatic behavior. 

It is appropriate, in developing the results ofl25 •26J, 

to summarize the role of criteria of the type (39) con­
nected with the damping in a number of quasistatic 
criteria. First, they always pertain only to the inner­
most part of the line (w- w0 « y), whereas in the re­
maining part of the line (w- w0 » y) a criterion of 
the "modulation" type (37) is valid and corresponds 

10> The other effect- the change of the wave function of the state corre­
sponding to the second term in (25)-is determined by the initial con­
ditions (by the value of x1 (0)). Therefore its contribution to the pro-
file cannot be changed by decreasing the lifetime of the state, and con­
sequently cannot be estimated with the aid of (39). 

formally to the limit y = 0. Second, the value of Peff 
is determined in the general case not only by the char­
acteristics of the microfield (which would lead always 
to Peff ~ N-113), but also by the character of its action 
on the atom (a r< 0). The sometimes realized very sim­
ple case Peff ~ N-113 is connected either with the fact 
that a = 0 (central component, amplitude modulation), 
or with the fact that a drops out from the result be­
cause of some cancellation of the factors (non-central 
component, non-adiabaticity effect). 

6. In conclusion we emphasize that one of the main 
qualitative conclusions of our analysis is as follows: 
unlike the quasistatic profile of the line itself, devia­
tions from it as a result of thermal motion of the per­
turbing particles are due mainly to effects principally 
outside the framework of the classical adiabatic model 
of an oscillator with variable frequency. 

The author is sincerely grateful to I. I. Sobel' man 
for a valuable stimulating discussion. 
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