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The analytical properties of the structure factor S(K) as K- 0 are discussed for a simple classical 
liquid far from the critical point. The factor is considered to be a function of the real variable 
K = IK 1. It is shown that S(K) has two types of non-analytic parts, a logarithmic contribution with 
leading term ""K 4 ln K and a term which is discontinuous in the fifth derivative and possesses a 
leading term "'I K 15 • Some initial terms of the asymptotic series describing both non-regular parts 
of the structure factor are found explicitly. 

1. INTRODUCTION 

THE structure factor of a liquid or dense gas S(K) is 
the most important characteristic correlating the struc­
ture and properties of these systems. However, almost 
all our knowledge of S(K) at the present time is purely 
empirical, has low accuracy, and is limited to small re­
gions of values of K. An important theoretical achieve­
ment has been the proof in l 1 l that S(K) is nonanalytic 
as a function of the real variable K at the points K = 0 
and has the expansion 

S(x) Fa,+ a,x' + a,Jxl' + ... (1) 

near this point, with discontinuous third derivative. 
Such a character of the non-analyticity of S(K) was ob­
tained in connection with the falling off, at large dis­
tances, of the pair dispersion forces between particles, 
according to the law r-6 • The behavior of S(K) near 
K = 0 would be different for a different fall-off of the 
intermolecular forces. 

In the present work, we want to obtain a more realis­
tic and more exact estimate for the asymptotic behavior 
of the pair potential of intermolecular forces cl>(r) and 
the radial distribution function g(r) as r - "" for a 
classical liquid or dense gas and, in this connection, to 
re-examine the question of the character of the non­
analyticity of the structure factor S(K) as tc - 0. It 
will be shown that the principal singularities in S(K) are 
logarithmic, of the type K4 ln K in place of IK 13 in £1 J. 
The basis for such a review of the results of £1 J is the 
well-known factl 2 J that the actual asymptote for the in­
terparticle pair potential, found with account of the finite 
propagation velocity of the electromagnetic interactions, 
has the form cl>(r)"" -r-7 in place of the asymptote 
cl>(r) "" -r-6 used in £1 l, the latter corresponding to the 
electrostatic approximation. 

We shall consider a classical system with a Hamil­
tonian that depends strictly only on the central pair in­
terparticle interactions 

in the limit N - "". The connection between the asymp-
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totic behavior of cl>(r) and the radial distribution func­
tion g(r) as r - "" is given by the exact relation found 
by Kuni lSJ 

g(r) -1 = -kT(on I oP).'Il>(r) + O([!l>(r)l'), (3) 

where n is the mean particle-number density and P is 
the pressure. The relation (3) was obtained less rigor­
ously and later also used in £1 l. The functions g(r) and 
S(K) are connected in turn with the well known relation 
(see l4 l) 

~ 

x(S(x)-1) = 4nn J r(g(r)-1)sin(xr)dr. (4) 
0 

2. THE ASYMPTOTE OF THE PAIR POTENTIAL 
AND OF THE RADIAL DISTRIBUTION FUNCTION 

We shall establish the form of the potential cl>(r) at 
large distances by following the discussions of £5 l. An 
inessential difference will consist of allowance for a 
larger number of terms in the asymptotic expansion of 
cl>(r). We shall start out from the exact formula obtained 
in £5 l for the force of attraction between two macro­
scopic media separated by a plane parallel gap of width 
l, which follows from the quantum theory of electromag­
netic fluctuations (see also ls, 7 l), Let both media be the 
same and let e:( w) be their dielectric permittivity at the 
frequency w. Then at distances l >>tic /I, where I is 
the ionization potential of the molecule, this force is 
equal to 

F(l)= -~ j x'dx J {[( s+p )'e•-1 ]-' 
32n'l' 0 , s - p 

+ [ ( s + pe )' e• _ 1 ]-'} dp, 
s- pe p' 

where 

s=Ye-1+p', e=e(icx/2lp). 

If the two media are gaseous, then we have 

e(m) = 1+4nna(w) + O(n'), 

(5) 

(6) 

(7) 

where a(w) is the molecular polarizability at the fre­
quency w and e:- 1 is small. Then simple transfor­
mations reduce Eq. (5) to the form 
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hen's s~ 1-2p'+2p' [ ( ex )]' F(l)=--1-, x'e-xdx , a iV dp+O(n'). 
16 0 1 p p (8) 

We are interested in the value of a(i w) as w- 0. 
We denote by a(w) and {3(w) the real and imaginary 
parts of the molecular polarizability; a (w) is even and 
{3(w) odd in w. Then, for small w, we have 

a(iw) = a(iw)+ i~(iw) 
roz ros ro' 

= a(O)-w~'(O)---za"(O)+B~"'(O)+ 24 a'v(O)+.... (9) 

Substitution in (8), after integration, leads to the asymp­
totic form 

where 

hen' { 23 e e' } F(l)= -- -a,+A,~+A,~+ ... +O(n'), 
81' 5 l l' 

A,= -8ao~o', A,= -"J,(a,ao''- ~o"), 

A,= "/s(ao~o"' + 3ao"~o'), ... 
and for brevity, we set a(O) = OQ, /3'(0) = {3~, etc. 

(10) 

(11) 

On the other hand, for a gaseous medium with inter­
molecular pair potential <l>(r), the form F( l) can be 
computed directly. Expanding, for large distances, 

1 ( B, B, ) ll>(r)=-- B,+~+--,+··· , rm r r 
m>3, 

we get after elementary calculation, for large l, 

2nn' ~ B, +O( ') 
F(l)=-zm-• k.l.(m-3+k)(m-2+k)l' n' ... , 

Comparing (13) and (10), we find that m = 7, 

he•+• 
B.=-- (4+ k) (5 + k)A •. 

16n 

(12) 

(13) 

(14) 

Thus, we have for the asymptote of the pair potential at 
large distances, 

6/ie { 23 , ~ _ ( e )k} ll>(r)=-- -a,+ k.I.B' ~ , 
nr' 24 ,,., r 

(15) 

with the corresponding values of the coefficients: 

B, = -'/,ao~o', B, = -"/16 (a0a0"- ~."), B, = "'/,.(ao~:" + 3a,"~o'), 

B, = "/"(aoao rv + 3a,"'- 4~,,~;'"}, 

B, =- '"/ .. (a,~,v + 10a,"~;" - 5a01 v~o') (16) 

lJ, =- "'j, .. (a,a,v' + 15a,"a,'v- 6~o'~,v -10~;"') etc. 

The zero term in (15) corresponds exactly to the result 
of C2 l and had been obtained in r5 J with the aid of the 
expression for the force F( l). All the remaining terms 
in (15) correspond to further approximations of the 
asymptote of <l>(r). It is seen that all the odd terms in 
(15) disappear if we neglect the dissipative part of the 
molecular polarizability f3(w). For monatomic mole­
cules or for other molecules that are sufficiently sim­
ple, the contribution from these terms to the asymptote 
of <l>(r) is very small. 

Using the expression (3), it is now easy to establish 
the asymptotic expression for the radial distribution 
function at large distances: 

6kT ( an ) ' he { 23 ~: ( e ) '} ( 1 ) 
g(r)-1=- - --:; 24 a,+ .l..JB• - +O !.'. (17) 

It aP T r ·~· r r 

In actuality, in addition to the power-series part of 
the asymptote of g(r)- 1 described here, there is also 
an exponentially decaying part. r4 l Contributions decay­
ing exponentially with increase in l should also be 
added to (8) (see r5 , eJ). However, for our purposes, 
these refinements are unimportant. The applicability of 
the estimate (17) as well as of the estimate (3) is lim­
ited only by the condition of being far from the critical 
point of the liquid, where (on/oP)T - oo. 

3. THE BEHAVIOR OF THE STRUCTURE FACTOR 
NEAR K = 0 

From Eq.(4) for the structure factor, we can direct­
ly establish the fact that the function S(K) itself and its 
first three derivatives exist at the point K = 0, are con­
tinuous, and are respectively equal to 

S (0) = 1 + 4nn J r' (g(r)- 1) dr = nkT~r, 
0 

4nnS~ 
S"(O)= -3 r'(g(r)-1)dr, S'(O)=S"'(O)=O, (18) 

0 

where {3T is the isothermal compressibility of the sys­
tem (see rsl). However, the fourth derivative at the 
point K = 0 and all higher derivatives do not exist as a 
consequence of the slow decrease in the function g(r)- 1 
with increase in r, in accord with (17). Let cp(r) be 
some arbitrary continuous function, possessing only the 
property that both of the integrals on the right side of 
Eq. (19) below exist. Then, in place of Eq. (4) for the 
structure factor, we can write the identically equal ex­
pression 

an 2 00 

x(S(x) -1) = nkT ( ap) r he J cp(r)sin(xr)dr 
0 

+ 4nn f{ r(g(r)-1)-~ (an)' hecp(r)} sin(xr)dr. 
, 4n ap r 

The integrand of the second integral behaves as 

kT (an)' he{23a,' + 24 ~ lJ, (_:_)k -cp(r)}sin(xr). 
4Jt ap T T6 T6 {;:t T 

(19) 

(20) 

for large values of r. Therefore, it is not difficult to 
select the function cp(r) so as to compensate any num­
ber of higher terms in (20) and to keep the possibility 
of a sufficiently simple estimate of the first of the in­
tegrals in (19). Otherwise, cp(r) can remain arbitrary. 

As an example, we consider the function 

r) = 23a, 'r- 60ea,~,' + (r) 
cp( ( 2 + ')' Cjlt ' r ro r 

(21) 

where r 0 is some molecular length and cp1(r) a new 
arbitrary function, which falls off as r - oo no slower 
than r-8 • It is easy to see that, for such a choice of 
cp(r), the two principal terms in the asymptotic estimate 
(20) cancel one another. Therefore the second integral 
in (19) as a function of K leads to regular contributions 
to S(K) up to the fifth derivative at the point K = 0 in­
clusively. The possible nonregular contributions to the 
same order are then connected with the first integral 
in (19). Thus, one should estimate the principal nonreg­
ular terms for K = 0 by the following integral: 

J~ 23a, 'r- 60ea,~,' . ( ) d 
s1n xr r, 

0 r(r,'+r')' (22) 
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For this case we consider two tabulated integrals: [s l 

J• sin(xr) x . . 
10 = -, -dr=--{e-1"1'•El(lxlro)-e1"1'•Ei(-lxlro}l 

• r, + r 2rolxl 
(23) 

J, = s· sin(xr) dr = ~ (1- e-1•1'•). 
, r(ro'+r) 2ro'lxl 

Triple differentiation of each of these with respect to r 0 

leads to the integrals that enter in (22). By separating 
the logarithmic terms from Ei (± I K I r 0 ), we get, for 
small values of 

10 = -~ (1 +x'ro' + ... )ln(vlxlro) 
120 14 

lC ( ~e•r,• 2x'r, • 4x'ro' } 
+ 4ro' 1-6+"""45- 525 + ... 1 

3nx ( x'ro' x'ro' lxl' ro' + x'r,' } 
J, = 16r0' 1 -fa+ 120 - ---zm- 1008 .. · 1 

(24) 

where y = ec, C being Euler's constant. It follows from 
(19)-(24) that the principal nonregular terms in S(K) at 
K = 0 are equal to 

nkT(~}' hex' (-23ao'ln(vlxlro)+5ncaollo'lxl+ ... ). (25) 
oP , 120 

By continuing the procedure of compensation of the suc­
cessive terms in (20) with the help of integrals of the 
type 

J• sin(xr) dr 
o (r:+r)" I 

J• sin(xr) dr
1 

0 r(r: + r)" (26) 

we can obtain the nonregular terms in S(K) that follow 
after (25). Omitting the cumbersome calculations, we 
put down the final result. The function S(K) in the vicin­
ity of the point K = 0 can be represented in the form of 
a sum of three functions 

S(x) = S0 (x) + S,(x) + S,(x). (27) 

The function S0(K) is regular at the point K = 0, is even, 
and has the expansion 

S,(x) = S(O) + 'f,S"(O)x' +Ax'+ Bx' +... (28) 

The first two coefficients are determined by (18), and 
the later terms are very complicated and we shall not 
write them down. The function S1(K) has a logarithmic 
singularity in the fourth derivative at the point K = 0, is 
even and its expansion is equal to 

S,(x) = -nkT (!!!.)' ~x'ln(vlxlro) 
oP , 120 

( 48, Jj, Jj, ) 
v 23a 1 --c'x'+-c'x'---c•u•+ 
.... 0 7 126 13860 ~ ... 

(29) 

with coefficients B2n from (16). Finally, the function 
S2(K) has a continuous fifth derivative at the point K = O, 
is even and its expansion is 

(on}• nhc I I'(- B •• "+ B. , , } (3 ) S,(x)= -nkT oP ;60 X B,- 56 c X 5o4oc X-... 0 

with coefficients B2n+ 1 from (16). It is seen that the 
auxiliary length r 0 introduced earlier falls out from 
the result as it should. Terms with ln (yr0 ), which can 
be separated from S1(K), are regular in K and are ex­
actly compensated with similar terms from Sa(K), 

The appearance of a nonregular contribution S2(K) 
in (26) is connected with the account of the dissipative 

part of the molecular polarizability {:3( w ). If we set 
{3( w) = 0, then S2(K) disappears and the coefficients B2n 
in (16) are greatly simplified • 

4. DISCUSSION OF RESULTS 

The results of (27)-(30) are accurate for the model 
of a nonmetallic classical liquid far from the critical 
point that is generally accepted at the present time. The 
basis of this model is the assumption of the pair charac­
ter of the intermolecular forces (1). The problem of the 
correctness of the results (27)-(30) for real liquids is 
unclear, inasmuch as there are no accurate data on the 
degree of suitability of this same model. In real simple 
liquids there exists a small impurity of triple and more 
complicated collective interactions; [9 l however, their 
characteristic asymptote at large distances, with ac­
count of the retardation of the electromagnetic interac­
tions and their contribution to the exact asymptote of 
the radial distribution function have not been studied. 
Here the fundamental problem is not whether there ex­
ists an appreciable collective contribution to the total 
energy of the system, but the extent to which this con­
tribution can be assumed to be independent of the den­
sity of the system. In the same measure, that this in­
dependence exists, so our results remain valid even in 
the presence of collective interaction, inasmuch as the 
potential iP(r) in (1) can be treated only as an effective 
pair potential without change in the discussions set down 
above. The situation remains unclear if the collective 
interactions depend appreciably on the density of the 
system. 

The static structure factor S(K) is the zero moment 
in frequency of the more general dynamic formfactor 
S(K, w ), which plays a fundamental role in the theory of 
scattering of slow neutrons by simple liquids. If we in­
troduce the moments of all orders . 

ll•(x)= J m"S(x1 m)doo1 (31) 

then for the classical liquid, 

l!o(X)=S(x), !lz(x)=kTx'/2m, ~'"+•(x)=O. (32) 

By considering the moments as functions of the real 
variable K, we encounter the same problem of their be­
havior as K - 0. Using the explicit expression for the 
moment J.L 4 (K) and the known capacity of obtaining high­
er moments, [lo l it is easy to derive the result that they 
will all have as K - 0 principal singularities of the 
form 

(33) 

This suggests that not only the static structure factor 
but also the more important dynamic form factor of a 
simple liquid is nonanalytic in K - 0. 
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