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Excitation of spin waves in ferroelectric magnetically ordered crystals is investigated. It is shown 
that if the crystal is simultaneously a semiconductor, excitation of spin waves by an external sta
tionary electric field should be possible. The mechanism of such an excitation differs in principle 
from the well-known mechanism of excitation of spin waves by an electric field in ordinary (non
ferroelectric) magnetically ordered semiconductors and should lead to considerably greater 
growth increments. 

1. A whole series of ferroelectric magnetically 
ordered crystals is known at present (see the 
review[ 11 ). We show that if such a crystal is simul
taneously a semiconductor it is possible for spin waves 
to be excited in it by a constant external electric field. 
The mechanism of this excitation differs in principle 
from the known excitation mechanism of spin waves 
Gurevich and Korenblit[ 2• 3l) by an electric field in or
dinary (nonferroelectric) magnetically ordered semi
conductors and should lead to considerably greater 
growth increments. 

In an ordinary magnetically ordered semiconductor 
the coupling between the current and the spin system 
is, as is well known, accomplished through the trans
verse electromagnetic field; the growth increments 
are, therefore, relativistically small (proportional to 
u 2/ c 2 ; u is the average directed velocity of the current 
carriers). On the other hand, in the case of mag
netically ordered ferroelectrics the coupling between 
the electric and spin system should be accomplished 
directly (because of the presence of mixed magneto
electric terms in the expression for the internal en
ergy of the crystal; the small parameter characterizing 
such a magnetoelectric coupling is obviously propor
tional to vg; c 2 where v0 is the velocity of the atomic 
electrons). In this sense the excitation of spin waves 
in magnetically ordered ferroelectrics is analogous to 
the mechanism of the instability of sound waves in 
piezoelectric semiconductors considered by White.[ 4 J 

2. In describing the spin system of a crystal we 
shall start from the equation of motion of the magnetic 
moments of the sublattices and from the equations of 
magnetostatics (see, for example, [sl) 

a:,= g[M,H,], div ( H + 4n .EM,) = 0, rotH= 0, (1 )* 

' 
where Mi is the magnetic moment density connected 
with the i-th magnetic sublattice, g is the gyromag
netic ratio, H, is the magnetic field and Hi is the ef
fective field related to the internal energy of the 
crystal U by the relation 

H, = -6U IbM,. (2) 
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We shall describe the motion of the current carriers 
with the aid of the equations of hydrodynamics and 
hydrostatics 1> 

iJp± . 
v± = ± x±E, Tt + dlV(p±v±) = 0, 

div (E + 4nP) = 4n(p+ + p_), rotE= 0, 
(3) 

where P± and V± are the charge densities and directed 
velocities of the carriers (the subscripts + and -
refer to holes and electrons), K± are the carrier 
mobilities, E is the electric field and P is the polari
zation vector related to the internal energy of the 
crystal by the relation 

P=-C~- !)· 
The internal energy U can be represented in the 

form 

where UM is the energy of the spin system, DE 

(4) 

(5) 

= (81Tr 1qjEiEjdV is the energy of the electric field, 
and Uc is the coupling energy between the spin system 
of the crystal and the electric field ( ~ij is the dielec
tric permittivity tensor of the crystal). 

Substituting (5) in (4) and solving Eq. (3), we find 
the oscillating component of the electric field: 

e= -~ k(kp) 
k 2 e* " 

where p is the oscillating component of the vector 
Pc =- oUc/oE, 

, ( X+ X- ) e = e + 4nipo k + k , w- u+ c:o- u_ 

(6) 

(7) 

l1± is the average value of the directed velocities of the 
carriers, Po is the absolute value of the charge density 
of each type of carrier, w and k are the frequency and 
wave vector of the oscillations (for simplicity we as
sume that the crystal is isotropic with respect to its 
dielectric properties ~ij = Oij~ ). We note that if mainly 
one type of carrier only makes a contribution to the 
current (for example, if K- >> K+ ), then the function ~* 

llWe assume for simplicity that H0 ~ cK-J; then one need not 
add in the first of Eqs. (3) the term taking into account the 
Lorentz force. 
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is expressed in terms of the conductivity a =Po K-: 
• 4nio 

11 =e+ 00 _Jru_· 

3. Returning to relations (1) and (2), we represent 
the equations of motion of the magnetic moments in 
the form 

8:'= g[M,,(H/' +11/)]+g[M,h,], (8) 

where hi is the portion of the vector Hf = -liUc/liMi 
proportional to the oscillating electric field e and Hi 
= H~ - hi. It is readily seen that the term with Hi 
leads only to a small overestimate of the frequencies 
of the spin waves and can therefore be omitted; as re
gards the component with hi, it can lead to an appreci
able change in the damping constant of the spin waves 
and even to their growth. 

We shall restrict ourselves below to the case of a 
crystal with two equivalent magnetic sublattices (an 
antiferromagnet or a weak ferromagnet). For such 
crystals 

Ux = J {!!:.....-H.(M,+Ma)+~( 8M'~+~~) 
Bn 2 8x1 iJx1 8x; 8x1 

8M, 8M, II 
+ a'-0--0---2 [(M,n) 2 +(M,n) 2]-II'(M,n) (Man) 

X; X; 

+TJM,M,- dn[M,M,] }dv. (9) 

where Ho is an external magnetic field; o:, o: ', and 1J 
are exchange interaction constants; {3 and (3' are 
magnetic anisotropy constants; d is the weak ferro
magnetism constant (the Dzyaloshinski1 constant) and 
n is the unit vector along the anisotropy axis (the z 
axis). Introducing the vectors M = M1 + M2 and L 
= M1 - M2 and taking into account the fact that 1J » 1, 
we bring the equations of motion of the magnetic mo
ments into the form 

8: = ~ [L,(a- a') H +(11-ll')n(Ln)+ h-]+ ~ d[n[ML]] 

+ ~ [M,(a +a') ~M +(II+ ll')n(Mn)+h+ + 2H], 

iJL g 
- = g[L, H- TJM] + -([Lh+]+[Mh-] ), 

{Jt 2 (10) 

where h± = h1 ± h2. 
In the case of an antiferromagnet with an easy

plane type anisotropy (as well as in the case of a 
ferromagnet) in the absence of an external magnetic 
field, solving Eqs. (10) and taking into account the fact 
that d « 1J, we obtain 

( ro' ) i + ioogM0 1-- m,=-h, ---h,-, ro,' 21] oo,' 

( oo' } 1 + ioogM, 
1-- m.=-h. +--h,-, 

ooa' 21] oo~' 

where w1 and w2 are the frequencies of the two 
branches of spin waves 

ro, = V,k, (l)z = [ (gM,) '2TJ Ill - II' I + V, 'k'] 'h, 

V, = gM,l'2TJ(a- a'), 

(11) 

(12) 

m is the oscillating component of the vector M and 
M0 is the magnetic moment density associated with 
each sublattice (the x axis is chosen in the direction 

of the vector L 0-the equilibrium value of the vector 
L). 

In the case of an antiferromagnet with an easy-
axis type anisotropy we have according to (10) 

( ro'} 1 ioogM0 1-- m=-{h+-n(h+n)} ---[nh-]. 
rot ~ rot 

(13) 

The excitation of spin waves in an antiferromagnet 
in a strong external magnetic field equal in order of 
magnitude to the exchange field H0 ~ 7]M0 can be of 
special interest. The point is that, as shown in the 
following section, in this case the growth increment of 
the spin waves apparently turns out to be considerably 
larger than in the absence of a magnetic field. Solving 
Eqs. (10) and being only interested in the low-frequency 
branch of oscillations, we obtain 

where w3 is the frequency of the low-frequency spin 
wave 

and the quantity Lo is connected with the external mag
netic field H0 by the relation 

L, = (4M,'- H,'f TJ') ''• (16) 

(the field Ho is directed along the anisotropy axis). 
4. The explicit form of the growth increment of the 

spin waves depends appreciably on the structure of the 
energy of the interaction between the spin system of 
the crystal and the electric field Uc. Apparently 
(see[1l) in the known magnetically ordered ferroelec
trics the spontaneous polarization vector P 0 is per
pendicular to the spontaneous magnetic moment M; we 
shall therefore choose the coupling energy Uc in the 
simplest form leading to the perpendicularity of the 
indicated vectors: 

u. =-A. JE[M,M,]dV, 

where A is a constant (if one interprets the results 
of[l] starting from the coupling energy (17), then 
A~ 10-3 ). 

{17) 

According to (17), (2), and (4), in ferromagnets with 
an easy-axis type of anisotropy 

h+ = -2A.M0[ne], h- = 0, p = A.M,[nm]. (18) 

Substituting these relations in (6) and (13), we obtain 

1- ~:=- ::.(A.M,)'sin'e,, (19) 

where Bz is the angle between the wave vector of the 
oscillations and the anisotropy axis. Solving Eq. (19), 
we find the growth increment of the spin waves due to 
their interaction with the current: 

= _ 2(4:n:)'(A.Mo) 2 sin'B,ooapo { "+ + X- ) { 20) 
'\' TJie"l' oo,-ku+ oo,-Jru_ • 

Taking into account (3), we see that for a not very 
strong electric field Eo< E2(k) where E2(k) 
= w2/ Kk ( K is the larger of the quantities K+ and K-) 
the increment y is negative so that the oscillations 
with the wave vector k are damped. For Eo > E2 the 
value of y becomes positive; in this case the interac
tion of the current with spin waves leads to a growth 
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of the latter. Of course, for the spin waves to start 
growing the increment y must be greater than the 
damping constant due to the interaction of the spin 
waves with one another, with phonons and with the de
fects of the crystal. 

Obviously, the condition Eo> E2(k) represents 
simply the condition for the Cerenkov excitation of 
spin waves by a flux of charged particles; the point is 
that this condition is equivalent to the inequality 
u > w2 /k where u is the average directed velocity of 
those current carriers which are characterized by the 
largest mobility. 

In antiferromagnets with an easy-plane type of 
anisotropy 

h+=-t.[L,e], h-=O, P= 1/2A[L,m]o (21) 

One can also use the same relations for weak ferro
magnets since, although in this case h- ;e. 0, the con
tribution of the field h- to the growth increment turns 
out to be proportional (compared with the contribution 
of the field h+) to the small parameter 'T/-1/2. 

Substituting (21) in (6) and (11 ), we obtain 

1 - w' __ 4n(t.M,)' , 9 w' 4n(t.M,)' (22) 
-,- , cos •• 1--. =- cos'S, 
w, Tt& w,' TJ&' 

where ey is the angle between the vector k and the y 
axis. Solving these equations, we find the growth in
crements of the two branches of spin waves: 

,=- 2(4n)'(t.M,)'cos'B.kV,p,( X+ + X- ), 
'I TJJe'J' kV,-ku+ kV.--ku_ 

(23) 
__ 2(4n)'(t.M,)'cos'B,wzPo ( X+ + X- ) 

Vz - 11J e'J' <Oz - ku+ <Oz - ku_ 0 

According to (23), on increasing the external field 
the low-frequency spin wave will first of all commence 
to grow. For this the electric field must exceed the 
critical value E 1 = K~1 Vs, and the carrier velocity 
must exceed the phase velocity Vs ~ 3 x 105 em/sec. 
For the growth increment to be a maximum, the ex
ternal electric field should be directed perpendicular 
to the anisotropy axis and to the equilibrium direction 
of the vector L. As regards the excitation of a high
frequency spin wave, for this, as before, the condition 
E > E2(k) must be fulfilled. 

The relative growth increment of the spin waves 
y / w in antiferromagnets (as well as in weak ferromag
nets) turns out according to (20) and (23) as in the ab-

sence of an external magnetic field to be proportional 
to the small parameter 'T/-1• In antiferromagnets placed 
in a strong magnetic field, H0 ~ 1JM0 , the relative 
growth increment will not contain this small parameter. 
In fact, it follows from (17) that 

H, 0 gL, (24 ) h,+ =- t.L,e.,. h.-= t.-e., p, = !--t.H,m,o 
TJ 2w 

Substituting these relations in (6) and (14), we obtain 
w' 2n (gH ) 2 

1--=---(t.L)'--'- •a w32 T)e• o 0h 2 cos x, 

where ex is the angle between the vectors k and 
Hence we find for the growth increment 

(25) 

Lo. 

y,=-(4n)'(t.L,)'cos'B.(gH,)'kVHP•( x+ + X- )
0 

TtJe'J'w,' kVH-ku+ kVH-ku_ 
(26) 

We draw attention to the fact that in antiferromag
nets located in a strong magnetic field (as in antiferro
magnets with the easy-plane type of anisotropy) the 
excitation of spin waves does not require very large 
carrier velocities, u = Vc ~ 105 em/sec. The critical 
value of the electric field is in this case E3 =Vel K. 

It is important that the required carrier velocity and 
the critical electric field E3 decrease with increasing 
external magnetic field, vanishing in fields close to 
He = 2'T/Mo; the growth increment itself, on the other 
hand, increases with increasing field like H~. We em
phasize that formula (26) [as well as (14)-(16) and (24) 
and (25)] are valid for Ho <He; if Ho >He, then Lo 
= 0 and the crystal behaves like a ferromagnet. 
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