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A theory is proposed making it possible to describe the electron states in a,field of charged impuri
ties for all energies in the conduction band and not very deep in the forbidden band. Such a descrip
tion is possible because owing to large-scale fluctuations of the concentration of impurities the 
states with large kinetic energies give the major contribution to the density of states in the energy 
region under consideration. A diagram technique is developed which permits one to take this cir
cumstance into account. A justification for the method of "distorted bands" in the theory of the 
density of states is given, the region of its applicability is indicated, and the first correction to it 
is calculated. 

1. INTRODUCTION 

LET us consider semiconductors with shallow impuri
ties of one type (the compensation is small) at low 
temperatures. In this case the electron states are 
characterized by one dimensionless parameter {3, 
which represents the ratio of the average distance be
tween impurities to the Bohr radius a (a = li 2 E> 0 /me2 

where E> 0 is the dielectric constant and m is the ef
fective mass). If {3 = (Na3 f.l/ 3 » 1 (N denotes the 
concentration of impurities), then at zero te-mperature 
all electrons are found on impurities. In the opposite 
case, {3 << 1, the electrons form a weakly non ideal 
Fermi gas of large density and possess a metalic con
ductivity. This case is also considered in the present 
article. 

If {3 « 1 one can regard the electrons near the 
Fermi surface as free; however, electron states with 
small energies are substantially distorted by the ran
dom potential of the impurities. In addition, states ap
pear in the forbidden band, which have an effect on 
interband absorption and emission of light. 

First let us consider the one-electron problem, as
suming the positions of the impurities to be random and 
their potential to be a Coulomb potential with Debye 
screening (this approximation is discussed at the end 
of Sec. 2). In a number of articles[l-31 the idea has 
been expressed that in a calculation of the density of 
states in a heavily doped semiconductor one can regard 
the electrons as classical. In this connection the elec
trons "experience" only the potential of that point at 
which they are located, and the density of states is ex
pressed by the simple formula 

(2m)'l·s __ 
Pel, (e)= 2n2/i3 ye- uF(u)du, (1) 

where E> denotes the energy reckoned from the bottom 
of the conduction band (for simplicity we assume the 
spectrum of the electrons in an ideal crystal to be iso
tropic and quadratic), F(u) denotes the distribution 
function of the potential u, 

e2 
U= L<p(r-r;), <p(r)= eore-xr, (2) 

! 

where K = ( 2/ a) ( 3/11 ).1/ 6 {3-112 is the reciprocal of the 

screening radius. For a random distribution of impuri
ties and a small value of u 

1 
F(u)=---=e-u'N', y2=2Nf~(r)tFr. (3) 

vl'n 
A theory is developed in the present article which 

makes it possible to determine the spectrum of the 
electrons in a field of random impurities for all posi
tive energies and for not very large negative energies 
(satisfying the condition (5), see below). The range of 
validity of formula (1) is determined and the correc
tions to it are calculated. 

2. QUALITATIVE DISCUSSION OF THE RESULTS 

It is easy to obtain[ll formula (1) by assuming the 
potential to be smooth, i.e., by making an expansion of 
the density of states in powers of Planck's constant. 
Formula (1) is obtained in the zero-order approxima
tion (it is purely classical), where F(u) is not neces
sarily expressed by formula (3). However one can 
verify that the next term of this expansion, taking the 
gradient of the potential into account! is larger than the 
preceding term in the ratio Ka R:: {3- 1 2 » 1. One can 
easily understand this since in order to expand in 
powers of Planck's constant it is necessary that each 
potential well, described by the potential cp ( r ), should 
contain many levels. r 41 The condition that a screened 
Coulomb well contains many levels is ( Ka)3/ 2 = (3-314 

« 1, which contradicts the condition for heavy doping, 
{3 « 1. Nevertheless, we shall show that formula (1) 
has a region of validity. Our cone lusion is not due to 
the expansion with respect to Planck's constant and is 
based on an ultra-quantum property- the absence of a 
level in a strongly screened Coulomb well. 

As is clear from Eq. (3), fluctuations of order K- 1 

give the major contribution to the mean-square poten
tial y (values of r ~ K- 1 give the major contribution to 
the integral). Let us assume that the random potential 
which we are studying is smoothed out with regard to 
fluctuations of smaller scale. A typical well for a 
smoothed-out potential has a width ~ K-1 and a depth 
~y (Fig. 1). 

In order for such a well to have many levels, the 
condition ym/li 2K2 = {3-114 >> 1 is necessary. We shall 
assume that this condition is satisfied. Then all the 
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FIG. I. Random potential which is 
smoothed-out with respect to fluctua
tions of scale smaller than K- 1. 

electron states of such a well, having a kinetic energy 
K >> ti 2 K2/2m, may be described classically. 

Let us now remember the very small-scale fluctua
tions. For a given kinetic energy K the fluctuations 
having a scale larger than the wavelength ti/.,lmK may 
be regarded as classical. Fluctuations of smaller 
scale are averaged over the wavelength of the electron. 
One can estimate the level shift of the electron, to 
which these fluctuations lead, by having calculated the 
mean-square potential of these fluctuations y K· It is 
expressed by a formula analogous to {3) but the inte
gration goes over all values of r < ti/ .,I mK: 

h(mK}-1/2 

~ e4Nn 
Yx2 = N · <p2r2 dr:::::~. 

0 eo'VmK 

(In approximate equations we do not write numerical 
factors). It is obvious that the very small-scaled fluc
tuations do not have any influence on the spectrum of 
the electrons if K > YK· Let us define Kc by the 
equation 

e2 1 
K y · K --- (4) c = Kc' c- aeo ~6/s. 

Since Kc > li 2K2/m (Kcm/li 2K2 = {3-115 ) the quasiclassi
cal description is valid provided K > Kc. 

Expression (1), being purely classical, takes into 
account only states with E: - u = K > 0. Substituting 
F( u) from (3) into (1 ), one can easily see that for 
E: > y values of K = E: are essential in the integral, 
for - y < E: < y values of K "" y are essential, and 
finally for € < 0, IE: I~ y values of K"" y 2/E: are es
sential. In this last case F( u) is small, u "" E:, and 
the states near the bottom of the well (Fig. 1) are im
portant. Therefore, it is obvious that for E: < 0 the 
condition for the validity of (1) is 

I£ I < e, = y' I K,. (5) 

In the region E: < 0 the density of states Pel decreases 
like exp(-E:)'y 2 ). However, since E:c/y ={3-1120 "" 1, 
the Gaussian law of decrease in the quasiclassical 
region is absent in practice. 

It is easy to see that formula (3) for F( u) is valid 
for u :s E:c· As already stated, the fluctuations of order 
K- 1 give the major contribution to it. The potential 
created by such a fluctuation is e 2KZ/ €0 , where Z is 
the excess number of impurities in the fluctuation. 
Gaussian statistics are applicable if Z is smaller than 
the average number of impurities in a given volume, 
which is equal to NK-3 , i.e., provided u < uc 
"" (e 2K/€o)NK-3 • But uc/E:c"" {3-7110 ~ 1. Thus the 
quasiclassical approximation ceases to work sooner 
than Gaussian statistics. 

As shown in the artie les by Shklovski'l and the 
author P 1 the rearrangement of the density of states 
for I E: I "" E: c only involves the pre-exponential factor. 

The Gaussian law of decrease extends down to IE: I 
R:l y 4/ 3 • (e 2/a€o f 113 < Uc, after which the density Of 
states decreases like exp {- ..fl7r1n I E: I} . In the 
article by AndreevrsJ the impurity potential is as
sumed to be smooth but the terms containing first de
rivatives are taken into account exactly, but the ex
pansion is carried out to the second derivative. In this 
connection, however, a model potential is used which 
satisfies a normal distribution, owing to which such an 
expansion turns out to be convergent independently of 
the relation between K- 1 and a. In the article by 
Kasamanyant7l an attempt is made to obtain formula 
(1) by a diagram technique. For small energies 
Kasamanyan's result differs from {1). As will be shown 
below, the reason for the difference is due to the fact 
that at small energies the "interference" diagrams 
which were not considered by Kasamanyan are more 
important than all the others. 

In the investigation presented above the role of the 
free electrons reduced to a screening of the ions and the 
establishment of electrical neutrality. Let us discuss 
the conditions for the validity of this approximation. 
First of all we note that the maximum potential of the 
cluster of ions E:c which we are considering is small 
in comparison with the Fermi energy J.1.. This means 
that Debye screening is applicable to such a cluster, 
and the inhomogeneity of the electron density is small. 
The number of electron states in a typical well of width 
K- 1 and depth y is of the order of Pcl(O)yK-3 • The ratio 
of this quantity to the number ( NK-3 ) 1/ 2 of ions in such 
a fluctuation is of the order of {3 314 << 1, i.e., the ex
cess electrons do not distort the potential well. The 
minimum value Kc of the kinetic energy of the elec
trons which we are considering is large in comparison 
with the interaction energy e 2N113/ €0 of the electrons 
with each other, and this interaction does not prevent 
us from regarding electrons with K > Kc as classical. 

Thus, the one-electron problem formulated above 
makes sense, in the same way as formula (1), which is 
the most important consequence of it. One can use a 
similar approach in order to construct a theory of 
interband emission and absorption of lightYl 

3. DIAGRAM TECHNIQUE 

In this section a diagram technique will be developed 
which makes it possible to determine the corrections 
to the quasiclassical description. Let us introduce the 
definitions 

G= ( 1 ) 
e-H+itJ ' 

p2 L H=-+ <p(r-r;), 
2m 

p(e)=-~ImSpG, (6) 
n 

where cp is determined by formula (2), and ( ) denotes 
averaging over the coordinates of the impurities. The 
simplest diagrams for G are shown in Fig. 2. Each 
wavy line corresponds to a factor 41Te 2/ €0 ( q2 + K2 ), and 
each point corresponds to a factor N; the law of 
momentum conservation is satisfied at each point and 
integration is carried out over all independent momenta. 
The diagram shown in Fig. 2a leads to an energy shift. 
From the condition of electrical neutrality this shift is 
exactly cancelled by the potential of the electrons; 
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FIG. 2. The simplest diagrams for G. 

therefore we shall not consider it here. The self
energy part corresponding to the graph shown in Fig. 
2 b has the form 

(7) 

(8) 

where Ep = p?'2m. The basic idea of our expansion 
consists in the fact that we shall assume the momentum 
transfer fiq in integrals of the type (7) to be small in 
comparison with p. If one sets Ep-fiq"" Ep, then the 
integral converges and a typical value of q ~ K, i.e., 
we expand in powers of fiK/p. However, such a pro
cedure can be accomplished only in diagrams contain
ing two wavy lines per point. For a large number of 
lines per point the neglect of momentum transfer leads 
to divergences. Therefore the addition of a new line 
corresponds to multiplication by a quantity of the order 
of Ge 2 p/E 0 fi. For small values of E values of G"" 1/y, 
p "" fi/ v my will be essential so that 

e2p 1i fi"IG 
G- ~--=- ~ ~%~-=~ 1. 

eofi a ymy "fmy 

Therefore in the first few orders of the expansion in 
powers of fiK/p one can consider only diagrams con
taining two lines per point. Actually this is a conse
quence of the fact that for the potential <P ( r) with Ka 
» 1 the Born approximation is valid at all energies. 

Let us represent the propagator D( q) in the form 

D(q) = D'(q) + .D(q), D'(q) = '/,y'(2n)'ll(q), (9) 

where O(q) denotes the three-dimensional IS-function, 
and 

2-2fD( ) d3q 
Y - q (2n)3' 

which agrees with the definition (3 ). Here J D( q) d3q 
= 0. Substitution of the first term of (9) instead of D( q) 
is equivalent to neglecting the momentum transfer. 
The Dyson equation, taking into consideration only 
diagrams with two lines per point, has the form 

p' - I dsq 
e-2m-GP 1= )f(p,p--!iq,q)Gp-nqD(q) (2n)s' (10) 

where r is the vertex part. Let us substitute the first 
term of (9) in place of D( q) and we use the Ward 
identity: 

Then we obtain a closed equation for Gp: 

~t_+Gx-1=0, (11) 
dx 2 

where x = E - ( p2/ 2m) + iO, whose solution has the 
form 

1 oo e-u'IV' du 

Gel= vilit_~ 8 -p2/2m+u+ill. (12) 

Calculation of the density of states according to Eqs. 

' ' 
p p-q p 

FIG. 3 FIG. 4 

FIG. 3. Typical diagrams for ll 1 (p; q) (a) and ll2 (p; q 1 , q2 ) (b). 
The dotted lines correspond to the propagator 0° ( q). 

FIG. 4. Typical diagram for G(ll given by Eq. (15). The heavy dot
ted line corresponds to the propagator D( q), and the narrow dotted line 
corresponds to the propagator 0°(q). 

(12) and (6) leads to formula (1). This is the zero
order approximation of our theory. This approximation 
was obtained in a similar way by L. Keldysh (unpub
lished). In order to calculate the corrections it is 
necessary to take D( q) and diagrams with a larger 
number of lines per point into account. 

Let us introduce the n-point diagram 7Tn(P; q 
qh ... , qn), defined as the sum of all diagrams having 
two lines per point with n outgoing wavy lines (Fig. 3). 
In this connection in the internal lines by definition 
only the first term of the propagator (9 ), D0 ( q), is in
serted, where we represent this propagator by a dotted 
line, but the propagators corresponding to the external 
wavy lines in 7Tn are generally not included. In Appen
dix 1 we prove a theorem, according to which 

1 00 

lln(p; qto ... , qn)= ,rit ~ e-u'N'gp(e- u)·gp-nq,(e- u) ... 
y r -oo 

... gPn(e-u)du, (13) 
where 

( p2 )-l 
g.(e-u)= e- 2m -u+tll , 

The first correction to (12) represents the sum of 
all diagrams with two lines per point where D( q) par
ticipates once in each diagram (Fig. 4). It is easy to 
write down an analytic expression for this correction 
by using expression (13): 

d3q . 
G''>= s (2n)s.D(q)TI2(P;q,-q) 

or 1 oo . • 

G<ll= ,r I e-u'fV'gp2 (e-u)du\D(q)gp-•q{e-u)_i_L. (15) 
Y r n Jx, • (2rt)8 

One can also write down similar expressions in the 
following orders, having taken the appropriate 7Tn and 
having chosen the wavy lines into the points in a differ
ent way. 

We note that if the integration over u is neglected 
and if the energy t = E - u is introduced instead of E, 
then (13) corresponds to the usual product of free 
Green's functions. Based on this one can formulate a 
new diagram technique in which an expansion is car
ried out in powers of the potential of the small-scale 
fluctuations. Let us introduce the Green's function 
Gp(t) such that 

Gp(e)= 1_ j e-{e--t?!v'Gp(t)dt. 
vl'n_oo 

(16) 

!hen, in accordance with what was said above, for 
Gp(t) there exists the usual diagram technique with 
only the property that one should insert not D( q) but 
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D(q) into points containing two lines. The variable t 
plays the role of the energy. The free Green's function 
has the usual form (i<ol = (t - p:r2m + ic5t1• Its sub
stitu,!_ion into (16) leaSs to (12). The diagram of Fig. 2 b 
for Gp(t) leads to Eq. (15). 

Formula (16) reflects the qualitative picture set 
forth in sec. 2. In fact, for ~ = 0 values of t ~ y are 
important in Eq. (16), i.e., it is not necessary to find 
the Green's function Gp(t) at the bottom of the band, 
but it is sufficient to know it at the energy i"· In addi
tion, for its determination it is only necessary to know 
the short-wavelength part of the propagator D( q), and 
the long-wavelength part is taken into account classic
ally. 

4. QUANTUM CORRECTIONS TO THE DENSITY OF 
STATES 

First let us find the self-energy part ~p(t) corre
sponding to the diagram shown in Fig. 2 b for the 
Green's function Gp(t). In order to do this, in Eq. (7) 
!! is sufficient to replace the propagator D( q) by 
D( q). Evaluating the integral we obtain 

~p<t>=V: /(t-rm-e)(e-::+,6). (17) 

where 
lt2x2 ltx-

6=--t-l'2mt. (18) 
2m m 

A simple analysis of higher-order diagrams indi
cates that formula (17) is valid provided 

It- p'/2ml > (y'l61)'", t > (v'le 1)'1•. (19) 

Substituting (18) into the second inequality (19), one can 
reduce it to the form t > Kc, where Kc is determined 
by formula (4). (In this connection the second term in 
(18) is essential). For smaller values of t perturbation 
theory becomes inapplicable for the function Gp(t). 
This is in complete agreement with what was said in 
Section 2. 

Let us apply the obtained results in order to calcu
late the quantum corrections to the density of states. 
For this purpose the first correction to the function 
Gp(t) turns out to be sufficient: 

G~''(t)=ip(t) ( t- 2~ +t3 (. 

Using the definition (6) we obtain 

2 s rPp 
p(s)=--;- (2nlt)B lmGp(e). 

(20) 

(21) 

Substituting (16) and (20) into (21), we find an ex
pression for the quantum corrections to the density of 
states p'( ~ ): 

p(s) =pc1 +P' 

p'=- (2~):• jl'zdzlm j e-(B-I"f!Y' li.,(t) ~ (22) 
2nlt 0 -oo (t-:z:+,i6)2 yfjr.' 

where ~x(t) is given by formula (17), and x = p2/2m. 
Now it is necessary to expand (17) in powers of K. 

In the linear approximation we obtain 

~ t --' 1txy2 l'~ (23) 
'"""'( )- • 2m (t-:z:+t6)2 

The lowest-order correction to the density of states is 
determined from Eqs. (23) and (22): 

1 mx Q 
P (e)= 6n'lslt2 (~). (24) 

where t:.. = ~/y and 

Q<~>=S .. -v-xc~z~ ""c e-(1-11~-{t"ae. 
dz3 J t- :z: (25) 

0 0 

Evaluation of the integral (25) is given in Appendix 2. 
As a result we have 

3n2 
Q(~)=T~e-11'. (26) 

According to Eq. (1), for t:.. < 0 and I t:..l » 1 

m'"l'v (27) 
f>cl 4n21t31 ~I 'to -e-11'. 

In this case the pre-exponential factor in the correction 
increases with I t:.. I more rapidly than in Pel· Com
paring relations (24) and (27) one can easily verify that 
P 1 <Pel provided ~ >- ~c where ~c is defined in Eq. 
(5). For small energies values of t < Kc are important 
in the integral (25 ), and our theory does not work. 

As is evident from Eqs. (24)-(26), for t:.. » 1 the 
correction to the density of states which is linear in K 

becomes exponentially small, and it is necessary to 
calculate the quadratic correction. Expanding (17) we 
obtain 

- I 1t2x2y2 1 /t2x2y2 (28) 
~00= . · 4m (t-z+i6)2 m (t-:z:+i6)s 

Then it is necessary to substitute (28) into (22) and 
perform a simple integration. The correction p 1 

( ~) 
which is thus obtained is large in comparison with (24) 
only for t:.. » 1. In this case it has the form 

pl(e) 
3(2m) 'l•y2x2 

27s'l•lt 
(29) 

The terms of order K2 in 2!'x(t) may be obtained from 
the diagrams of higher order which we have not con
sidered; however their contribution to the density of 
states is small according to the parameter y / ~ « 1 
our technique is essentially not required. The correc
tion (29) may be obtained from ordinary perturbation 
theory. It is small in comparison with the classical 
correction to the density of states of the free electrons, 
which may be calculated from Eqs. (1) and (2). Both of 
these corrections fall off rapidly with increasing 
energy. As indicated in [l], this leads to the result that 
the correction to the Fermi energy due to the exchange 
interaction of the electrons is larger than that due to 
their interaction with impurities. 

In conclusion I wish to take this opportunity to ex
press my gratitude to V. N. Gribov for a number of 
considerations which turned out to be very important 
for this work. I also wish to thank V.I. Perel' and 
B. I. Shklovski'i for reading the manuscript and for very 
useful comments. 

APPENDIX 1 

First let us consider the 3-point diagram w1(p; q), 
a typical diagram for which is shown in Fig. 3 a. Since 
by definition D0 ( q) is inserted into the internal lines, 
all electron Green's functions are carried out from 
under the integrals, and their momentum is equal to p 
up to the point of attachment of a wavy line, and this is 
replaced by p - fiq. Any arbitrary diagram for 
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w1(p; q) may be obtained if one introduces a wavy line 
into the corresponding diagram for Gc1. Let us con- • 

c, 
Ill. 

sider one of the diagrams for Gc 1 containing s Green's FIG. 5. Contours of integration: a-C., b-
functions (it is obvious that the number s is neces- C2. 

• 

sarily odd). The simple expression 

a!~' (x,)= g,•(r/2)(<-l)/2, 8 = 1, 3, 5, ... ' (1.1) 
g, = (x, + i6)-', 

corresponds to it, where Xp = E: - p'}'2m. Let us denote 
by wiS>(p; q) the totality of diagrams for w1(p; q) 
which we obtained from Gc 1 by inserting a wavy line 
everywhere where it is possible to do so. One can 
easily verify that 

(1.2) 

Summing the geometrical progression, we obtain 

m·> (p; q) = (Y..)(S-1)/2 gp'- g~~q GW(xp)- G~l (zP-~q) (1.3) 
2 Xp-~q - Zp ZP-~q - Xp 

Formula (1.3) is valid for any of the diagrams which 
correspond to the function Gc1. Having summed all of 
the diagrams we obtain 

ll ( . ) _Gel (zp) --Gel (zP-~q) 
l p, q - ZP-~q - Zp ' (1.4) 

Substituting (12) into (1.4) we obtain 

fl1 (p;q)=~ r e-u'/Y'gp(e-u)gP-~q(e-u)du, (1.5) 
yfn -oo 

i.e., we have proved theorem (13) for the case n = 1. 
Now let us assume that (13) is satisfied for 
wn(P; q1, ... , ~) and let us prove an analogous equa
tion for 71'n+l(p; qh .•. , qn, qn+l>· With (1.5) taken into 
account this will be a complete proof of the theorem. 
One can obtain all possible graphs for wn.1 by inserting 
a wavy line with momentum qn+1 in all diagrams for 
71'n, in all possible places to the right of the wavy line 
qn· 

Let us consider one of the diagrams for wn, for 
which there are s Green's functions to the right of ~. 
Let us write the expression corresponding to this dia
gram in the form 

n~> (P; qh ... , q,.)=R<•>g.~. (1.6) 

Since by definition the momentum of the Green's func
tions changes only upon a transition through an external 
wavy line, all of these s-functions have the same mo
mentum Pn = p- 1iq1 - ... - liqn. The quantity R<S> 
contains (y}'2)<S-I>f2 , and also everything which corre
sponds to the left (with respect to qn) side of the dia
gram. Let us denote by w}fH ( p; q1, ... , qn+l) the totality 
of diagrams which are obtained by means of the indi
cated prescription from the diagram 1Tris1(p; 
q1, ... ,Qn). In analogy with (1.2) and (1.3) we obtain . 

ll~l1 (p; q,, ... , qn+t) = R<•> .E g~,.g;;:~~n+1 = 
8'=-1 

= n\:>(p; q., ... , q.) ~ n\:'(p; q,, .... q,. + q .. +l) (1.7) 

where Pn+l = Pn - liqn+l• Dealing with all of the dia
grams for 71'n in a similar fashion we obtain 

lln+l (p; qh • •., q,., qn+!) 
lln(P; qh ... ,q,.)- ll,.(p;qh ·· • ,q,. + qn+l) 

z,n+l-z'n 

(1.8) 

z • 

Substituting (13) into (1.8) we obtain 

q.e.d. 

APPENDIX 2 

Let us represent the inner integral in (25) 

f-it e-<'-"'l 
l(z)= dt 

0 t-x 
(2.1) 

in the form of an integral along the contour cl (shown 
in Fig. 5 a) 

1 jte-<t-1>.~ 
l(z)=-J dt. 

2 t-x (2.2) 
c, 

In this connection the contributions of the pole coming 
from different sides of the cut cancel out. Now let us 
understand the order of integration in (25) be to be the 
following: 

1 ,p"".J" 
Q(i\) =--J it e-<t-1>.~ dt-J _,_.x_dx. 

2 dt3 t-x (2.3) 
c, 0 

One can easily evaluate the inner integral: 

(2.4) 

the cut of the integrand in (2.3) vanishes and an integral 
is left along the contour C2 (see Fig. 5 b): 

Q(i\)=~J!!!..e-<t-1>.'!= 3n2!1e-"''· (2.5) 
16 t2 4 

c, 
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