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The problem of accelerating an ion beam by means of an electron beam is considered. The nonlinear 
analysis presented in the paper yields the characteristic parameters of the process, viz., the energy 
acquired by the ions, the acceleration time, and the maximum density of the accelerated ion beam. 

1. Recently, in connection with the creation of power
ful relativistic electron beams, it has become possible 
to realize in practice the ideas of Veksler[l, 2 J, who 
proposed to accelerate heavy ions by using the inverse 
Cerenkov effect, which takes place in a moving medium. 
The gist of this phenomenon is that an electron beam 
moving relative to an ion bunch produces, in the refer
ence frame connected with the ions, an electric field 
that is stationary with respect to the coordinates and 
has a geometry that depends on the shape of the bunch; 
according to the linear theoryf 1' 2 l of this effect, the 
field is proportional to the density of the electron beam 
and to the number of particles in the bunch. Therefore, 
by using strong-current beams for the acceleration 
and increasing the number of particles in the bunch, it 
is possible to accelerate ions to appreciable energies. 

The linear theory, however, gives only a qualitative 
idea of the considered acceleration process, and does 
not make it possible to obtain rigorous quantitative 
estimates. In order to estimate the efficiency of the 
acceleration, i.e., to determine the energy to which the 
ions can be accelerated, and to find the characteristic 
time of the acceleration process, it is necessary to 
consider the problem in the nonlinear approximation, 
using the nonlinear equations of motion of both the 
electron beam and of the accelerated ion bunch. Since 
in general form the solution of this problem is a com
plicated task, we consider it in two limiting cases. In 
the first we assume that the energy density of the ac
celerating electron beam greatly exceeds the energy 
density of the accelerated ions. This approximation is 
valid in the case of a strongly relativistic electron 
beam and allows us to disregard the nonlinear terms 
in the equations of motion of the electrons. As will be 
shown below, the principal nonlinear effect limiting the 
acquisition of energy by the ions is in this case the 
phase shift of the accelerated ion bunches relative to 
the accelerating field, a shift connected with the ac
celeration of the ions. 

The opposite limiting case, when the main nonlinear 
effect is the decleration of the accelerating electron 
beam, can take place in the acceleration of "heavy" 
bunches, when the energy density of the field produced 
by the waves is comparable with the energy density of 
the electron beam, and the dimensions of the bunch 
turn out to be of the order of the plasma wavelength. 
In analyzing this case, we shall assume the ion bunch 
to be at a standstill and estimate the momentum lost by 
the electron beam upon interacting with the field pro-
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duced by the bunch. We shall use the "captured parti
cle" model for the calculationf 3l. 

2. Let a relativistic electron beam move with 
velocity v 0 relative to an infinite chain of ion bunches 
located at a distance a from each other. If the linear 
dimensions of the bunches 15a are small compared 
with the distance between them, 15a << a, then the non
linear effects due to interaction with the electric field 
and connected with the motion of the bunches as a unit 
can be taken into account by replacing each bunch by a 
thin charged layer with a surface charge density ar 4 • 5 l. 
The system of equations of this problem consists of the 
nonlinearized equations of motion of the electron beam, 
the Poisson equation for the field, and the equations of 
motion of each bunch. Combining the equations of mo
tion of the beam with the equation for the field, we ob
tain 

!____ [ (!____ + v0!_) 2E + (jj02E] =4nqa (!____+ Vo!_) 2 
~ & ~ & ~ 
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where w~ = 41Te 2n0m -1( 1 - J3~ )312 is the plasma fre
quency of the beam, xs is the coordinate of each bunch, 
and q and M are the charge and mass of the ion. 

Taking into account the spatial periodicity of the 
system, we seek the electric field in the form 

E=e(t)exp{i[tt(t)- 2:x]}, (fJo= 2:vo, (2) 

where E{t) and ~(t) are functions that vary slowly 
during the period of plasma oscillation. Substituting 
(2) in (1) and averaging the equation for the field over 
the spatial period of the system, we obtain a system of 
ordinary nonlinear differential equations 

· ( 2n ) e=qO'(fJocos -tt--;;x , 

· ~ ( 2n ) 1't=-qO'(fJo-;;-sin -tt--;-x, 

d x =_i_ecos(-tt-~x). 
dt ")'1- x2ic2 M a 

Expressing x in terms of E from the first and 
third equations : 

x = ce2 / [ (2ca(jj 01Jf) 2 + 84) 'I• 

and changing over to the variable <I> = 21rx/ a - ~, we 

(3) 

(4) 
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represent the system of equations (3) in the form 

s = q<Hilo cos <1>, 

· 1 2nc 
<1> = - qcr(J)o- sin <1> + --;::::;:::::===;~==-7 

e a l' (2CO'(J)oM) 2 + e4 
(5) 

Integrating (5 ), we can find the dependence of <I> on 
€: 

sin <1> = ...:__1-~[l'(2ccr(J)0M) 2 + e4- 2ccr(J)oM], (6) 
vo 2qcr e 

where <I> ( 0) = € ( 0) = 0. 
Since, according to the first equation of the system 

(5), € = 0 when <I> = 7T/2, it follows that the equation 
for the maximum field amplitude €m can be obtained 
by putting in (6) sin <I> = 1: 

(6') 

The solution of this equation at w0 > w 1 can be repre
sented with a high degree of accuracy in the form 

Bm= 2qcr (~)'''[1 +_!_~(~)'''] (7) 
(J)t 3 c2 (J)o 

(when w0 = w1 and v0 /c = 1, the next higher-order 
addition to unity is equal to Ys1J. 

The maximum beam velocity xm is obtained by sub
stituting E:m in formula (4): 

((J)d(J)o)'" 
Xm = Vo -::l'r;1=+c=vo=;;2c::-::;;:2c;':.((J)=l=;/=(J)o::C):;;o'" 

(8) 

The characteristic acceleration time is determined 
by formulas (5) and (7), and turns out to be tm 
RJ 2w ! 213w~113 • When t > tm, the ions shift into the re
gion of decelerating phases of the field, and a process 
opposite to acceleration begins, with the ions transfer
ing energy to the electron beam. 

Since we have assumed above that the characteristic 
time of variation of the amplitude and of the phase of 
the field, tm, greatly exceeds the time of plasma os
cillation, it follows that, strictly speaking, the formulas 
obtained above are valid only when w~13 « wg/ 3 and, in 
accord with (8), the energy acquired by the ion beam is 
small compared with the energy of the electron beam. 
Extrapolating the formulas obtained above into the 
region of higher ion densities w 1 ~ w0 , we see that the 
efficiency of acceleration increases. The accelerating 
field acting on the ions then turns out to be 

8m ~ Mvo6lo / q. (9) 

The approximation considered by us, in which the 
nonlinearity of the equations of motion of the beam can 
be disregarded, takes place when the following inequal
ity is satisfied: 

1 ( (J)o) '" 2 -q2cr2 - -- (1- ~o2)'h<%: 1 
2n (J)t nomvo2 (10) 

and holds for a strongly relativistic beam. 
The acceleration process investigated above admits 

of a simple physical explanation. In the reference 
frame connected with the electron beam, the ions pro
duce a modulated beam moving through the plasma with 
a velocity -v0 • As shown in( 5 l, such a beam excites 
plasma oscillations and is decelerated, the maximum 
amplitude of the decelerating field, in accordance with 
(9), being determined by the momentum lost by the ion 

beam during the time of the Langmuir oscillation. In 
the laboratory frame, this effect is perceived as ac
celeration of the ions in the direction of motion of the 
electron beam. 

3. Let us consider now the acceleration of a 
"heavy" bunch, when main nonlinear effect limiting the 
maximum energy of the ions is the deceleration of the 
electron beam in the field produced by the ions. We use 
for the calculation the mode 1 of "captured particles" ( 31, 
in which it is assumed that the bunch is in a potential 
well produced by the field of the wave and moves to
gether with the wave. 

The motion of the particles in the potential well, in 
a system where the bunch is at rest, can be described 
with the aid of a kinetic equation for the distribution 
function of the ions f(t, x, p): 

iJj +u iJj +qEiJj =0 p= Mu (11) 
iJt iJx iJp ' 1'1- u2jc2 

The solution of this equation, in the case when the field 
is potential, E = -acp jax, is an arbitrary function of 
the parameter £ 0 = qcp + c(v'M2c 2 +p2 - Me). An analy
sis carried out by Bohm and Gross[ 3J shows that a 
distribution function that describes qualitatively cor
rectly the motion of the ions captured by the field of the 
wave (q > 0, cp < 0) can be represented in the form 

j(p,q>)=No 

" 
q<l> 

tl=--
Mc2' 

2a s sa.--1 (11- 6) '"("' + 2- 6) .,, ds 
0 

/l = -qq>f Me•, 

where a is an arbitrary positive number, and the 
normalization constant is expressed in terms of the 
ion density N0 at the bottom of the well, i.e., at 
cp=<l>.l) 

(12) 

The density of the captured particles as a function 
of the potential cp can be obtained by integrating 
f( p, cp) with respect to the momenta. In the case when 
the field energy is sufficiently large I o I » 1, we ob
tain the simple formula 

N(q>) = No(rp/<l>)a+t. (13) 

Substituting N(cp) in the Poisson equation, we obtain 
an equation for the potential cp( t, x): 

iJ2q> ( q> ) a+ I 
-=4ne(n- n0 )-4nqNo -
iJx2 <1> 

(14) 

which must be considered together with the nonlinear 
equations of motion of the electron beam. 

One possible method of solving the problem, used 
in( 6l, is to investigate stationary solutions that depend 
on the variable t- x/vph· Such an analysis, however, 
cannot take into account the reflection of the beam 
electrons from the bunch, an effect arising when the 
density of the captured particles is sufficiently high, 
since the hydrodynamic equations of motion do not take 
into account the effect of particle "trajectory intersec
tion". We therefore consider the problem in terms of 
the Lagrange variables 

d i} i} 
d,;=iJi+vax• x=x(t), (15) 

IJin [ 3] they considered the particular case ex= 1/2, when the de
pendence of the density of the captured particles on the potential in 
the nonrelativistic case is linear, i.e., convenient for analytic calcula
tions. 
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i.e., we follow the motion of each electron of the beam. 
The equation for the field acting on the particle along 
the trajectory is obtained by combining the equation 

iJ2(jl 
--= 4n(novo- nv) at ax 

(16) 

with Eq. (14). The closed system of equations describ
ing the interaction of the electron with the field of the 
ion plasmoid then takes the form 

d a<jl ( (jl )a+l --=4nen0 (v0 -v)-4nqN0v - , 
d-r; ax qJ 

d mv acp 
--=-=e-. 

(17) 

d-r: }'1- ~· ax 
Integrating the second equation of (17), we express the 
potential cp in terms of the particle energy: 

me2 1 
cp=-e-(y-yo), y=l'1 -~2 (18) 

Relation (18) makes it possible to reduce the system 
(17) to a nonlinear second-order equation for the parti
cle velocity: 

d2 
-(~y)= wo2 [~o- ~- J.L2 (a + 2) (Yo- y)'*1], (19) 
d-r:2 

where 

2 4ne2n0 112 =.J_Nr(me2 )'*1, Nr=_!!y__. 
roo=~, r e no eJ<DJ a+2 

Integrating (19) and choosing the integration constant 
from the condition {3 = {30 and {3 = 0, we get 

_!!,_(~y)= -w0 [-(1- ~~o)y+-1-+ 11•(yo-y)a+2]'". (20) 
d-r: Yo 

The depth of the potential well ~ can be expressed in 
terms of the density of the captured particles, putting 
in Eq. (20) {3 = f3min and 13m in = 0, and solving the 
obtained algebraic equation in conjunction with Eq. (18): 

q 2 Nr/no 
Cl> =- 2-mvo Yo . 

e2 (1 + qe 1Nr/n0) 2 - ~o2 

The energy lost by the electron is determined by 
substituting the function ~ from (21) into (18). 

(21) 

The accelerating field acting on the plasmoid is of 
the order of magnitude 

q Nr/no 
E - 2- meyo~o2 wo. 

e2 (1 + qe-1N1/n0) 2 - ~02 

The energy acquired by the ions located at the 
bottom of the potential well is determined by putting 
cp = ~ in (12): 

Wimax= -q$. 

(22) 

(23) 

The formulas obtained above make it possible to 
estimate the maximum density of the ions in the bunch 
and the value of ~m corresponding to this density. 
Putting {3 = 0 in (18) and in (21), we get 

Cl>m=- me• (yo-1), Nrm=~no. (24) 
e Yo 

Formula (24) determines the most effective accelera
tion regime, when the electron beam transfers its 
energy completely to the bunch. At ion density levels 
N1 > Nnn, the electrons are reflected from the field 
produced by the bunch, and become accelerated in the 
direction opposite to that of the beam, taking energy 
away from the ions. Substituting the value of N1m from 
(24) in (22), we note that the maximum accelerating 
field acting on the ions coincides with the momentum 
lost by the electron beam during the time 1/ w0 of the 
plasma oscillation. 

1 V. I. Veksler, Atomnaya energiya 2, 427 (1957). 
2 V. I. Veksler, Usp. Fiz. Nauk 66, 99 (1958) [Sov. 

Phys.-Usp. 1, 54 (1958)]. 
3 D. Bohm and E. P. Gross, Phys. Rev. 75, 1851 

(1949). 
4 G. F. Filimonov, Radiotekhnika i elektronika 6, 

1508 (1961). 
5 V. B. Krasovitskii, V.I. Kurilko, and M.A. 

Strzhemechnyi, Atomnaya emergiya 24, 545 (1968). 
6 V. B. Krasovitskii, Zh. Tekh. Fiz. 37, 493 (1967) 

[Sov. Phys.-Tech. Phys. 12, 354 (1967)]. 

Translated by J. G. Adashko 
21 


